TABLE OF CONTENTS

Introduction		1
Methods and Procedure		2
I. Structural Condition		2
II. Safety		3
III. Service		3
Basic Rating		4
Moskowitz Formula		5
Topography		6
General Comments	6	
Assignment of Point Values		8
I. Structural Conditions		
A. Foundation		9
B. Drainage		10
C. Surface		10
II. Safety		
A. Surface Width		12
B. Roadbed Width		12
C. Stopping Sight Distance		13
D. Consistency of Alignment and Grade		13
E. Accident Deduction		13
III. Service		
A. Average Highway Speed		15
Speed Correction		18
Sample Worksheet		20
B. Passing Sight Distance		21
C. Ease (Width and Rideability)		22
D. Corrections		
1. Excessive Grades		23
2. Vertical Clearance		23
IV. Flood Correction		24
V. Adjustment for lack of All Weather Surface		24

Appendix A:

Table I (Minimum Geometric Design Standards for Interstate and Principal Arterial Highways)	26
Table II (Minimum Geometric Design Standards for Primary and Secondary Highways)	27
Table II-A (Minimum Geometric Design Standards for State Highways in F.A. Urban Areas)	28
Table III (Design Speed Standards)	29
Table IV (Passing Sight Distance Requirements)	29

Appendix B (Flood Correction Chart)

32

Appendix C (Design Hour Volume):

Based on ADT and Highway Class	34
Based on Areas of Station Influence	39
Identification of Recreational Highways	41
Appendix D (Highway Sufficiency Rating Form)	44

HIGHWAY SUFFICIENCY RATING INTRODUCTION

In order to provide a sound and logical basis for determining the priority selections of a highway construction and improvement program, a method of rating highways has been developed. This method is now being used by the majority of states and the Federal Highway Administration at the present time. Such a rating is called a sufficiency rating and attempts to

answer the question: how sufficient or adequate is each section of highway when compared to a highway properly constructed.

The present method consists of assigning a point rating to the various highway elements based on the actual condition, dimensions, and service of the highway and its ability or inability to carry the traffic efficiently when compared to a uniform set of standards.

The Vermont Agency of Transportation has developed a rating system, which when applied to each element in the highway will assign a numerical rating to each section which will show the relative adequacy of all highways. The highway standards used for comparison are based on those established by the American Association of State Highway and Transportation Officials (AASHTO) and the new Vermont State standards, dated October 22,1997. Many states are using similar standards which offers the possibility of being able to make comparisons on a nationwide basis.

EXPLANATION OF METHOD

The basis of the method is to assign a rating of 100 points to a perfect highway and to sub-divide the elements into three major criteria with par values as follows:

1. Structural Condition 50	Points
2. Safety	25 Points
3. Service	25 Points
Total for perfect score	100 Points

METHODS AND PROCEDURE

I. Structural Condition

This item is concerned with the structural design of the highway and is intended to indicate its ability to carry certain loads. Foundation, safe load capacity of bridges, slides, effectiveness of ditches and culverts, and condition of pavement surfaces are the main elements to be considered.

The condition of the foundation, pavements, ditches, culverts and slides is rated in the field by the district administrators in conjunction with engineers from the Central Office. All elements are rated according to a classification of <u>good</u>, <u>fair</u>, <u>poor</u>, and <u>bad</u>, and the assignment of a highway into any class will depend upon the degree of heaving, cracking, warping, scaling, rutting, raveling, and disintegration of the particular section. The rating is based upon the action of the highway during the spring break-up. Bridges are rated on the basis of the current Bridge Inspection reports. Pavement surfaces are rated on the correlation with the Pavement Management=s system surface condition (International Roughness Index, or IRI), provided by the Maintenance Division of the VAOT.

II. Safety

Safety involves the elements of geometrical design which determines the degree of safety provided to the motorist. The principle elements to be considered are the roadbed width, surface width, stopping sight distance, bridge widths, accidents and consistency of alignment and grade.

Most of this data is obtained from office records with the exception of the stopping sight distance, which is obtained from field surveys and construction plans.

III. Service

Service is rated on how well the highway serves the motorist. This classification is concerned with the efficient movement of traffic, the average highway speed, or safe operating speed, the percent of passing sight distance available, the existence of steep grades, surface width, rideability, and restricted overhead clearances; in short, any combination of elements which curtails service.

7

The average highway speed is calculated from curvature data, the passing sight distance is obtained from the sight distance surveys, the excessive grades are obtained from office records and field surveys, rideability is correlated with pavement conditions, and restricted overhead clearances are obtained from office records.

BASIC RATING

The sum of the point values derived from the three major criteria minus the adjustments for floods and lack of an all weather surface equals the basic rating.

The basic ratings are adjusted for traffic volume to give a lower sufficiency (greater priority) to heavily traveled highways and a higher sufficiency (lesser priority) to low volume highways. The correction is made by means of the Moskowitz Formula (Ref. Rpt. No. DOT FH-11-7882).

The statewide average traffic volume on any group of highways is used as one of the major elements in the Moskowitz formula, and is obtained for the Interstate, Arterial, Major Collector, and Town Highways on the Federal-aid Systems in Vermont from Table TA-1 (Daily Vehicle-Miles Per Mile, Col. 5). The data year of the Table TA-1 must be consistent with the year of the traffic volumes used in the ratings.

The following is an example of how the correction works:

MOSKOWITZ FORMULA:

$$(x^{2} - 100 x) (\log T - \log T_{s})$$

y = x + 50 log T_s

Where:	y = adjusted rating
	$\mathbf{x} = \mathbf{basic}$ rating
	T = actual traffic (AADT)
	T_s = average traffic (AADT) for desired year
	on desired system

Example:

When	T = 4500
	$T_s = 2750 (1981) F.A.P.$

x = 50.0

y =	50 +	(50 ² -5000) (3.653 - 3.439)
•		50 x 3.439

y =	50 +	-535
		171.95

y = 50 + (-3.1)

y = 46.9

When	$T = 1500 T_s = 2750 (1981) F.A.P.$
	X = 50

y = 50 + (+3.8)

y = 53.8

TOPOGRAPHY

The topography or type of terrain has a considerable influence on the type of standard which is economically feasible to adopt. The terrain is classified as flat (level), rolling, mountainous, suburban and urban on the basis of the extent to which the terrain actually influences the present highway condition. See Tables I, II and IIA in Appendix A, pages 26, 27, and 28 respectively.

Explanation of Topography

Flat (level): Very light grades - location of highway not restricted by land contour. Example: None available.

Rolling: Medium grades - highway location affected somewhat by the contour of the hills in the area.
Example: VT 14, White River Junction to Barre.

- Mountainous: Heavy grades unavoidable, highway location determined largely by the mountains. Example: VT 9, Woodford-Searsburg.
- Suburban: Restricted speed zones through villages or densely populated areas not used for Principal Arterial Highways,
- Urban: Restricted speed zones through densely developed areas within the FA. Urban Areas not used for Principal Arterial Highways.

General Comments

Each highway rating section is homogeneous in character. A section ends at the point where a new characteristic appears; such as a change in the volume of traffic, in surface or roadway widths, in structural conditions, in the type of terrain, or in the geometries of the highway; and a new section is

designated. Sections may, therefore, vary in length from a fraction of a mile to several miles.

On the average 1/3 of the state highways are checked in the field each year for possible changes in structural conditions, sight distance, improvements through maintenance or construction, or for any inconsistencies of sectioning or rating. All state highways are surveyed bi-annually for pavement conditions by the Maintenance Division.

The term DHV (Design Hour Volume) or 30th peak hour appears in the rating procedure and represents the 30th highest hourly traffic volume during the rating or existing year. The DHV is determined by first checking if the rating section is within the area of a traffic recorder station influence and if not, by classifying the highway as Interstate, General, or Recreational.

These factors may be readily determined from tables developed by the Traffic Research Section and are included in Appendix C, pages 32 - 37. Occasionally as conditions dictate other DHV formulas are used.

The standards used for rating are those in the recommended AASHTO minimum geometric design standards and the new Vermont State Standards, dated October 22, 1997. The standards employed are intended to provide a reasonable basis for arriving at a realistic evaluation of the existing highways. These standards are included in Appendix A, pages 26 - 29.

Note: Stopping and passing sight distance values are obtained by field surveys and construction plans, and are intended for <u>planning purposes only</u> in these ratings.

ASSIGNMENT OF POINT VALUES

SUMMARY

I STRUCTU	JRAL CONDITION			50 POINTS
A.	Foundation		30 Points	
	Slides: deduct 1 to 3 po	oints		
	Structural Evaluation: d	leduct 0 to 5 points		
B.	Drainage		8 Points	
	1. Culverts	4 Points		
	2. Ditches	4 Points		
C.	Pavement or Surface		12 Points	
II SAFETY				5 POINTS
А.	Surface Width	6 Poin	ts	
D	D 11 1 XV': 141-		7 Delinte	
B.	Roadbed Width		7 Points	
C.	Stonning Sight Distance		8 Points	
C.	Stopping Sight Distance	5	o Politis	
D.	Consistency of Alignme	ent & Grade	4 Points	
D.	Consistency of 7 mgmmk		+ 1 Onits	
E.	Accident Deduction:	0 to 5 points.		
		o to o points.		
III SERVICE				25 POINTS
A.	Average Highway Spee		12 Points	
B.	Passing Sight Distance	6 Poin	ts	
C.	Ease		7 Points	
	1. Surface Width	4 Points		
	2. Rideability	3 Points		
D.	Correction of Total Ser	U		
		sive grades, deduct 0 to	-	
	2). Correction for restr	icted vertical clearance,	deduct 0 to 8 pc	oints

Basic Rating = 100 POINTS

Adjusted Rating = Basic Rating Less Corrections For an example of a Vermont Highway Sufficiency Rating Form, see Appendix D, page 35.

I. STRUCTURAL CONDITION		5	0 POINTS
A. Foundation	30	Points	
1. Good	30 Points		
2. Fair+	24 Points		
3. Fair	18 Points		
4. Fair-	12 Points		
5. Poor	6 Points		
6. Poor-	3 Points		
7. Bad	0 Points		

Rate on performance of pavement or degree of heaving, warping, cracking, rutting, pumping and

frost heaves.

The following points shall be deducted from the foundation for slides and bridges:

Slide Deduction (Minus)			
1.	Poor	1 Point	
2.	Bad	2 Points	
3.	Dangerous	3 Points	

Based on the greatest deduction in each section - not prorated.

<u>Structural Evaluation - Deduction</u> (Bridge 20.0' span and over)

Structural Evaluation No.¹

7,8,9 - Good	0
4,5,6 - Poor	2
3 - Intolerable	4
2 - Intolerable	5

Based on the lowest capacity in each section - not prorated.

¹ Data obtained from Structures Division Computer Printout (Program No. H860).

B.	Drain	Drainage			8 Points
	1-	Culverts		4 Points	
		Good	4 Points		
		Fair+	3 Points		
		Fair	2 Points		
		Fair-	1 Points		
		Poor	0 Points		
	2 -	Ditches		4 Points	
		Good	4 Points		
		Fair+	3 Points		
		Fair	2 Points		
		Fair-	1 Points		
		Poor	0 Points		

C. Surface _____ 12 Points

The Surface Rating is correlated directly to the Present Serviceability Rating (PSR) which is correlated with pavement condition (IRI), provided by the Maintenance Division.

The correlation is as follows: Pavement Rating = $\frac{12(PSR)}{5}$

Note: Gravel surface = 0 Points

PSR <u>RATING</u>	SURFACE CONDITION	SUFFICIENCY <u>RATING</u>
0 to 1.0	P (poor)	0 to 2.4
1.1 to 2.0	F- (fair minus)	2.5 to 4.8
2.1 to 3.0	F (f air)	4.9 to 7.2
3.1 to 4.0	F+ (f air plus)	7.3 to 9.6
4.1 to 5.0	G (good)	9.7 to 12.0

When more than one PSR Rating is contained within the sufficiency Rating Section, the actual PSR Rating is averaged based on weighted lengths.

Example : The section is 3.00 miles long.

0.50 miles has a PSR Rating of 3.30 2.50 miles has a PSR Rating of 4.30

Then: 0.50 miles X 3.30 = 1.65+ <u>2.50 miles X 4.30 = 10.75</u> <u>3.00 miles</u> <u>12.40</u>

12.4/3 = 4.1 (Averaged PSR Rating)

The above also applies for averaging Surface Widths, Roadbed Widths, Current AADT, and AADT for 5-Year Accident Period.

A. Surface Width

R = 6 + actual width - standard width

(1) Gravel surface i-s 2 feet less than roadbed.

(2) Where climbing lanes exist, the additional width shall not be used in computing the actual widths for rating purposes.

Bridge Width Correction

The surface width rating shall be corrected for each structure (including underpasses) having a lateral clearance less than the actual roadbed at the structure. Deduct 0.5 points for each foot less than the actual roadbed. Prorate total deductions on sections over 1 mile in length.

The surface width rating shall never be less than 0.

B. ROADBED WIDTH (Additional width for climbing lanes not used for rating purposes)

R = 7 x <u>actual roadbed - standard surface</u> standard roadbed - standard surface

C. Stopping Sight Distance (SSD) 8 Points

Rating = 8 - N/L

where N = number of SSD restrictions L = section length in miles

In figuring restrictions use the lowest sub-standard sight distance whether it occurs on the initial or

the return run.

Stopping Sight Distance Correction

Deduct 1 point for each restriction less than 1/2 the standard SSD: 275' @ 65 MPH, 260' @ 60 MPH, 225' @ 55 MPH, 200' @ 50 MPH, 165' @ 45 MPH, 135' @ 40 MPH. The rating for the stopping sight distance shall not be less than 0. <u>Do not prorate</u>.

D. Consistency of alignment and grade _____ 4 Points

Rating = 4 - N/L

where N = number of inconsistent (substandard) curves and grades (include rail-highway grade crossings.)

L = section length in miles.

E. Accident Deduction from Total Safety Rating _____ (-5)

This deduction is based on the Rate - Quality Control Method (FHWA Sponsored) which is used to identify High Accident Locations by calculation of Actual Accident Rates (Ar) and Critical Accident Rates (Cr), then determines a Critical Rate Factor (CRf) by dividing the Actual Rate by the Critical Rate. Sections with CRf greater than 1.00 are considered a High Accident Location. Formulas for the Actual and Critical Rates (based on 5-year accident data) and the

Critical Rate Factor are presented below:

Actual Rate
 Ar = (A x 1,000,000)/(AADT x 365 x N x S)
 where:
 Ar = Actual Accident Rate in Accidents per million vehicle miles
 A = Total Number of Accidents (Years Analyzed) for the Section

AADT = Average A-ADT (5-Year Period of Accidents) for the Section N = Number of Years AnalyzedS = Section Length in miles

2. Critical Rate

 $Cr = R_a + K \sqrt{(R_a/M)} - 1/2M$

where:

C_r	=	Critical Accident Rate in Accidents per Million Vehicle Miles			
R _a	=	Average Accident Rate for Highway System (Statewide for Years			
		Analyzed) in Accidents per Million Vehicle Miles (from Table			
	TA-1)				
Μ	=	Vehicle Exposure in Million Vehicle Miles for the Section			
Κ	=	A constant which determines a Confidence Level (one-sided).			
	Curren	tly, a value of 2.58 is used, which gives approximately a			
00 -					

99.5% Confidence Level

3. Critical Rate Factor

 $CR_{\rm f} = A_{\rm r}\!/\!C_{\rm r}$

where: $Cr_f = Critical Rate Factor$ $A_r = Actual Accident Rate$ $C_r = Critical Accident Rate$

4. Application of Critical Rate Factors for Deduction from Safety Rating:

Deduction = 5

If $CR_f > 1.00$ then deduction = 5. (Deduction is never greater than 5 points)

Note: If High Accident Locations determined from Accident Analysis Program for 0.30 mile sections

and intersections are within section being rated, the full 5 point deduction is taken and the above

procedure is not required.

III.	SERVICE	25 Points

A. Average Highway Speed _____12 Points

The average highway speed rating is intended to reflect the safe operating speed, consistent with horizontal alignment, in comparison with the design speed standard being used, without the influence of traffic.

Average highway speed is defined in highway capacity procedures as the weighted average of the design speeds within the section, when each subsection within the section is considered to have an individual design speed.

The following method for computing average highway speed utilizes highway capacity procedural recommendation of approximately 800 feet (0.15 mile) for the effective length of each curve. Tangent sections are assumed to have a design speed consistent with the actual legal maximum speed limit within the section being rated. The maximum superelevation rate is assumed to be 0.08 ft./ft. This is reflected in the following curvature range table for

each design speed:

Degree of	Approximate
Curvature Range	Design Speed (MPH)
75.1 - 90.0	15
43.1 - 75.0	20
28.0 - 43.0	25
19.5 - 27.9	30
14.0 - 19.4	35
11.0 - 13.9	40
8.5 - 10.9	45
7.0 - 8.4	50
5.5 - 6.9	55

4.5 -	5.4	60
3.5 -	4.4	65

The procedure for computing average highway speed as defined above is as follows:

where:

- D = design speed standard for section, mph
- n= number of curves within a specific curvature range
- N= total number of curves
- T= tangent length in miles
- M= tangent travel time in minutes
- d= design speed for specific curvature range, mph
- R= curvature range travel time in minutes
- C= total curve travel time in minutes
- L= section length in miles
- S= average highway speed, mph

$$\frac{L}{([L - (N \times 0.15)] \times \underline{60}) + ([(\underline{60} \times 0.15)x n] + [\underline{60} \times 0.15)x n_1], \text{ etc.}) \times 60 = S}{D \quad d}$$

Step 1: Determine the design speed (D) from Appendix A, Tables I or II, pages 23 and 24.

Step 2: Determine the number of curves within each curvature range (n) from the above curvature range table. Consider only those curvature ranges where the design speed (d) is less than the design speed (D).

Step 3: Multiply the total number of curves (N) by 0.15 miles and subtract this figure from the section length (L) to determine the tangent length (T) : $(L-(N \ge 0.15) = T)$

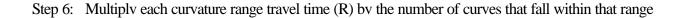
Step 4: Multiply the tangent length (T) by <u>60</u>

design speed

or

 $\frac{60}{D}$ to determine the tangent travel time (M) in minutes. (T x $\underline{60} = M$) D

Step 5: Multiply <u>60</u> design speed for curvature range


or

$$\frac{60}{d} \ge 0.15 = R$$

$$\underline{60}_{1} \ge 0.15 = R_1$$

 $\frac{60}{d_2} \ge 0. \ 15 = R_2$

etc.

(n) and then. add these figures together to determine the total curve travel time in minutes (C).

$$[(R \ x \ n) + (R_1 \ x \ n_1) + R_2 \ x \ n_2) \text{ etc.}] = C$$

Step 7: Add the total curve travel time (C) to the tangent travel time (M) and then divide this figure into the section length (L). Multiply this figure by 60 to determine the average highway speed (S).

 $\frac{L}{C+M} \quad x \ 60 = S$

See Page 19 for sample worksheet.

B. The formula, **12-0.6(D-S) = rating**, is used to determine the rating for the average highway speed.

where:

D = design speed standard for section, mph

S = average highway speed, mph

This is based on assigning 12 points to a section where the average highway speed is equal to

the design speed and deducting 3 points for every 5 mph difference between the average highway speed

and the design speed.

SPEED CORRECTION

When the lowest individual design speed for any subsection within the section drops 20 or more

mph less then the design speed standard for that section, a deduction is made in the average highway speed rating. The deduction shall never be more than 6 points and the average highway speed rating shall never be less than zero.

The formula used is: deduction = 6- 0.4(D-d) where: D = design speed standard for section, mph d = lowest individual design speed for any subsection within the section, mph

If D-d \ge 30, then deduction = 6 If D-d < 20, then deduction = 0

This is based on the premise that when D-d = 20 then deduct 2 points and increase the deduction by 2

points for every 5 mph increase in D-d until D-d >30, then always deduct 6 points.

Degree of Curvature Range	Approximate Design Speed (MPH)	Number of Curves	Total Travel Time (minutes)	
Tunge	(d)	(n) $(\frac{60}{d} \times 0.15 \text{ n})$	
75.1 - 90.0	15		l	
43.1 - 75.0	20			
28.0 - 43.0	25			
19.5 - 27.9	30			
14.0 - 19.4	35			
11.0 - 13.9	40			
8.5 - 10.9	45			
7.0 - 8.4	50			
5.5 - 6.9	55			

WORKSHEET FOR CALCULATING-AVERAGE HIGHWAY SPEED (AHS)

4.5 -5.4	60		
3.5 - 4.4	65		
Т	otal number of curves (N)=	
Ĩ		Curve travel time (C)	=
		Tangent travel time (M)=
		Total travel time (C+I	M)=
:	Section Length (L)	mi. * * NOTE : If 0	.15 N \ge L,then let L = 0.15 N
minus tota	al curve length (0.15N) -	mi. *	
=	Tangent Length (T)	mi.	
time	s min. per mi. (<u>60</u>) x D	min./mi.	
= Tai	ngent Travel Time (M)	min.	
Average I	Highway Speed (S) = $[S_{\text{by Total}}]$	ection Length (L) Fravel Time (C+M)	
	Uy Total		MPH.
NOTE: f	or maximum superelevation		
B . 3	Passing Sight Distance (See example		6 Points
,	The Passing Sight Dist	ance rating may be d	letermined by the following formula:
Rating =			<u>Distance >1500</u> ' x 6 ing Sight Distance > 1500'
	-	g Sight Distance > 1:	500' shall be computed in both directions and
averaged	1.		

Where a climbing lane exists, the sight distance shall be computed as 100% over the

length of the climbing lane in that direction only.

PASSING SIGHT DISTANCE

EXAMPLE:

Section in Town of Ryegate is 7,000 feet long - see attached sheet. For passing sight distance of 1,500 feet and over, shown here in checks, and using Table IV, Appendix A, page 25.

1,375' Initial Run = Return Run = 1,300'Total Feet = 2,675' Average = 1/2 of 2,675 = 1,338Percent of passing sight distance >1500' = <u>1338'</u> = 19% 7.000 Standard percent from Table IV = 30%The rating is 19 x 6 = 3.78 = 3.830 C. EASE (Width and Rideability) 7 Points Surface Width 1. 4 Points R = 4 + actual width - standard width2. The Rideability Rating is directly correlated to the Pavement Serviceability Rating

(PSR) provided by the Agency's Director of Maintenance Management.

The correlation is as follows:

Rideability Rating = $\frac{3(PSR)}{5}$

RIDEABILITY

PSR RATING	ACTUAL CONDITION	RATING	
	_ / .		
0 to 1.0	P (poor)	0 to 0.6	
1.1 to 2. 0	F- (fair minus)	0.7 to 1.2	
2.1 to 3.0	F (fair)	1.3 to 1.8	
3.1 to 4.0	G (good)	1.9 to 2.4	
4.1 to 5.0	E (excellent)	2.5 to 3.0	

D. Corrections to Service Rating

1. Correction for **EXECESSIVE GRADES** (deduct 0 to 6 points)

where:

- A = actual grade (percent)
- S = standard grade (percent)
- L = length of grade (Miles)

D = deduction (points)

a. Principal Arterial Highways (2-lane):

 $D = \sum [2(A-S) + 10 L - 1]$

Deduction shall never be greater than 6 points.

If length of section is greater than I mile then prorate:

$$\sum [2 (A-S) + 10 L-1]$$

D =

Section Length in miles

b. Rural Primary or Secondary Highways:

 $D = \sum (A-S+10L-1)$

Deduction shall never be greater than 6 points

If length of section is greater than 1 mile then prorate:

 $\sum (A-S + 10 L - 1)$ D = Section Length in miles

Note: Do not take excessive grade corrections where climbing lanes exist.

2. Correction for Restricted **VERTICAL CLEARANCE** is based on the lowest clearance in each

section as compared to a standard minimum clearance of 14':

Deduction = -2(14-V)where: V = vertical clearance (feet)

If V = > 14 then deduct 0 points.

If V = < 11 then deduct 8 points.

Note: SERVICE RATING SHALL NOT BE LESS THAN 0.

IV	FLOOD CORRECTION	(-10)
	To be deducted from total basic rating (Condition + Safety + Service).	See Appendix B

V. Adjustment for lack of ALL WEATHER SURFACE (M&D) _____ (-15) Deduct from total BASIC RATING

If AADT < 100 then deduct 0 points.

If AADT > 300 then deduct 15 points.

Otherwise, deduction = $15 - \frac{3}{50}$ (300 - AADT) $\frac{3}{50}$

This is based on the premise that for every AADT increase of 50 between 100 and 300, the deduction increases by 3 points.

The deduction shall never be greater than 15 points.

APPENDIX A

APPENDIX A TABLE I MINIMUM GEOMETRIC DESIGN STANDARDS BASED ON A.A.S.H.T.O. & A.O.T. STANDARDS TO BE USED IN RATING INTERSTATE, RURAL & URBAN PRINCIPAL ARTERIAL HIGHWAYS

INTERSTATE (NHS)

Traffic Volume	Design Speed (MPH)	Surface Width (ft)	Roadway Width (ft)	Gradient
ALL DHV	55/65	2 @ 24	2 @ 38	5% up 6% down

PRINCIPAL ARTERIAL (NHS)

	Design	^{1,2} Surface	e Roadv	vay
Traffic Volume/Terrain	Speed (MPH)		Width (ft)	Gradient(%)
over 800 DHV (4-Lane) :	55	24	40	5% up 6% down
up to 800 DHV:				
Flat	50	24	40	4%
Rolling	50	24	40	5%
Mountainous	50	24	40	7%

¹ Design speed for Principal Arterial is not reduced to legal speed limits for sufficiency rating computation.

² Where posted speed for 55 mph, the Design speed shall be considered 55 for sufficiency rating computation.

APPENDIX A TABLE II MINIMUM GEOMETRIC DESIGN STANDARDS BASED ON A.A.S.H.T.O. & A.O.T. STANDARDS TO BE USED IN RATING RURAL HIGHWAYS OTHER THAN INTERSTATE AND PRINCIPAL ARTERIAL ROUTES

PRIMARY (MINOR ARTERIAL) AND SECONDARY (MAJOR COLLECTOR)

``````````````````````````````````````	Design ¹	Surface	Roadw	•	,
Traffic Volume /Terrain	Speed (MPH)	Widths (Ft)	Widths	(Ft)	Gradient(%)
<u>over 800 DHV</u>					
Flat	50	24	40	4%	
Rolling	50	24	40	5%	
Mountainous	50	24	40	7%	
Suburban	20-45	22	32	N/A	
400 to 800 DHV					
Flat	50	22	32	4%	
Rolling	50	22	32	5%	
Mountainous	50	22	32		7%
Suburban	20-45	22	32		N/A
200 to 399 DHV					
Flat	50	22	30	4%	
Rolling	50	22	30	5%	
Mountainous	40	22	30	10%	
Suburban	20-45	22	30	N/A	
<u>100 to 199 DHV</u>					
Flat	50	*20/22	*26/30		4%
Rolling	50	*20/22	*26/30		5%
Mountainous	40	*18/22	*22/30		10%
Suburban	20-40	*18/22	*22/30		N/A
<u>55 to 99 DHV</u>					
Flat	50	*20/22	*24/30		4%
Rolling	50	*20/22	*24/30		5%
Mountainous	40	*18/22	*22/30		10%
Suburban	20-40	*18/22	*22/30		N/A
up to 54 DHV					
Flat	50	*18/22	*22/30		6%
Rolling	50	*18/22	*22/30		7%
Mountainous	40	*18/22	*22/30		12%
Suburban	20-40	*18/22	*22/28		N/A

¹ Suburban Design Speed is the same as Speed Limit in Villages. These areas should be rated as separate sections.

* Major Collector/Minor Arterial, respectively.

## APPENDIX A TABLE II-A MINIMUM GEOMETRIC DESIGN STANDARDS BASED ON A.A.S.H.T.O. & A.O.T. STANDARDS TO BE USED IN RATING STATE HIGHWAYS OTHER THAN INTERSTATE AND PRINCIPAL ARTERIAL ROUTES IN FEDERAL-AID URBAN AREAS ^{/1}

	(MPH)		Surface	Roadway
Traffic Volume Desi	gn Speed ^{/2} W	idths (Ft)	Widths (Ft)	Gradient
Over 1200 DHV	20-45	24	36	N/A
600 - 1200 DHV	20-45	24	36	N/A
500 - 599 DHV	20-45	22	26	N/A
Up to 499 DHV	20-45	22	26	N/A
•				

^{/1} These standards used only when the Speed Limit is less than 50 MPH in densely developed areas, otherwise use standards for Rural Highways (App. A, Tab. II).

^{/2} Design Speed is the same as Speed Limit for rating purposes only.

## APPENDIX A TABLE III DESIGN SPEED STANDARDS TO BE USED IN RATING RURAL & URBAN HIGHWAYS BASED ON A.A.S.H.T.O. & A.O.T. STANDARDS

Design Speed MPH	Curvature ¹	Stopping ² Sight Distance (ft.)	Passing ³ Sight Distance (ft.)
65	3° 45'	550	2,300
60	4° 45'	525	2,100
55	6 °	450	1,950
50	7° 30'	400	1,800
45	9° 30'	325	1,650
40	12° 15'	275	1,500
35	16° 30'	225	1,300
30	22° 45'	200	1,100
25	33° 30'	150	950

¹ Maximum superelevation rate of 0.08 ft./ft.

² Use these standards when computing stopping sight distance.

³ Passing distance standard is 1500 ft. as defined in the Highway Capacity Manual for all Average Highway Speeds (Design Speeds).

## TABLE IV PASSING SIGHT DISTANCE REQUIREMENTS TO BE USED IN RATING RURAL AND URBAN HIGHWAYS BASED ON HIGHWAY CAPACITY MANUAL INFORMATION

DHV	Percent
up to 100	10
100-199	20
200-399	30
400-599	40
600-699	50
700-749	60
750-799	80
over 800	80

**Note:** For rating Interstate (4-Lane) use 100%.

¹ Passing Sight Distance (%) greater than 1500 ft. which generally provides a minimum Level of Service

C as defined in the Highway Capacity Manual.

APPENDIX B

## APPENDIX B FLOOD CORRECTION CHART Maximum Deduction = 10

DHV	Extra Length of Detour	Number of da 1-3	ys per <b>3-7</b>	year imp <b>7-10</b>			ods over 20
	0-1 Mile	3	4	5	6	7	8
0-99	1.1-5 Miles	4	5	6	7	8	9
	Over 5 Miles	5	6	7	8	9	10
	0-1 Mile	4	5	6	7	8	9
100-199	1.1-5 Miles	5	6	7	8	9	10
	Over 5 Miles	6	7	8	9	10	10
	0-1 Mile	5	6	7	8	9	10
200-399	1.1-5 Miles	6	7	8	9	10	10
	Over 5 Miles	7	8	9	10	10	10
	0-1 Mile	6	7	8	9	10	10
400-800	1.1-5 Miles	7	8	9	10	10	10
	Over 5 Miles	8	9	10	10	10	10
	0-1 Mile	7	8	9	10	10	10
Over 800	1.1-5 Miles	8	9	10	10	10	10
	Over 5 Miles	9	10	10	10	10	10

Based on the average number of days for the last 5 years.

# **APPENDIX C**

Chart Design Hour Volume vs. Average Daily Traffic By Highway Class

DHV DETERMINATION BASE	D ON ADT AND HIGHW	AY CLASS	
ADT	INTERSTATE	GENERAL HIGHWAYS	RECREATIONA
50	20	10	
60	25	10	
70	30	11	
80	30	12	
90	33	13	
100	35	15	
125	40	18	
150	43	20	
175	45	25	
200	50	30	
225	55	32	
250	60	35	
275	65	37	
300	70	40	
330	72	45	
365	75	50	
400	85	55	
430	90	60	
465	95	65	
500	100	70	
530	105	75	
565	110	80	
600	115	85	
630	120	90	
665	125	95	
700	130	100	
730	135	105	
765	140	110	
800	145	115	
850	155	120	

900	165	125
950	170	130
1000	175	140
1050	185	145
1100	195	155
1130	200	160
1165	205	165
1200	210	170
1250	215	175
1300	225	180
1325	230	185
1360	235	190
1400	240	195
1440	245	200
1500	255	210
1535	260	215
1570	265	220
1600	270	225
1650	280	230
1700	285	235
1730	290	240
1765	295	245
1800	300	250
1840	310	255
1880	315	260
1900	320	265
1950	325	275
2000	330	280
2050	340	290
2100	350	295
2150	355	300
2200	360	305
2250	370	315
2300	380	320

2350	385	330	
2400	390	335	
2450	400	345	
2500	410	350	
2550	415	360	
2600	420	365	
2650	430	370	
2700	440	375	
2750	445	385	
2800	450	390	
2850	460	400	
2900	470	405	
2950	475	415	
3000	480	420	
3050	490	425	
3100	495	435	
3150	505	440	
3200	510	445	
3250	520	455	
3300	525	460	
3350	530	465	
3400	540	475	
3450	545	480	
3500	555	485	
3550	560	495	
3600	570	500	
3650	575	505	
3700	580	515	
3750	590	520	
3800	595	525	
3850	605	530	
3900	610	540	
3950	620	545	
4000	625	550	
4000	625	550	

	1
630	560
640	565
645	570
650	575
660	580
665	590
675	595
680	600
690	610
695	615
700	620
710	625
715	630
720	640
730	645
735	650
745	655
750	660
755	665
765	670
775	685
790	695
805	705
820	720
830	730
845	740
855	750
870	760
880	775
895	785
910	795
	805
	815
	825
	640         645         650         660         665         675         680         690         695         700         710         715         720         730         735         745         750         755         765         775         790         805         820         830         845         855         870         880         895

(70)	0.50	~~~~	
6500	960	835	
6600	975	845	
6700	985	855	
6800	1000	865	
6900	1010	875	
7000	1025	885	
7100	1035	895	
7200	1050	900	
7300	1060	910	
7400	1075	920	
7500	1085	930	
7600	1100	940	
7700	1110	945	
7800	1120	955	
7900	1135	965	Use General
8000	1145	970	Highways Table
8100	1155	975	
8200	1170	990	
8300	1180	995	
8400	1195	1005	
8500	1205	1015	
8600	1215	1020	
8700	1230	1030	
8800	1240	1035	
8900	1250	1045	
9000	1260	1050	
9100	1275	1060	
9200	1285	1065	
9300	1295	1070	
9400	1310	1080	
9500	1320	1085	
9600	1320	1090	
9700	1340	1100	
9800	1350	1105	
2000	1550	1105	

9900136011101000013751115105001430115011000148011751150015301200120001580122512500163010%13000167510%13500172010%14000176510%15500185010%15500185010%15500189010%16500196510%17000200010%17500203510%18500210010%18500210010%19000213010%19500216010%20000219010%2100011%10%2100011%10%2150011%10%2150011%10%2150011%10%2150011%10%2350011%10%2400011%10%				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9900	1360	1110	
11000 $1480$ $1175$ $11500$ $1530$ $1200$ $12000$ $1580$ $1225$ $12500$ $1630$ $10%$ $13000$ $1675$ $10%$ $13000$ $1675$ $10%$ $13000$ $1675$ $10%$ $14000$ $1765$ $10%$ $14500$ $1805$ $10%$ $14500$ $1805$ $10%$ $15000$ $1850$ $10%$ $15000$ $1850$ $10%$ $16000$ $1930$ $10%$ $16000$ $1930$ $10%$ $16000$ $1930$ $10%$ $16000$ $1930$ $10%$ $17500$ $2035$ $10%$ $17500$ $2035$ $10%$ $18000$ $2070$ $10%$ $19000$ $2130$ $10%$ $19500$ $2160$ $10%$ $20500$ $11%$ $10%$ $21500$	10000	1375	1115	
11500 $1530$ $1200$ $12000$ $1580$ $1225$ $12500$ $1630$ $10%$ $13000$ $1675$ $10%$ $13500$ $1720$ $10%$ $14000$ $1765$ $10%$ $14500$ $1805$ $10%$ $14500$ $1805$ $10%$ $15500$ $1890$ $10%$ $15500$ $1890$ $10%$ $16000$ $1930$ $10%$ $16500$ $1965$ $10%$ $17500$ $2035$ $10%$ $17500$ $2035$ $10%$ $18000$ $2070$ $10%$ $19000$ $2130$ $10%$ $19000$ $2130$ $10%$ $20000$ $2190$ $10%$ $21000$ $11%$ $10%$ $21000$ $11%$ $10%$ $21500$ $11%$ $10%$ $23000$ $11%$ $10%$	10500	1430	1150	
12000         1580         1225           12500         1630         10%           13000         1675         10%           13500         1720         10%           14000         1765         10%           14000         1765         10%           14500         1805         10%           15000         1850         10%           15500         1890         10%           16000         1930         10%           16500         1965         10%           17000         2000         10%           17500         2035         10%           18000         2070         10%           18000         2070         10%           19000         2130         10%           19000         2130         10%           19500         2160         10%           20000         2190         10%           21500         11%         10%           21500         11%         10%           21500         11%         10%           23500         11%         10%	11000	1480	1175	
12500         1630         10%           13000         1675         10%           13500         1720         10%           14000         1765         10%           14500         1805         10%           15000         1850         10%           15500         1890         10%           16000         1930         10%           16500         1965         10%           17000         2000         10%           17500         2035         10%           18000         2070         10%           18000         2070         10%           18000         2070         10%           18000         2070         10%           18000         2070         10%           18000         2100         10%           19000         2130         10%           19000         2130         10%           20000         11%         10%           21000         11%         10%           21000         11%         10%           21500         11%         10%           23000         11%         10%	11500	1530	1200	
13000 $1675$ $10%$ $13500$ $1720$ $10%$ $14000$ $1765$ $10%$ $14500$ $1805$ $10%$ $15000$ $1850$ $10%$ $15500$ $1890$ $10%$ $16000$ $1930$ $10%$ $16500$ $1965$ $10%$ $17000$ $2000$ $10%$ $17500$ $2035$ $10%$ $18800$ $2070$ $10%$ $18800$ $2070$ $10%$ $19000$ $2130$ $10%$ $19000$ $2130$ $10%$ $20000$ $2190$ $10%$ $20000$ $11%$ $10%$ $21000$ $11%$ $10%$ $21500$ $11%$ $10%$ $21500$ $11%$ $10%$ $23500$ $11%$ $10%$ $23500$ $11%$ $10%$	12000	1580	1225	
13500         1720         10%           14000         1765         10%           14500         1805         10%           15000         1850         10%           15000         1850         10%           16000         1930         10%           16000         1930         10%           16000         1930         10%           17000         2000         10%           17500         2035         10%           18000         2070         10%           18000         2070         10%           18000         2070         10%           18000         2100         10%           19000         2130         10%           19000         2130         10%           20000         11%         10%           21000         11%         10%           21000         11%         10%           21500         11%         10%           22500         11%         10%           23000         11%         10%	12500	1630	10%	
14000       1765       10%         14500       1805       10%         15000       1850       10%         15000       1890       10%         16000       1930       10%         16000       1930       10%         16000       1930       10%         16000       1930       10%         17000       2000       10%         17500       2035       10%         18000       2070       10%         18000       2070       10%         18000       2070       10%         19000       2100       10%         19000       2130       10%         19500       2160       10%         20000       2190       10%         21000       11%       10%         21000       11%       10%         21000       11%       10%         21500       11%       10%         21500       11%       10%         21500       11%       10%         23000       11%       10%	13000	1675	10%	
14500         1805         10%           15000         1850         10%           15500         1890         10%           16000         1930         10%           16000         1930         10%           16000         1930         10%           16000         1930         10%           16000         2000         10%           17000         2000         10%           17500         2035         10%           18000         2070         10%           18000         2070         10%           18500         2100         10%           19000         2130         10%           19500         2160         10%           20000         2190         10%           21000         11%         10%           21000         11%         10%           21500         11%         10%           22500         11%         10%           23000         11%         10%	13500	1720	10%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14000	1765	10%	
15500         1890         10%           16000         1930         10%           16500         1965         10%           17000         2000         10%           17500         2035         10%           18000         2070         10%           18500         2100         10%           19000         2130         10%           19000         2160         10%           20000         2190         10%           20000         11%         10%           21000         11%         10%           21000         11%         10%           21500         11%         10%           22500         11%         10%           23000         11%         10%	14500	1805	10%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15000	1850	10%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15500	1890	10%	
17000         2000         10%           17500         2035         10%           18000         2070         10%           18500         2100         10%           19000         2130         10%           19500         2160         10%           20000         2190         10%           20000         11%         10%           21500         11%         10%           21500         11%         10%           22500         11%         10%           23000         11%         10% <td>16000</td> <td>1930</td> <td>10%</td> <td></td>	16000	1930	10%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16500	1965	10%	
18000         2070         10%           18500         2100         10%           19000         2130         10%           19500         2160         10%           20000         2190         10%           20000         2190         10%           21000         11%         10%           21000         11%         10%           21500         11%         10%           22500         11%         10%           23500         11%         10%	17000	2000	10%	
18500         2100         10%           19000         2130         10%           19500         2160         10%           20000         2190         10%           20500         11%         10%           21500         11%         10%           21500         11%         10%           22500         11%         10%           23000         11%         10%           23000         11%         10%	17500	2035	10%	
19000       2130       10%         19500       2160       10%         20000       2190       10%         20500       11%       10%         21000       11%       10%         21500       11%       10%         21500       11%       10%         22500       11%       10%         23000       11%       10%         23500       11%       10%	18000	2070	10%	
19500       2160       10%         20000       2190       10%         20500       11%       10%         21000       11%       10%         21500       11%       10%         22500       11%       10%         23000       11%       10%         23500       11%       10%         10%       10%       10%	18500	2100	10%	
20000       2190       10%         20500       11%       10%         21000       11%       10%         21500       11%       10%         22500       11%       10%         23000       11%       10%         23000       11%       10%	19000	2130	10%	
20500       11%       10%         21000       11%       10%         21500       11%       10%         22500       11%       10%         23000       11%       10%         23500       11%       10%	19500	2160	10%	
21000       11%       10%         21500       11%       10%         22500       11%       10%         23000       11%       10%         23500       11%       10%	20000	2190	10%	
21500       11%       10%         22500       11%       10%         23000       11%       10%         23500       11%       10%	20500	11%	10%	
22500       11%       10%         23000       11%       10%         23500       11%       10%	21000	11%	10%	
23000         11%         10%           23500         11%         10%	21500	11%	10%	
23500 11% 10%	22500	11%	10%	
	23000	11%	10%	
24000 11% 10%	23500	11%	10%	
	24000	11%	10%	
24500 11% 10%			10%	
25000 11% 10%				
26000 11% 10%				
27000 11% 10%				
28000 11% 10%				

29000	11%	2800*					
30000	11%	2800*					
* Starting at these corresponding ADT volumes, a constant "K" is assumed, under							
normal conditions and based on the histories of various high traffic volume highways.							
The stations used for the analysis were: D1, D2, W6, X11, D91, D92, D99, and R22.							
This relationship may vary depending on the nature of the highway usage.							

	ON	BEGIN	BEGIN	END	END		
NO	ROUTE	TOWN	POINT	TOWN	POINT	K%	
Y 86	I-89	Hartford	Inter #l	Sharon	Inter #2	13.6	
Y 1	I-89	Royalton	Inter #3	Randolph	Inter #4	13.9	
W 2	I-89	Berlin	Inter #7	Montpelier	Inter #8	12.3	
W 89	I-89	Waterbury	Inter #l	Richmond	Inter #11	11.8	
D 91	I-89	So. Burlington	Inter #14	Winooski	Inter #15	10.6	
D 92	I-89	Winooski	Inter #16	Colchester	Inter #17	11.2	
F 96	I-89	St. Albans	Inter #20	Swanton	Inter #21	11.7	
X 71	I-91	Guilford	Mass.line	Brattleboro	Inter #1	15.7	
X 72	I-91	Brattleboro	Interch.#2		Inter #3	12.2	
X 74	I-91	Westminster	Inter #5	Rockingham	Inter #6	15.6	
Y 76	I-91	Hartford	Inter #9	Hartford	Inter #10	12.4	
Y 2	I-91	Norwich	Inter #13	Thetford	Inter #14	11.8	
N 2	I-91	Fairlee	Inter #15	Bradford	Inter #16	11.7	
N 1	I-91	Thetford	Inter #1	4 Fairlee	Inter #	15	12.5
C 9	I-91	Newbury	Inter #17	Barnet	Inter #18	15.0	
C 2	I-91	Lyndon	Inter #24	Barton	Inter #25	13.8	
P 82	I-91	Derby	Inter #28		Inter #29	14.5	
X 73	I-91	Putney	Inter #4	Westminster	Inter 5	14.6	
C 15	I-93	Waterford	N.H. Line		Inter #19	14.8	
D 99	I-189	So. Burlington	Jct. U.S.7		Jct. I-89	10.4	
G 25	US 2	Alburg	Jct. Vt.78	Colchester	Jct. TH 58	18.5	
W 24	US 2	Montpelier	Jct. BR US 2		Jct. Vt. 12	11.1	
C 28	US 2	Danville	Jct. Vt.15	St. Johnsbury	Jct. Vt. 2-B	11.6	
R 84	US 4	Castleton	Inter #5	W. Rutland	Jct. Vt. 4-A	10.2	
R 5	US 4	Mendon	Rutland T/L	Sherburne	Jct. Vt.100 (No.		
R 1	US 4	Fair Haven	Inter #2		Inter #3	13.1	
Y 244		Woodstock	Jct. Vt. 12	- Vill. Line (E)	11.8		
X 11	US 5	Brattleboro	Jct. Vt.30		9 (No.) 9.4		
X 8	US 5	Rockingham	U.C.limit (No,)	- Jct. Vt.			
Y 31	US 5	Norwich	Jct.Norwich S.H				
B 37	US 7	Pownal	Mass. line	-	Jct. Vt. 346	13.7	
D 132	US 7	Charlotte	F-5	Vergennes	Jct. Vt. 22A	10.3	
B 282	US 7	Bennington	Inter #2	Arlington	Jct. Vt. 313	15.9	
R 22	US 7	Rutland T.	Jct. US 4(W)	Rutland C.	Jct. US $4(E)$	10.1	
A 18	US 7	Brandon	Jct.Vt.73 (No)	Middlebury	Jct. Vt. 116	11.0	
A 41	US 7	New Haven	Jct. Vt. 17	Middlebury	Jct. Vt. 125	10.8	
D 2	US 7	Shelburne	Jct. SA 2	So. Burlington	Jct. TH 26	9.3	
D 40	US 7	Colchester	Jct. I-89	50. Durington	Jct. Vt.127	11.4	
F 29	US 7	Georgia	Jct. I-89	St. Albans C.	St. Albans SH S		
W 6	US 302	Montpelier Jct. US			rlin S.H. 10.5	10.5	
W 14	US 302	Barre City	Jct. Vt. 62	Jct. Vt. 14	iiii 9.11. 10.J	7.7	
B 9	Vt. 7A	Shaftsbury	Jct. Vt. 62	Arlington	Jct. Vt.313 (So.)		
в 9 В 41	Vt. 7A Vt. 9	Bennington	N.Y. line	1 milleton	Jct. S.A.2	12.8	
X 27	Vt. 9 Vt. 9	Searsburg	Jct. Vt. 8	Wilmington	Jct. Vt.100 (No.		
X 27 Y 33	Vt. 9 Vt. 10A	Norwich	Entire Length	w minigton	JUL VI.100 (110.	11.0	
1 33	vt. 10A	Manchester Jct. Vt.	-	Jct. US	7 12.5	11.1	

**1996 AREAS OF STATION INFLUENCE (K% x AADT = DHV)** 

	/inhall Jc	t. Vt.30	<u>FOWN</u>	POINT Bromley Acc Rd.	K%
L 47 Vt. 12 Worcester			Peru	Bromley Acc Pd	10.0
L 47 Vt. 12 Worcester			Peru	Bromley Acc Pd	10.0
L 47 Vt. 12 Worcester			Peru	Bromley Acc Pd	10.0
	Jct. SA l	<b>T</b> 1		Dronney Ace Ku.	18.2
C 7 Vt 15 Morristow		Elmore	Jct. TH 7	7 13.8	
	n Jct. Vt. 15-A	A Hardwick	Jct. Vt.14	4 (No.) 11.2	
A 19 Vt. 22A Fa	air Haven Jc	t. US 4 0	Orwell	Jct. Vt. 73	13.1
W 4 Vt. 62 Berlin	Jct. Berlin S	S.H. Barre	Jct. US 3	02 11.9	
X 64 Vt. 100 W	Vilmington Jc	t. Vt. 9 1	Dover	Jct. TH 3 (N)	21.1
P 4 Vt. 100 W	/estfield Jc	t. SA 1	Troy	Jct. Vt. 101	11.1
R 17 Vt. 103 L	udlow Jc	t. Vt.100(No.)	Mt. Holly	Jct. Vt. 140	11.0
X 249 Vt. 103 R	ockingham Jc	t. I-91 Inter #6 (	Chester	Jct. Vt. 11	15.7
L 57 Vt. 108 St	towe Jc	t. TH 10 -	-	Jct. SF Rd.	27.5
D I FAU 5009 B	urlington Er	ntire Length -	-		10.2
	0	AU Limit -		Jct. TH 4	12.5
		S-4 -	-	Ski Area (TH 2)	20.3
W 62 TH 5 W	Varren Vt	t. 100 -		Ski Area 25.2	

# **1996 AREAS OF STATION INFLUENCE (K% x AADT = DHV)** (con=t)

(1996)					
	BEGIN	BEGIN	END	END	
ROUTE	TOWN	POINT	TOWN	POINT	
I-91	Norwich	Interch.#23 Derby	Canac	da line *C2, F	<b>2</b> 82
US 2	Alburg	Jct. Vt. 78	Colchester	Jct. I-89	* G25
US 2	Plainfeld	Jct. Vt. 214	W. Danville	Jct. Vt. 15	* C28
US 4	Mendon	Rutland T/L	Sherburne	Jct. S.A.2	* R5
VT 5-A	Burke	Jct. US 5	Charleston	Jct. Vt.105	
VT 9	Bennington	U.C.line (East) Searsb	ourg Jct. V	′t.8	
VT 9	Wilmington	Jct. Vt.100(No)	Brattleboro	Jct. I-91	
VT 11	Manchester	Jct. US 7	Londonderry	Jct. Vt. 100	*B26
VT 12	Worcester	Jct. SA1	Elmore	Jct. TH 7	*L47
VT 17	Bristol	Jct. Vt. 116	Waitsfield	Jct. Vt.100	
VT 30	Jamaica	Jct. Vt.100(No.)	Poultney	Jct. Vt.31	
VT 30	Castleton	Jct. US 4		Jct. TH 14	
VT 100	Wilmington	Jct. Vt 9 Dover	Jct. T	H 53 *X64	
VT 100	Warren	Jct. TH 5	Moretown	Jct. Vt.100B	
VT 102	Guildhall	Jct. US 2	Canaan	Jct. Vt.114	
VT 105	Brighton	Jct. Vt,114(No.)	Bloomfield	Jct. vt,102	
VT 108	Stowe	Jct. vt,100		Jct. TH 10	*L2
US 2	St. Johnsbury	Jct. VT 18	Guildhall	NH State line	
VT 18	Waterford	NH State Line	St. Johnsbury	US 2	
VT 114	Island Pond	VT 105	Canaan VT	102/VT 253	
VT 58	Irasburg	I 91 inter.#26	Brownington	VT 5A	
US 5	LyndonLyndo	onville Vill. Irasbu	rg Interc	h. #26 I 91	
VT 5A		Entire Length			
VT 111		Entire Length			
VT 129		Entire Length			
VT 141		Entire Length			
VT 232		Entire Length			
VT 236		Entire Length			
VT 253		Entire Length			
VT 314		Entire Length			
Maidstone S.H	H.	Entire Length			
So. Alburg S.I	H.	Entire Length			
		-			

IDENTIFICATION OF "RECREATIONAL HIGHWAYS" FOR DHV PURPOSES (1996)

*Partially or Totally superceded by Station Influence.

APPENDIX D

### **APPENDIX D**

#### VERMONT HIGHWAY SUFFICIENCY RATING

ROUTE:		STRUCTURAL CONDITION	condition rating
LENGTH:	SECTION#:	FOUNDATION (30):	
		SLIDES (-):	
TOWNS:	LOG STA:+_		
	TO:+	SUB-TOTAL:	
		CULVERTS (4):	
COUNTY:	DISTRICTS:	DITCHES (4):	
		SURFACE (12):	
FUNCTIONAL C	LASS:	TOTAL:	
	AADT: DHV:	SAFETY	standard <u>actual</u> rating
SURFACE TYPE:	TERRAI	N: SURFACE WIDTH(6):	
		BRIDGE WIDTH (-):	
		SUB-TOTAL:	
PROJEC	TS ON SECTION		
		STOP SIGHT DIST (8):	
PROJEC	<u>T#</u> <u>YEAR</u>	SIGHT DIST CORR (-):	
		SUB-TOTAL:	
		INCONSISTENCY (4):	
		ACCIDENT DEDUCTIO	N (-):
		TOTAL:	
		SERVICE	standard <u>actual</u>
rating			
LOCATION:		AVG HWY SPEED (12):	
		SPEED CORRECTION (-)	):
			500' (6):
		WIDTH (4):	
REMARKS:		RIDEABILITY (3):	
		EXCESSIVE GRADES (-)	):
		VERTICAL CLEARANC	Е (-):
		TOTAL:	
STRUC	FURES IN SECTION 6 FEE	T AND OVER ADJUS	TED TOTALS rating
	rtical, width, & load correcti		STRUCTURAL COND:
BRIDGE		CORRECTIONS	SAFETY:
<u>NO.</u> <u>SPAN</u>	WIDTH EVAL CLR.	WIDTH LOAD TYPE	SERVICE:
			FLOOD CORREC. (-):
			MUD/DUST ADJ. (-):
			BASIC RATING:
			TRAFFIC ADJ (+,-).:
			ADJUSTED RATING:

#### **RESTRICTED STOPPING SUBSTANDARD CURVES AND GRADES SIGHT DISTANCES**

Mile			Mile	Curve	Gra	de:	Passing		
Point [	<u>Ft.</u>	Deduct.	Point [	Deg.	%	Miles	Lane ??	<u>RR-X</u> Deduct.	<u>.</u>

ACCIDENT DATA (93-97)¹ SLIDES

TOTAL FATALACCIDENTSACCIDENTSFATALITIES

MILE <u>POINT</u> <u>COND.</u> <u>DEDUCTION</u>

ACCIDENT CRITICAL CRITICAL <u>RATE</u> <u>RATE</u> <u>RATE FACTOR</u>

¹ The years analyzed (along with accident data) will change as data becomes available.

## NOTES: