### Airport Master Plan Update



# Middlebury State Airport (6B0)

#### Technical Advisory Committee Meeting #2 June 7, 2022



Middlebury State Airport (6B0) // Airport Master Plan // Technical Advisory Committee Meeting #2 // 1

#### Today's Agenda

- Introductions
- Overview of Master Plan Process
- Review of Initial Findings
  - Airport Inventory
  - Airport Forecast
  - Feasibility Study
- Airport Facility Requirements
- Airport Development Alternatives
- Next Steps
  - Airspace/Obstruction Analysis
  - Airport Layout Plan Development
  - Final TAC & Public Meetings



### Introductions

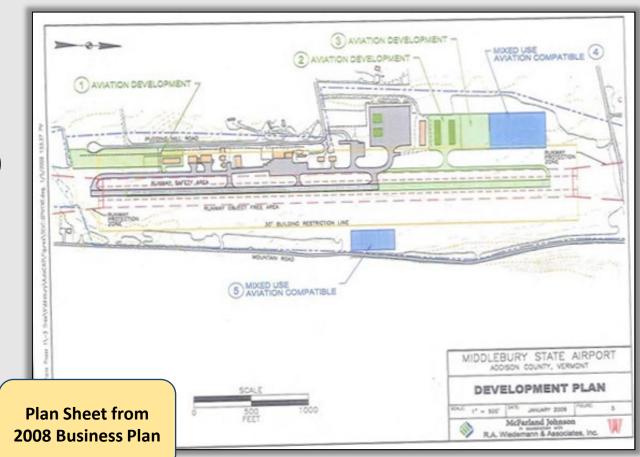
#### **Technical Advisory Committee (TAC)**

- Technical Advisory Committee Members
- Airport / VTrans Staff
- Federal Aviation Administration
- CHA (Airport Consultant)



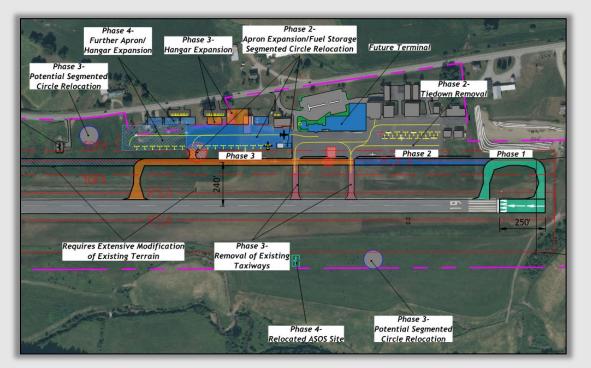
# Why Are You Here?

#### • Technical Advisory Committee (TAC):


Airport and community stakeholders supporting the planning process

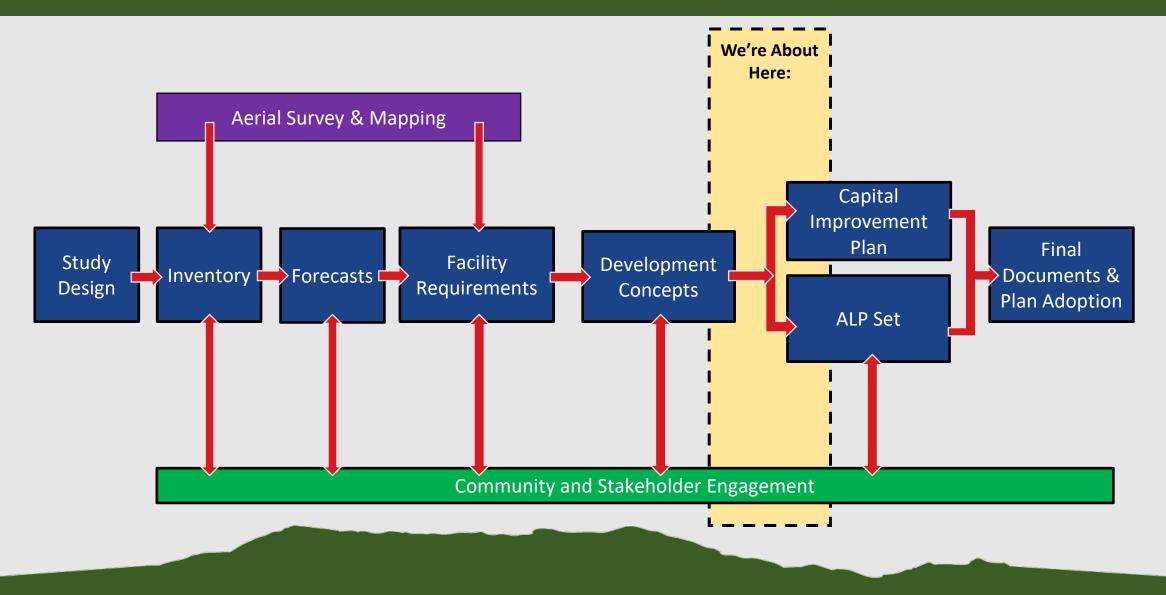
- Support Actions Includes:
  - Provide insight on airport, community and regional issues
  - Provide technical input on operational and facility matters
  - Review and comment on the Master Plan Update findings and recommendations




# What is an Airport Master Plan?

- Guides the Airport's Development
- Two Parts:
  - Master Plan Report
  - Airport Layout Plan (ALP) (Drawing Set)
- Covers 5, 10, and 20-year horizons
- Typically updated in 10-year cycles
- Follows FAA Guidance and Standards
- Last ALP completed in 2003




# Why do an Airport Master Plan?

- Meet Foreseeable Aviation Demand & Customer Needs
- Facilitate Airport Improvements
- Identify Future Development that is:
  - Planned & Logical
  - Feasible & Flexible
  - Fiscally Responsible
  - Environmentally Compatible
- Allow for Federal Funding on Eligible Projects



#### **Example: Morrisville-Stowe State Airport (2018)**

### Airport Master Planning Process



# Airport Master Plan – Focus Areas

- Industry Trends & Changes Since Previous ALP
- Follow up to the Vermont Aviation System Plan (VASP)
- Specific Focus Areas:
  - Airport Survey & Mapping (i.e., AGIS)
  - Airfield Needs & FAA Design Standards
  - Airspace Obstruction Considerations
  - Potential for Instrument Approach Procedures
  - Airfield Lighting
  - Hangar/Terminal Development Concepts
  - Financial Considerations / Costs





# Review of Initial Findings



# Key Airport Features

- Approximately 156 acres
- Single Runway: 1-19
  - 3,206' x 60'; 141' displacement
    - Recent survey will correct published runway and displaced threshold lengths
- Parallel Taxiway 'A'
  - Six Taxiway Connectors
- 30 Based Aircraft
- 13 Aircraft Hangars
- 2 Aircraft Parking Aprons
- Two Business Tenants
  - Green Mountain Avionics
  - J & M Aviation



# Existing Facilities

J

- Terminal Building / Hangar
  - Approx. 5,400 Sf
  - Owned & Maintained By VTrans
- 13 Aircraft Hangars
- 40+ Aircraft Tie-downs
- Automated Weather Observation System (AWOS)
- Fuel Farm/Aircraft Refueling
- Segmented Circle/Wind Indicator
  - Runway 1 Standard Left Traffic
  - Runway 19 Right-hand Traffic
- 15+ Vehicle Parking Spaces

|     | 2                        |                                  | 10                          | an a |          |
|-----|--------------------------|----------------------------------|-----------------------------|------------------------------------------|----------|
|     | North Apron 3 4          | Terminal<br>Apron<br>6<br>7<br>8 | 9<br>mined<br>ting<br>11 12 |                                          |          |
| No. | Facility                 | Area                             | No.                         | Facility                                 | Area     |
| 1   | T-Hangar                 | 8 Stalls                         | 10                          | Segmented Circle                         | T BUT M  |
| 2   | AWOS-III                 | Million and                      | 11                          | Box Hangar                               | 2,000 SF |
| 3   | Fuel Farm                | ALL STORES                       | 12                          | Box Hangar                               | 5,000 SF |
| 4   | Equipment Storage        | 2,750 SF                         | 13                          | T-Hangar                                 | 1,000 SF |
| 5   | Box Hangar               | 1,850 SF                         | 14                          | T-Hangar                                 | 1,675 SF |
| 6   | Box Hangar               | 1,850 SF                         | 15                          | T-Hangar                                 | 1,500 SF |
| 7   | Box Hangar               | 2,275 SF                         | 16                          | Box Hangar                               | 5,575 SF |
| 8   | Terminal Building/Hangar | 5,400 SF                         | 17                          | Box Hangar                               | 4,350 SF |
| 0   | Equipment Storage        | 100 SE                           | 18                          | T-Hangar                                 | 3 Stalls |

I-Hanga

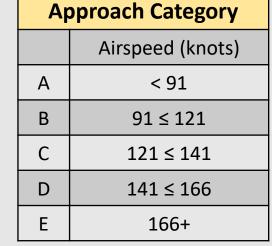
3 Stalls

400 SF

pment Storage

Equipme

# Recent Airfield Improvements


- 700' Runway/Taxiway Extension
- Runway Widening To 60'
- Updated Taxiway Geometry
  - Narrowing To 25'
  - Fillets & Tapers
  - Partial Realignment (Parallel)
- Runway 1 Displaced Threshold
  - 141' in Length
  - Non-precision Instrument Approach Markings
- Removal of Aircraft Parking Apron within Taxiway Object Free Area



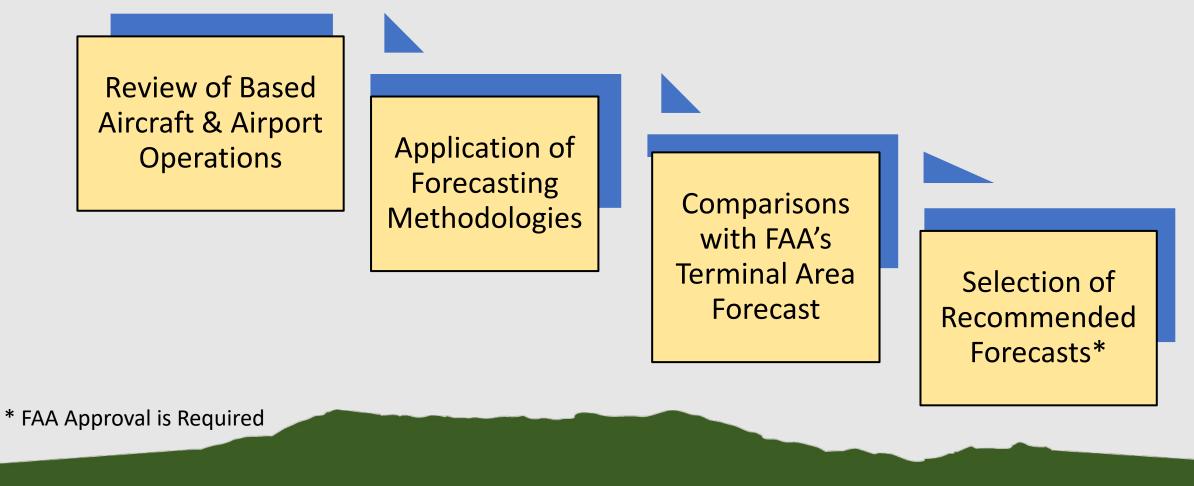
# Airport Reference Code (ARC)

- FAA System to Classify Airports
- Based on Approach Speed & Wingspan
  - Aircraft Approach Category (AAC)
  - Airplane Design Group (ADG)
- Dictates Dimensional Requirements of the Airfield
- Most aircraft at 6B0 are A-I or B-I
- ARC aircraft A-II and B-II are occasional users at 6B0
- The official ARC for 6B0 is B-I\*

\*per operational/flight plan data








Pilatus PC-12



#### Forecasts of Aviation Demand

#### **Forecasting Process**



Middlebury State Airport (6B0) // Airport Master Plan // Technical Advisory Committee Meeting #2 // 14

# TAF Based Aircraft & Airport Operations

#### CDO TAE (2020)

| • | FAA | Terminal | Area | Forecast | (TAF) |
|---|-----|----------|------|----------|-------|
|---|-----|----------|------|----------|-------|

- Annual based aircraft & airport operations report issued by the FAA
- Forecasted numbers often remain static (i.e., no growth) for non-commercial airports
- Justification must be Document if Airport Master Plan Operations Forecast Exceeds the TAF by:
  - 10% within 5-years
  - 15% within 10-years

|            | 6B0 TAF (2020) |                |                    |  |
|------------|----------------|----------------|--------------------|--|
|            | Year           | Based Aircraft | Airport Operations |  |
|            | 2010           | 46             | 10,900             |  |
|            | 2011           | 31             | 10,900             |  |
|            | 2012           | 32             | 10,900             |  |
|            | 2013           | 32             | 10,900             |  |
|            | 2014           | 32             | 10,900             |  |
|            | 2015           | 36             | 10,900             |  |
|            | 2016           | 37             | 10,900             |  |
|            | 2017           | 36             | 10,900             |  |
|            | 2018           | 29             | 10,900             |  |
| ar         | 2019           | 17             | 6,350              |  |
|            | 2020           | 17             | 6,350              |  |
|            | TAF Projecte   | d              |                    |  |
|            | 2021           | 17             | 6,350              |  |
|            | 2026           | 17             | 6,350              |  |
|            | 2031           | 17             | 6,350              |  |
|            | 2036           | 17             | 6,350              |  |
| t Master F | 2041           | 17             | 6,350              |  |
|            | *              |                |                    |  |

Base Yea

Actual

\*Excludes military operations

### 6B0 Master Plan Forecasts

#### **Based Aircraft & Airport Operations**

- TAF-Based Forecasts
  - 6B0 Growth: Determined maximum growth possible without exceeding FAA parameters
  - Statewide Growth: Determines market share of state operations
- VT Airport System Plan (VASP) Forecasts
  - Used growth parameters listed within the draft 2020 VASP:
    - Low Growth: 0.21%
    - Average Growth: 0.42%
    - High Growth: 0.84%
- Econometric Forecasts
  - Addison County population growth (-0.12%)
  - Addison County household income growth (2.5%)
- Operations per Based Aircraft (OPBA)
  - Uses household income forecast to calculate OPBA



Based Aircraft & Airport OperationsForecast Selected as Recommended Forecast

### 6B0 Master Plan Forecasts

#### **Recommended Forecasts\***

#### • Based Aircraft

 Recommended VASP High Growth forecast projects 9 additional aircraft by 2041

| Year | Recommended<br>Forecast |  |
|------|-------------------------|--|
| 2020 | 30                      |  |
| 2021 | 30                      |  |
| 2026 | 32                      |  |
| 2031 | 34                      |  |
| 2036 | 36                      |  |
| 2041 | 39                      |  |

#### • Airport Operations

- Recommended VASP High Growth forecast projects modest growth by approximately 1,220 additional operations
- Does not exceed TAF parameters

#### **Airport Operations**

| Year | 6B0 TAF | Recommended<br>Forecast | Recommended<br>Forecast vs. FAA TAF |
|------|---------|-------------------------|-------------------------------------|
| 2020 | 6,350   | 6,350                   | 0.0%                                |
| 2021 | 6,350   | 6,403                   | 0.8%                                |
| 2026 | 6,350   | 6,677                   | 5.1%                                |
| 2031 | 6,350   | 6,962                   | 9.6%                                |
| 2036 | 6,350   | 7,259                   | 14.3%                               |
| 2041 | 6,350   | 7,569                   | 19.2%                               |

\* Recommended Forecast updated since TAC #1 meeting due to FAA-verified based aircraft numbers

Middlebury State Airport (6B0) // Airport Master Plan // Technical Advisory Committee Meeting #2 // 17

#### **Based Aircraft**

# Aircraft Fleet Mix

- Mix of Based Aircraft Types
  - Single-engine, multi-engine, turbo-prop, jet, rotor/helicopter
- Used to Determine Potential Airport Space/Sizing Needs
- Fleet Mix Forecast
  - Based upon recommended based aircraft forecast
  - FAA Aerospace Forecast Report (FY 2020 2040) used to develop percent breakdown of aircraft fleet

#### Based Aircraft Fleet Mix Forecast

| Year | Single-<br>Engine | Multi-<br>Engine | Turbine<br>Engine | Rotor-<br>Craft | Total |
|------|-------------------|------------------|-------------------|-----------------|-------|
| 2020 | 29                | 0                | 1                 | 0               | 30    |
| 2021 | 29                | 0                | 1                 | 0               | 30    |
| 2026 | 30                | 1                | 1                 | 0               | 32    |
| 2031 | 32                | 1                | 1                 | 0               | 34    |
| 2036 | 32                | 1                | 3                 | 0               | 36    |
| 2041 | 34                | 2                | 3                 | 0               | 39    |

# Critical Aircraft Determination

- Critical Aircraft
  - Type or family of aircraft with 500 or more annual operations at the airport
- Most Aircraft Activity at 6B0 is from ARC A-I Aircraft with Consistent Activity from A-II, B-I, & Occasional B-II Aircraft
- As A-I & B-I FAA Design Standards are alike, ARC B-I was Retained with the Cessna 421 designated as the sample Critical Aircraft



**Recorded Flight Plans: Figures** 

| Aircraft Design Type | 2011-2021 |
|----------------------|-----------|
| A-I                  | 535       |
| A-II                 | 86        |
| B-I                  | 76        |
| B-II                 | 6         |
| Grand Total          | 809       |

Recorded Flight Plans: Percentages

| Aircraft Design Type | 2011-2021 |
|----------------------|-----------|
| A-I                  | 66.1%     |
| A-II                 | 10.6%     |
| B-I                  | 9.4%      |
| B-II                 | 0.7%      |

## Airport Facility Requirements



Middlebury State Airport (6B0) // Airport Master Plan // Technical Advisory Committee Meeting #2 // 20

# Runway Safety Evaluation

- Runway Safety Area (RSA)
  - Runway 1/19 Width: 120 FT
  - Clear of non-frangible objects
  - Graded to elevation of runway centerline
- Runway Object Free Area (ROFA)
  - Runway 17/35 Width: 250 FT
  - Clear of non-frangible objects
  - Terrain should not be higher than adjacent runway elevation
- 6B0 meets all FAA Runway Safety Standards



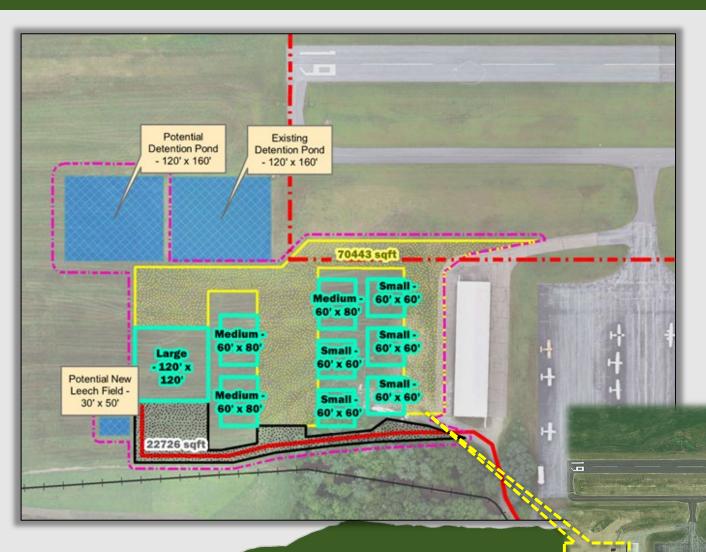
# Runway Protection Zone (Avigation Easements)



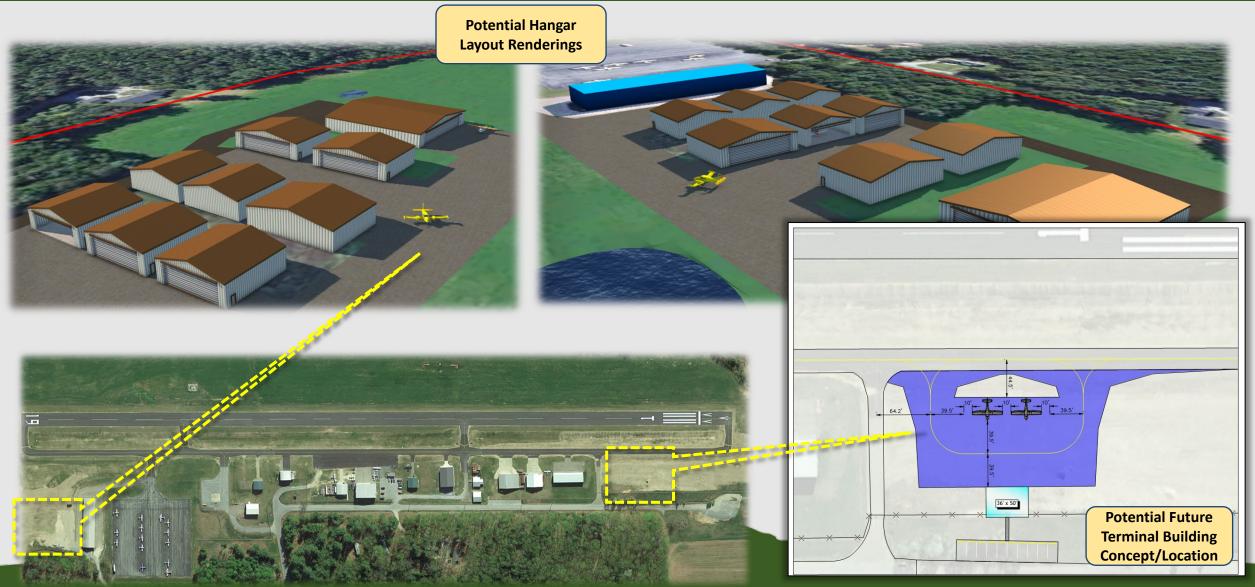
# Airport Facility Requirements

#### **Table 3-14 – Facility Recommendations**

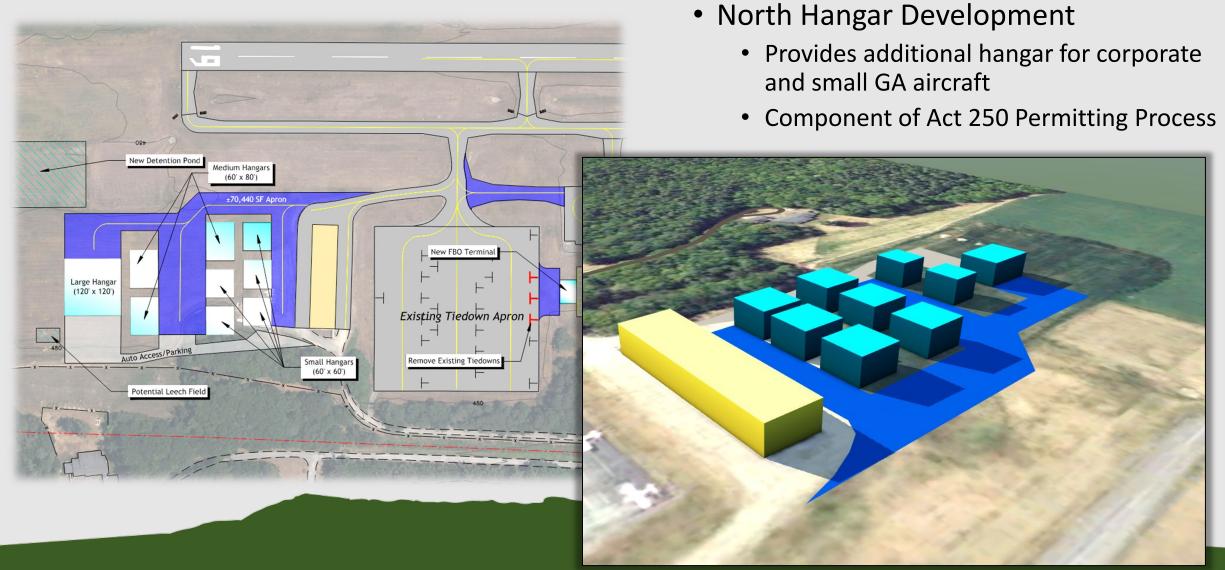
| Facility                 | Recommendation                                                                                           |
|--------------------------|----------------------------------------------------------------------------------------------------------|
| Navigational             | <ul> <li>Add Non-Precision Instrument Approaches to Runways 1 and 19</li> </ul>                          |
| Aids                     | <ul> <li>Install PAPI-2 to Runways 1 and 19</li> </ul>                                                   |
| Hangar and               | <ul> <li>Construct additional hangar space</li> </ul>                                                    |
| Apron Parking            | <ul> <li>Construct additional apron space for transient aircraft</li> </ul>                              |
| Torminal/EPO             | <ul> <li>Comprehensive renovation of the existing passenger/pilot lounge</li> </ul>                      |
| Terminal/FBO<br>Building | <ul> <li>Alternatively, construct standalone building offering amenities in line with an FBO.</li> </ul> |
| Building                 | <ul> <li>Construct additional vehicle parking lot</li> </ul>                                             |
| Airspace                 | <ul> <li>Acquire avigation easements for Runway RPZs &amp; off-airport aircraft surfaces</li> </ul>      |

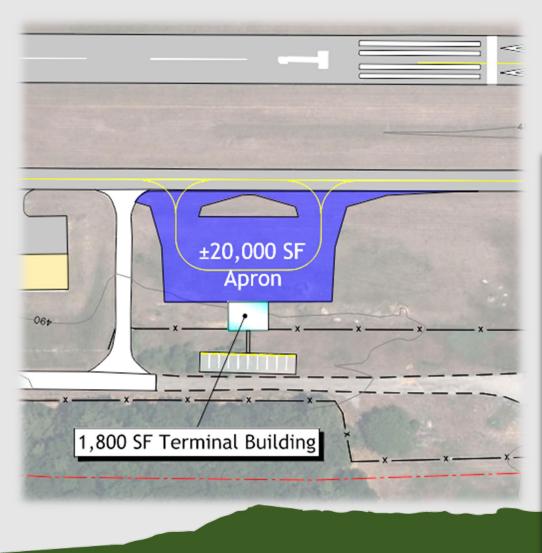



Middlebury State Airport (6B0) // Airport Master Plan // Technical Advisory Committee Meeting #2 // 24

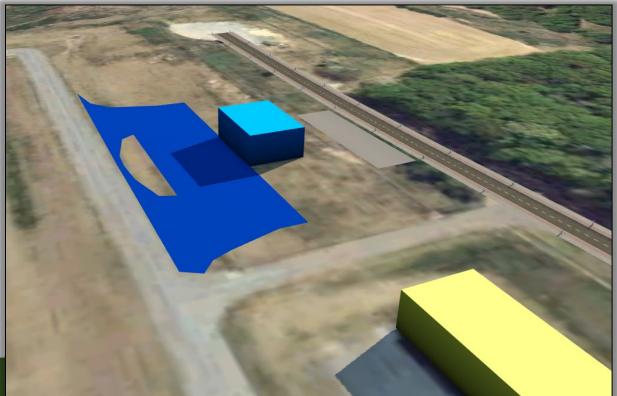

- Components of Master Plan (Working Paper #2)
  - Airfield Facility Requirements
  - Terminal Building Requirements
  - Hangar & Apron Needs
  - Support Facilities
  - Development Options & Recommendations

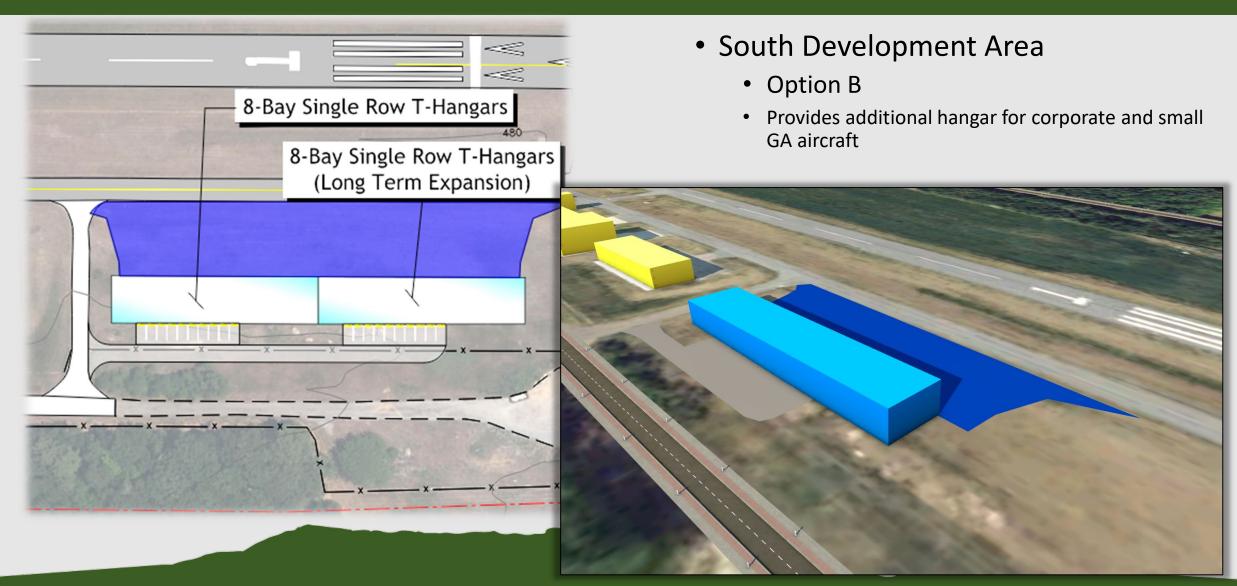



Midd

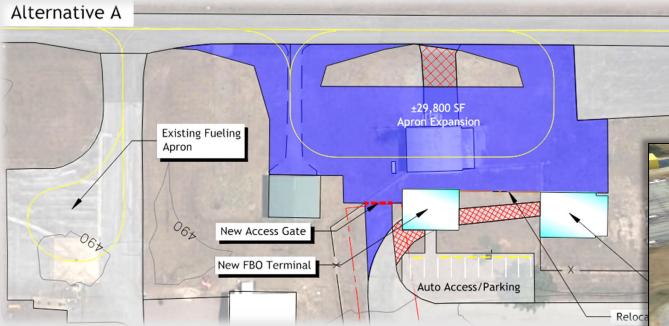



- VTRANS Hangar Permitting (ACT 250)
  - VTrans is advancing an effort to "prepermit" hangar sites to streamline private hangar development
- Additional Locations for Hangar & Terminal Building Development will be Examined



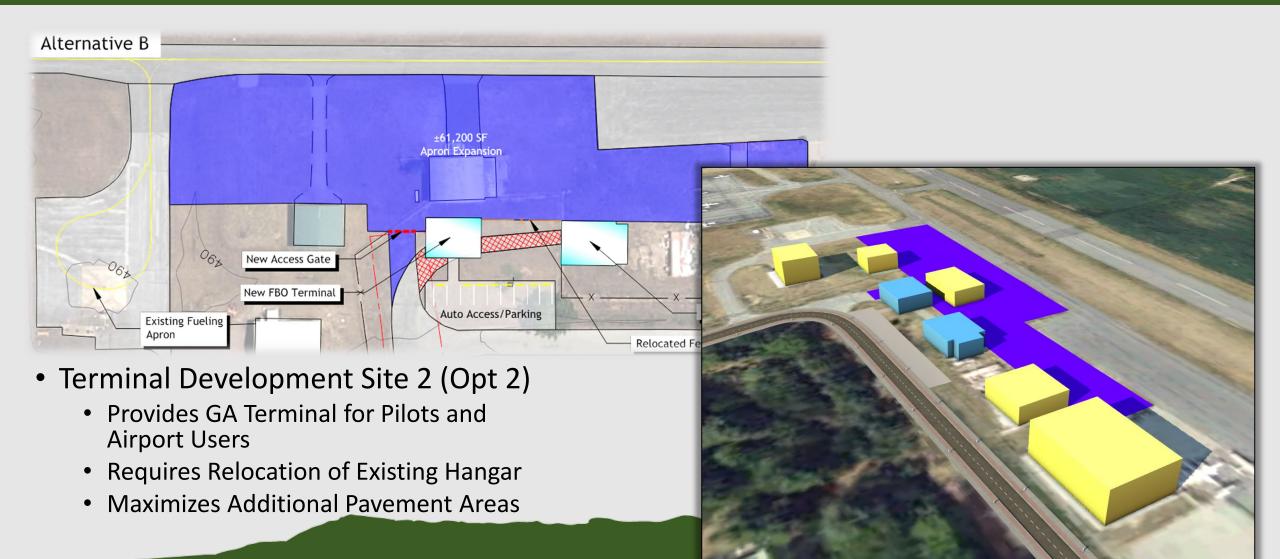


Middlebury State Airport (6B0) // Airport Master Plan // Technical Advisory Committee Meeting #2 // 27






- South Development Area
  - Option A
  - Terminal Building with vehicular access via Airport Road



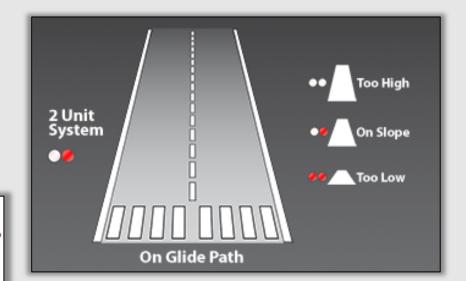







- Terminal Development Site 2 (Opt 1)
  - Provides GA Terminal for Pilots and Airport Users
  - Requires Relocation of Existing Hangar
  - Minimizes Additional Pavement Areas






# Precision Approach Path Indicator

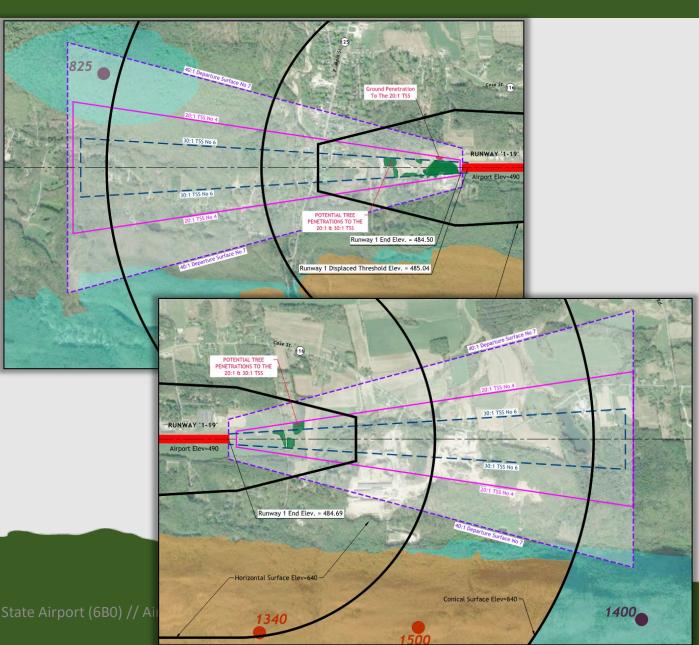
- 2-Box Precision Approach Path Indicator PAPI-2
  - Visual aid for pilots
  - Indicates if aircraft is on the ideal glide path to the runway end





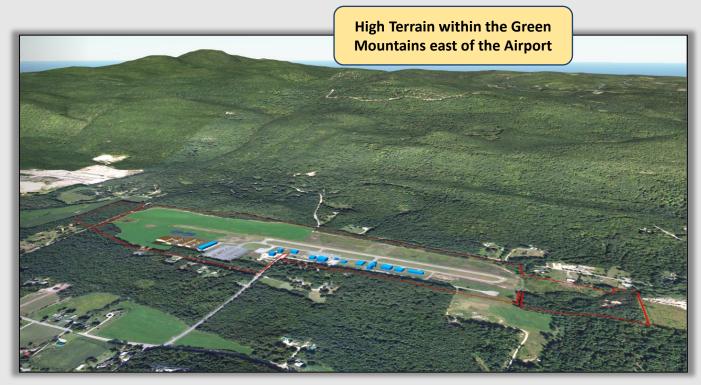


# Instrument Approach Procedure


- 6B0 is not currently equipped with Runway Instrument Approach Procedures (IAP)
- A Feasibility Study was Completed in 2019 to examine the feasibility of establishing IAPs at 6B0



Sample Instrument Approach Procedure Plate (RNAV RWY 17 at MPV)


# Instrument Approach Procedure

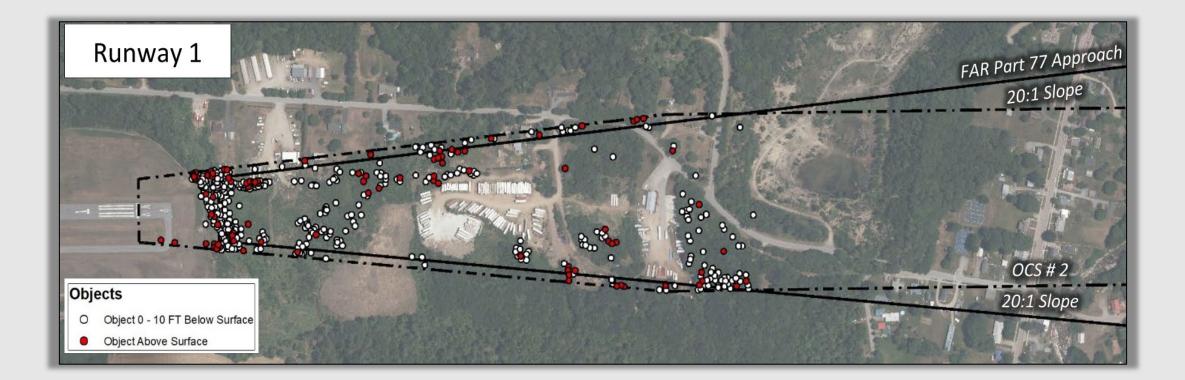
- Instrument Approach Procedure Findings:
  - Daytime only approaches
  - Lack of Radar coverage and high terrain may result in high minimum decent altitudes
- Instrument Approach Options:
  - North & West Approach: Feasible
  - *South Approach:* Possible, but likely circling-only due to terrain
  - *East Approach:* Not feasible or high visibility minimums required due to terrain
- Further FAA coordination upon completion of AGIS survey



# Airspace Obstruction Analysis

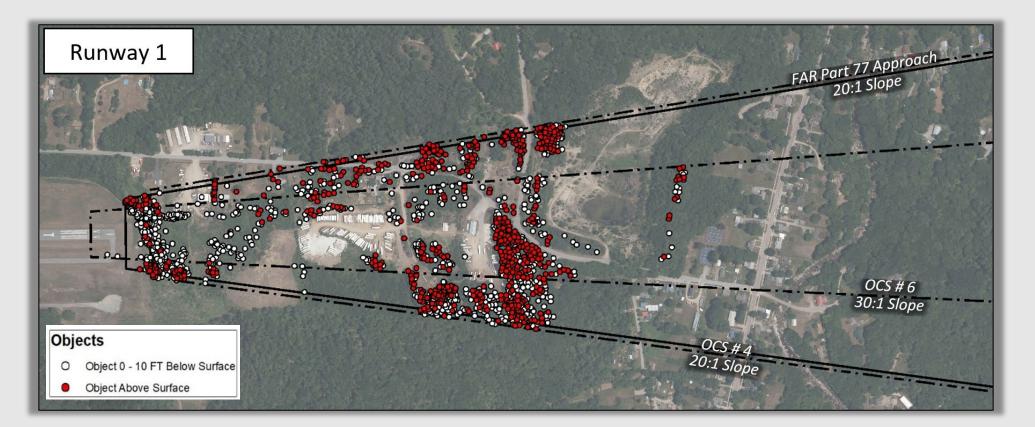
- Heavily Wooded Areas & Hills
- Green Mountain to the East
- Approach Surfaces
  - FAR Part 77 Surface (Regulated Airspace)
  - Threshold Siting Surface (FAA Standards)
- Identify Mitigation/Obstruction Action
- Potential for Instrument Approach Procedures




# Runway 19 Obstructions

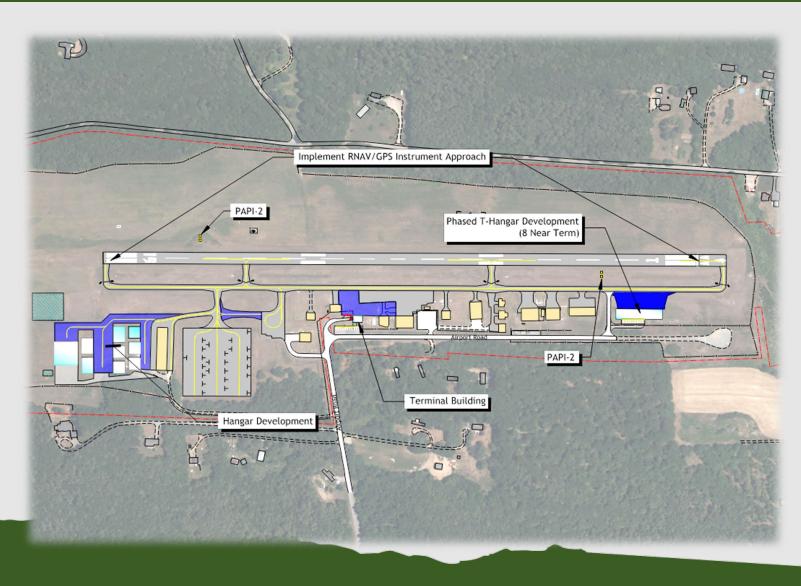
- Tree cutting project ongoing to mitigate obstructions for the Runway 19 Approach End, along Munson Road.
- Addition of a vertically guided Instrument Approach Procedure would require additional clearing further North.




# Runway 1 Obstructions

- Currently no design standard penetrations to the Runway 1 Approach Surfaces
  - Various Part 77 penetrations




# Runway 1 Obstructions

• Addition of IAP would result in shift of the Approach Surface, resulting in penetrations



# Draft Recommended Plan

- North Hangar Development
- South Hangar Development
- Terminal Building Construction
- Instrument Approach Procedure
- PAPI-2 Installation
- Tree Obstruction Removal



### NEXT STEPS



#### NEXT STEPS

- Prepare Airport Layout Plan (ALP) Fall 2022
- Prepare Draft Master Plan Report Fall 2022
- Final Meetings Review & Comments: Fall 2022
  - TAC Meeting #3
  - Public Meeting

# Questions/Comments

#### Questions or comments regarding the Airport Master Plan? Available for contact:

Shaun Corbett, Project Manager (802) 371-7943

Shaun.Corbett@Vermont.gov

VTrans Rail & Aviation Bureau

219 North Main Street

Barre, VT 05641



#### **AGENCY OF TRANSPORTATION**

Middlebury State Airport (6B0) // Airport Master Plan // Technical Advisory Committee Meeting #2 // 44