

Transportation Flood Resiliency Tool (TRPT)

FEBRUARY 9, 2023

Fitzgerald Environmental Associates, LLC.

Andrea Wright, PE Environmental Policy Manager Vermont Agency of Transportation 802-917-1586 Andrea.Wright@vermont.gov

Joe Segale. PE/PTP Policy, Planning and Research Director Vermont Agency of Transportation (RETIRED)

Johnathan Croft Mapping Section Chief Vermont Agency of Transportation 802-828-2600 johnathan.croft@vermont.gov

James Blouin GIS Professional Mapping Section Vermont Agency of Transportation 802-595-2245 james.blouin@vermont.gov

Heather Voisin, PE Environmental Policy Analyst – Resilience Lead Vermont Agency of Transportation 802-498-5787 heather.voisin@vermont.gov

Agenda

- 1. Introduction (10:00 11:15 AM) Introductions, TRPT Background, Web Application Use
- 2. Break (11:15 11:30 AM)
- 3. Case Studies (11:30 AM 12:30 PM) Three Case Studies
- 4. Lunch (12:30 1:00 PM)
- 5. Planning scenarios (1:00 1:30 PM) Teacher generated, student generated, practice
- 6. Student examples (1:30 2:30 PM) Set up, supported work, share results
- 7. Wrap-up (2:30 3:00 PM) Final questions and evaluation

USER STORY Preparing for Weather Disasters: Vermont Builds Resilience into Infrastructure Plans

https://www.esri.com/en-us/lg/industry/transportation/vermontbuilds-resilience-into-infrastructure-plans

TRPT Website

Direct link to TRPT

https://roadfloodresilience.vermont.gov

Link to VTrans TRPT Website

https://vtrans.vermont.gov/planning/transportation-resilience

TRPT Buildout

Statewide Field QA

TRPT properly identified risk at 9 of 10 sites visited.

Statewide Field QA

Racio	Number of Segments	Length of Segments	Number of Segments with	Percent	Percent
	Assessed	Assessed (mi)	Score Change	Change	Accuracy
Batten Kill - Walloomsac - Hoosic	280	74	46	16%	84%
Deerfield - Connecticut Direct	310	118	38	12%	88%
Lake Memphremagog	294	160	8	3%	97%
Lamoille	491	148	15	3%	97%
Missisquoi	443	177	39	9%	91%
Northern Lake Champlain	380	95	20	5%	95%
Ottauquechee - Black - CT Direct	288	84	20	7%	93%
Otter Creek - Little Otter Creek - Lewis	691	207	68	10%	90%
Passumpsic	118	75	15	13%	87%
Southern Lake Champlain	212	88	16	8%	92%
Stevens - Wells - Waits - Ompompanoosuc - CT Direct	471	163	42	9%	91%
Upper Connecticut	82	100	6	7%	93%
West - Williams - Saxons - CT Direct	228	75	11	5%	95%
White	351	127	77	22%	78%
Winooski	979	283	137	14%	86%
STATEWIDE TOTAL	5618	1974	558	10%	90%

Vulnerability – Validation Statistics

ADDISON COUNTY ADDISON COUNTY 89					
4 BR4 4 WINDSOR COUNTY	Pilot Watershed	Total # Scored Road Segments	Manual Changes	Damage Record Changes	% of Road Segments Changed
	Upper White	836	2	45	5.6%
	N. Branch Deerfield	386	0	5	1.3%
BENNINGTON	Whetstone	280	12	1	4.6%
COUNTY WINDHAM COUNTY					

Ľ

Definitions

<u>Vulnerability</u>: The extent that a transportation asset is exposed to a threat from inundation, erosion, or deposition.

<u>Criticality</u>: How important is the transportation asset that dictates the consequence of the disruption to mobility due to damage.

<u>Risk</u>: The combination of the probability of vulnerability and criticality.

Where is Vulnerability Unlikely?

Any road segment not within 100-feet of a valley floor were assigned a vulnerability of 0.

Deposition

Money Brook, Route 100 in Plymouth, VT 1973 Photo taken by M. Tucker

Erosion

Mendon Brook US 4 in Mendon, VT 9/1/2011 Photo taken by J. Louisos

Inundation

17. 1 A A 10

Winooski River Cochran Road in Richmond, VT 8/29/2011 Photo taken by Shem Roose Photography

Inundation, Erosion, Deposition

Great Brook Brook Road Damage, 10-Year Flood Plainfield, VT 7/20/2015 Photo taken by B. Towbin

Great Brook Brook Road Damage, 10-Year Flood Plainfield, VT 7/19/2015 Photo taken by B. Towbin

Inundation, Erosion, Deposition

Great Brook Brook Road Overtopping, 50 -Year Flood Plainfield, VT 5/26/2011 Photo taken by G. Springston

17

Great Brook Brook Road Failure, 50-Year Flood Plainfield, VT 5/27/2011 Photo taken by G. Springston

Failure Modes

Failure Mode	Influence	Damage Distance	Vulnerability Type
Partial Closure	<24 hours Single lane closure Shoulder repair Reduced capacity with some travel	100 feet or less	Temporary inundation Minor erosion Minor deposition
Full Closure	24 hours to several days Multi-lane closure Detour required	100s of feet	Large-scale Inundation Localized erosion Localized deposition
Temporary Failure	Partial destruction of facility Days to a week for recovery Maintain one lane if possible Detour required	100s to 1,000s of feet	Erosion Deposition Large-scale Inundation
Complete Failure	Complete destruction of facility A week to months for recovery Long-term travel disruptions	Varies	Erosion Deposition

(Adapted from FHWA and WSDOT, 2019)

Partial Closure

Great Brook Creamery Street in Plainfield, VT 5/27/2011 Photo taken by G. Springston

> Great Brook Brook Road in Plainfield, VT 7/20/2015 Photo taken by B. Towbin

Recurrence Interval (years)	Annual Exceedance Probability (AEP; %)	Typical Scenario			
10	10%	High-intensity, short-duration summer thunder burst			
50	2%	Local floods from repetitive thunderstorms in one or more watersheds in short periods of times (i.e., training storms) resulting in localized loss of structures and road segments			
100	1%	Regional floods such as nor'easters and tropical storms th impact large areas of the state with major road and infrastructure loss			

Vulnerability

Criticality

- 1. Travel impacts
 - Failed trips (per day)
 - Excess travel time (hours per day)
 - Isolated areas ('islands') of roads with limited network travel
- 2. Emergency Services Access
- 3. Local importance

Statewide Travel Demand Model

Network Criticality

High criticality – No parallel route

Moderate criticality – Parallel route yet one is vulnerable

High criticality – Both routes vulnerable

Risk is equal to the average of Vulnerability and Criticality.

TRPT Limitations

- The TRPT is static data viewer.
 Conditions may have changed if damages have occurred or a mitigation project was implemented.
- Errors are possible with a watershedbased analysis where GIS data do not resolve key site features such as bedrock or disconnected floodplains.

Vulnerability Variables

			VARIABLES			SCALE	
	More detailed variables	Inundation	Erosion	Deposition	Road Segments	Structures	River Segments
*	Documented Past Damages	V	٧	V	V	٧	
*	River-Roadway Relief (feet)	V			V		
	Incision Ratio and Entrenchment Ratio	V	٧				V
*	FEMA 100-Year Flood Depth Above Road (feet)	V			V		
	Length of Road in 100-Year Floodplain (feet)	V			V		
*	Bridge/Culvert Invert-Roadway Relief (feet)	V				٧	
	Structure Width vs. Bankfull Channel Width (%) (HGR-based)	V	٧	V		٧	
	Specific Stream Power (W/m ²)		٧	V			V
	Dominant Substrate Size		٧				V
	Valley Confinement		٧				V
	Remaining River Corridor Width where the ROW or		v		V		
	Development Confine River (%)				•		
	Length of ROW in River Corridor (feet)		V	V	V		
	Erosion (SGA Data, GC Screen)		V			V	
	Armoring (SGA Data, GC Screen)		V			V	
	Culvert Slope (SGA Data, GC Screen)		V			V	
	5% or Larger Slope Decrease Areas (count)			V			V
	3rd Order or Larger Confluences (count)			V			V
*	Change in Confinement Ratio from Upstream Reach			V			V
	Road Crossings (count)			V	V		
*	Mass Failures in Upstream Reach (feet)			V			V
	Bank Erosion in Upstream Reach (% of Channel Length)			V			V
	Channel Slope (SGA Data)			V			V
	Sediment Discontinuity (SGA Data, GC Screen)			V		٧	
	Approach Angle (SGA Data, GC Screen)			V		V	
	Less detailed variables (to replace more detailed variables wh	en they do no	t exist)				
	Valley Slope	V					V
	Surficial Landform in Corridor Area		٧				V
	Steep slopes in Upstream or First Order Reach (feet)			V			V

Damage Scores

Review of DDIRs, RPC Damage Data Records, PA Records

D1-094

0		FEDERAL HIGHWAY ADMINISTRATION		D1-094
-		DETAILED DAMAGE INSPECTION REPORT	Sheet 1	of 1
APPLICAN	IT:	COUNTY:	Disaster No.	
State of Ve	ermont D1	Windham	Inspection Date	10/11/2011
LOCATION	OF DAM	AGE: VT 9 (mm 2.10 - 2.13) Brattleboro	F-A Route	
Begin 42 d	eg 52' 15"	N 72 deg 39' 08" W End 42 deg 52' 16"N 72 deg 39' 01" W	VT 9	
ACIOSS ITUI	IT OISOIT R	a pyrnear Genter Rumple Strips cha sing assembly - cast or pole#	90/130	
DESCRIP	TION OF L	DAMAGE: EB Slope/ shoulder failure with partial lane raod failure	9	
Full pvt wid	ith = 334'L	. x 39'W x 1'dp with excavation + edgeline (668 lf) and centerline (66	58 lf)	
gravel/ston	ne mix slop	be = 25' slope - {[(Depth estimated at 10 ' x width at toe of slope 23'	L) x (0.5)] x 292'L}	+
new segme	ent of 30" (dia CPP culvert		
Excavate f	or stone st	wale 225'L x 7'W x 2'dp + stone fill = 225'L x 7'W x 1.5'dp		
WB should	ier gravel =	= 95'L x 8'W x 1'dp		
pvt patch =	: 232'L x 9	'W x 1'dp near pole# 93/133		
Sheared ro	bad area -	excav = 115'L x 9'W x 10'dp + stone fill = 115'L x9'W x 7.5dp + sub-	-base = 115'L x 9'W	x 1.5'dp
0.2540.774296773			nose i concentra se	
WORK CO	MPLETER	D BEFORE THIS REVIEW WAS CONDUCTED - ORIGINAL EXTEN	T OF DAMAGE UN	KNOWN
		COST ESTIMATE		
Quantity	Unit	Description of Work to Date	Unit Price	Cost
	008251	Emergency Repair Completed		
376	cv	stone fill for slopes and reconstructing failed road segment	\$42.00	\$15,792.00
1056	CV	common excavation - cleaning out area of complete road failure	\$11.00	\$11,616,00
1272	cv	gravel shoulder	\$39.00	\$49,608.00
58	CV	sub-base	\$30.00	\$1,740,00
40	LF	30" dia CPP culvert	\$90.00	\$3,600,00
1	IS	Traffic Control (5%)	\$8 242 00	\$8 242 00
				\$0.00
-				\$0.00
				\$0.00
				50.00
				\$0.00
				50.00
				\$0.00
Method		Local State Contract Total Eme	amancy Completed	\$90,598,00
Metriou		Emergancy To Do	sidency completed	\$50,050.00
_	1	Energency to bo		\$0.00
				\$0.00
Mathod		Local State Contract Tetal Error	Manager Page siging	\$0.00
Metriod		Permanent Restoration	argency Nemaining	\$0.00
1056	tons	Inavement	\$78.00	\$82 368 00
900	IF	4" white edgeline	\$0.07	\$63.00
668	LE	4" dbl vellow centerline	\$0.07	\$46.76
1	IS	Mobilization (9%)	\$14 835 04	\$14,835,04
			e11,000.01	\$0.00
Method		Local State X Contract Prelimina	ry Engineering	
Environme	ntal Asses	sment Recommendation Right-of	Way	\$0.00
Linnorinie	-	Total Pe	ermanent Renair	\$97 312 80
~	AR	EIS/EA Cat Ex	timated Cost	\$187 910 80
Recommen	adation	EIG/EA COALEA Fingineer	atimated Cost	3107,310.00
Recommen	luation	Y Elicible Inslicible		
		A Eligible Ineligible		
Contractor		Uale Come France		
Concurren	Ce	State Engineer		
		A Tes No INancy L. Avery	044	
0		Date 10/12/2	Deserved	
Concurren	ce	State/Local Agency	Representative	
		X Yes No Date /0/14 ///	M-	

Eld an u/44

Extreme Erosion at Town Line

River and Road Variables – Damage Scores

Complete Failures

Photo credits: Lars Grange, Mansfield Heliflight

Damage Scores

VT Route 107 Stockbridge

Length of Road in River Corridor & % Corridor Width Remaining

Vulnerability – Grouped by Failure Mode

Length of ROW in River Corridor

Mitigation

Placed riprap wall

VT Route 155, Mt. Holly, VT

(E. Fitzgerald, 2013)

Mitigation

Floodplain Restoration Example

Roaring Branch Bennington, VT 2008 Roaring Branch Bennington, VT 2010

Extra Slides

Road Flooding Planning Example

Williams Street Inundation, Brattleboro – just west of Elliot St

Williams Street, Brattleboro – just west of Elliot St

Williams Street, Brattleboro – erosion damage along sharp bend – erosion caused by deposition?

Data

Road Data

Data	Source	Web Service	Data Use±	Comments
Trans Rd/AOT Master Road Centerline	VTrans	Yes	E, V, C, R, A*	Principal dataset for assessment and display of vulnerability data. Available statewide.
ARAN	VTrans	No	E, V	Available on VTrans highways, years vary.
LiDAR Digital Elevation Model	VTrans	No	E, V	At the time of analysis, LiDAR was available for parts of Routes 9, 100, and 107.
CCA	UVM	No	C, R	Available statewide. On E911 roads layer.

Bridge and Culvert Data

Data (Source)	Source	Web Service	Data Use±	Comments
Structex (Phase 2 SGA)	VTANR	No	E, V, R, A*	Available where Phase 2 Stream Geomorphic Assessments (SGA) have been conducted.
VTrans Structures data	VTrans	Yes	E, V, R, A*	Long (>20-foot span) and short structures (6 to 20-foot span). Available on VTrans highways, and for town long structures.
VOBCIT Structures data	Towns	Yes	E, V, R, A*	Town bridges and culverts available statewide.
Small Culvert Inventory	VTrans	Yes	E, V, R, A*	Less than 6-foot span. Available statewide for VTrans highways.

Flood Damage Data

Data (Source)	Source	Web Service	Data Use±	Comments
DDIR Sites	VTrans	No	E, V	Detailed Damage Inspection Reports (DDIR) available on VTrans highways.
RPC Damage Sites	RPCs	No	E, V	Available by region statewide. May have limited information on damage details.
Public Assistance Projects	FEMA	No	E, V	Available statewide, limited information on damage details.
Stakeholder Input	Public Meetings	No	E, V	Locally available.

River	Corridor
Data	

Data	Source	Web Service	Data Use [±]	Comments
VHD SGA Network - Assessment	VTANR	Yes; Needs Update	E, V, R, A*	Principal dataset for assessment and display of vulnerability data. Associated with road segments for scoring and display. Available statewide.
VT River Sensitivity Coarse Screen	MMI; VLT	No	E, V	Available statewide.
SGA Data: Phase 1 & 2	VTANR	No	E, V	Available for select watersheds.
VT River Corridor	VTANR	Yes; Needs Update	E, V	Available statewide for drainages over two square miles.
VT Meander Centerlines	VTANR	No	E,V	Available statewide for drainages over two square miles. Produced by VTANR for statewide river corridor mapping.
VHD SGA Network - FIT	VTANR	Yes	E, V	Available in select locations.
Valley Walls	VTANR & TNC	No	E, V	Available statewide for drainages over two square miles. Produced by VTANR for statewide river corridor mapping.
SSURGO	USDA	Yes	E, V	Available statewide.
DFIRM Floodplains and Cross-Sections	FEMA	Yes; Needs Update	E, V	Available where flood insurance rate mapping has been conducted.

Impacts

Whetstone Brook Watershed

Aggregate Impacts Comparison

Criticality: Critical Closeness Accessibility

(Novak and Sullivan, 2014)

SCORE	Key Link in Network Criticality Index (High or Medium)		Critical Closeness Accessibility (UVM)		Locally Important for daily regular function or for detour*	Combined Score for Map Display
10=	High or Medium	AND	High	AND	у	
9=	High or Medium	AND	Medium	AND	у	
8=	High or Medium	AND	High or Medium	AND	n	
7=	High or Medium	AND	Low	AND	у	
6=	Low	AND	High	AND	у	
5=	Low	AND	Medium	AND	у	
4=	High or Medium	AND	Low	AND	n	
3=	Low	AND	High or Medium	AND	n	
2=	Low	AND	Low	AND	у	
1=	Low	AND	Low	AND	n	LOW (GREEN)

Export $V_{\text{EMBANKMENT}}$ to GIS road segments and V_{BRIDGES} and V_{CULVERTS} to GIS structure points for the 2% AEP flood for the NCI analysis.

4

Vulnerability – Scoring Example

CULVERT VULNERABILITY DUE TO EROSION	HIGH		MOD	ERATE	LOW		
Documented Past Culvert Erosion Damages due to Erosion	Complete Failure Temp. Failure		Full Closure	Partial Closure	N/A		
Structure Width vs. Bankfull Channel Width (%) (HGR)	<25	25-50	50-75		75-100	<u>></u> 100	
Structure Slope (SGA Data, GC Screen)	Steeper that	an channel			Same as channel or lower		
Erosion (SGA Data, GC Screen)	Severe erosion		Low level	of erosion	No erosion		
Armoring (SGA Data, GC Screen)	Failing A	rmoing	Intact armoring		No armoring		

CULVERT VA	RIABLE SCOI	RES		1					2		3			3			3
Flood		Past D	Damages		Structure Width vs. Bankfull Channel Width (%) (HGR-based)					Culver	t Slope	Erosion				Armoring	
(% AEP)	Complete Failure	Temp. Failure	Full Closure	Partial Closure	<25	25-50	50-75	75-100	>100	Steeper	Same, Lower	Severe	Low	None	Failing	Intact	None
10%	N/A	N/A	N/A	N/A	Н	М	L	L	L	М	L	Н	М	L	М	L	L
2%	N/A	N/A	N/A	N/A	Н	Н	М	М	L	Η	L	Н	М	L	Н	М	L
1%	N/A	N/A	N/A	N/A	Н	Н	Н	М	М	Н	М	Н	Н	М	Н	Н	М
high-high high moderate low low-low OVERALL CULVERT VULNERABILITY SCORING																	
SCORE		Past D	Past Damages Structure Width vs. Bankfull Channel Width (%) (HGR-ba						HGR-based)	Culver	t Slope	Erosion		Armoring			
10=		Complete e	erosion failure				L, M, H, null			L, M,	H, null		L, M, H, null			L, M, H, null	
9=		Temporary	erosion failure	¢			Н			L, M, H, null H			Н				
8=		Temporary	erosion failure	¢			L, M, H, null			L, M, H, null L, M, H, null			L, M, H, null				
7=	F	Full or partial	erosion closu	re			Н			L, M, H, null			Н Н				
6=	F	Full or partial	erosion closu	re			L, M, H, null			L, M,	H, null		L, M, H, null			L, M, H, null	
6=		r	null				Н				H		Н			Н	
5=		r	null				Н			L, M,	H, null		L, M, H, null			L, M, H, null	
4=		r	null				М				H		Н			Н	
3=		r	null			М					, H		M, H			M, H	
2=		r	null		М					M, L	., null		M, L, null		M, L, null		
2=		r	null		L, null					M	M, H		M, H			M, H	
1=		r	null			All o	ther combina	tions		All other combinations All other combinations All other co				ther combina	tions		
0=	N/A (C	Out of valley I	bottom plus 1	00 feet)		N/A (Out of v	alley bottom	plus 100 feet	t)	ut of valley b	ottom plus 10	N/A (Out of v	alley bottom	plus 100 feet	N/A (Out of va	alley bottom	plus 100 feet

Vulnerability – Scoring Example

EMBANKMENT VULNERABILITY DUE TO EROSION		HIGH	MODE	LOW		
Documented Past Embankment Damages due to Erosion	Complete Failure Temp. Failure		Full Closure Partial Closure		N/A	
	S	SP = 100 to 300	SSP >	SSP < 100		
Specific Stream Power (W/m) and Dominant Substrate Size	Gravel	Cobble (or larger)	Gravel/Cobble	Larger than Cobble	Gravel	Larger than Gravel
Entrenchment Ratio and Incision Ratio	ER<2 & IR>2	ER<2 & IR1.5-2; ER=2-5 & IR≥2	ER<2 & IR <5; ER2-5 & IR1.5-2; ER>5 & IR≥2		5 & IR<1.5; ER>5 & IR	ER>5 & IR<1.5
Valley Confinement	<6		6-1	6-10		>10
Remaining River Corridor Width where the ROW or Development Confine River (percent)	<75		75-90			>90
Length of ROW in Unclipped River Corridor (feet)	>1,320		660-1,		0-660	

EMBANKMENT V	ARIABLE SCORES	5	Specific Stream Power and Dominant Substrate Size						Entrenchment Ratio / Incision Ratio										
Flood		Past D	amages		SSP = 10	00 to 300	SSP >	» 300	SSP -	< 100		ER<2			ER=2-5			ER>5	
(% AEP)	Complete Failure	Temp. Failure	Full Closure	Partial Closure	Gravel (Alluvium)	Cobble or larger (no Alluvium)	Gravel/Cobble (Outwash)	Larger than cobble (no Outwash)	Gravel	Larger than gravel	IR<1.5	IR=1.5-2.0	IR <u>≥</u> 2.0	IR<1.5	IR=1.5-2.0	IR <u>≥</u> 2.0	IR<1.5	IR=1.5-2.0	IR <u>></u> 2.0
10%	FC	FC	N/A	N/A	Н	М	М	L	L	L	L	М	Н	L	L	М	L	L	L
2%	CF	TF	FC	PC	Н	Н	М	М	L	L	Μ	Н	Н	L	М	Н	L	L	М
1%	CF	TF	FC	PC	Н	Н	Н	М	М	L	Н	Н	Н	М	Н	Н	L	М	Н
					high-high	high	moderate	moderate-low	low	low-low	moderate	high	high-high	low	moderate	hiah	low-low	low	moderate

SCORE	Past Damages	Specific Stream Power and Dominant Substrate Size	Entrenchment Ratio / Incision Ratio	Valley Confinement	River Corridor
10=	Complete erosion failure	L, M, H	L, M, H, null	L, M, H, null	L, M, H, null
10=	Temporary erosion failure	Н	L, M, H, null	L, M, H, null	Н
9=	Temporary erosion failure	H, M	L, M, H, null	L, M, H, null	H, M
9=	null	Н	L, M, H, null	L, M, H, null	Н
8=	Temporary erosion failure	L, M, H	L, M, H, null	L, M, H, null	L, M, H, null
7=	null	Μ	L, M, H, null	L, M, H, null	Н
7=	Full erosion closure	M, H	L, M, H, null	L, M, H, null	M, H
6=	null	Н	L, M, H, null	L, M, H, null	Μ
5=	Full erosion closure	L, M, H	L, M, H, null	L, M, H, null	L, M, H, null
5=	null	Н	H, M	H, M	L
5=	null	L	H, M	H, M	Н
4=	null	Μ	H, M	H, M	Μ
4=	null	Н	H, M, L, null	H, M, L, null	L
4=	null	L	H, M, L, null	H, M, L, null	Н
4=	null	Μ	H, M	H, M	Μ
3=	Partial erosion closure	L, M, H	L, M, H, null	L, M, H, null	L, M, H, null
3=	null	Μ	H, M, L, null	H, M, L, null	Μ
3=	null	L	H, M	H, M	Μ
3=	null	Μ	H, M	H, M	L
3=	null	L	H, M	H, M	Μ
2=	null	М	L, null	L, null	L
2=	null	L	L, null	L, null	Μ
1=	null	All other combinations	All other combinations	All other combinations	All other combinations
0=	N/A (Out of valley bottom plus 100 feet)	N/A (Out of valley bottom plus 100 feet)	N/A (Out of valley bottom plus 100 feet)	A (Out of valley bottom plus 100 fee	N/A (Out of valley bottom plus 100 feet)

Road Segment Statistics

Layer	Number of Road Segments
2010 Statewide Model	5,500
TransRoad	75,000
TransRoad less Class 4, private roads, trails, & misc.	53,000
TransRoad usable segments plus centroid connectors	54,000
2015 TransRoad Statewide Model	21,000

Thank you!

Upper White River		
Watershed Area (mi ²)	271	
Total river length (mi)	663	
Drainage Network Density (mi/mi ²)	2.5	
Total Rd Length (mi)	360	
Road Network Density (mi/mi ²)	1.3	

Data Type

SGA Data

FEMA - AE Zone

FEMA – A Zone

FEMA - Total

	Whetstone Brook	North Branch of the Deerfield River	Upper White River
Watershed Area(mi ²)	28	56	271
Total river length (mi)	63	149	663
Drainage Network Density (mi/mi ²)	2.3	2.7	2.5
Total Rd Length (mi)	111	175	360
Road Network Density (mi/mi ²)	4.0	3.1	1.3

Mitigation

Develop Mitigation Options

- Relocate or Detour
- Fortify Infrastructure
- Address Resiliency
- Restore Floodplain Connection
- Change Land Use
- Conservation
- Preparedness

Length of Road in 100-year Floodplain & 100-Year Flood Depth Above Road

River-Roadway Relief

Incision Ratio

(VTANR, 2009)

Entrenchment Ratio

Valley Slope

Specific Stream Power

Confinement = Valley Width / Channel Width

Confinement	Valley Width / Channel Width Ratio
Narrowly Confined	≥ 1 and ≤ 2
Semi Confined	≥ 2 and ≤ 4
Narrow	≥ 4 and ≤ 6
Broad	≥6 and <10
Very Broad	≥10, may have abandoned terraces on one or both sides

(VTANR, 2009)

NATURAL

- Valley wall
- Terraces
- Alluvial fan (local)
- Natural bank levee
- Confluences

ARTIFICIAL

- Embankment fill
- Berm or levee

Confinement Increase due to Roads

Neversink River

County Road 47 Neversink River MacBroom 2011

Geomorphic Characteristics

Incision Ratio and Erosion Failure Modes

Incision

Number of Slope Breaks in Channel Number of 3rd Order or Greater Confluences Number of Road Crossings

Bank Erosion in Upstream Reach Mass Failures in Upstream Reach

Nearby Steep Slopes in Upstream or First Order Reaches

Change in Confinement from Upstream Reach

Bridge and Culvert Variables Structure Invert – Roadway Relief

Structure % Bankfull Width

Undersized Culverts

(ANR DMS, 2018)

Structure % Bankfull Width

Downstream/Upstream Armoring

Bonnyvale Road West Brattleboro

Downstream/Upstream Erosion

Approach Angle

Sediment Discontinuity

Culvert Slope vs. Channel/Valley Slope

TRPT Planning Examples

Whetstone Brook Berm⁴ Brattleboro, VT 2011 Photo by MMI

High Vulnerability Areas

		Constraints and Issues					
TRPT Ranked Sites ⁽²⁾	From	To mm	Right-of-way Difficulty	Prioirity	NOTES	Recommended	
	8.00	8.10			Check bed and bank armoring that was placed after Irene; consider project to remove acces sroad and restore floodplain; consider buyout.	No; bed armouring is holding up well, repair is successful but right-of-way would be prohibility	
1	8.14	8.17	Low	Medium	Recent erosion on road embankment	Requires repair and reinforcement of eroding section of embankment	
1	8.23	8.25	Moderate	High	Remove berm	Yes - will reduce flood impacts	
1	0.00	0.10	Moderate	High	Reconnect floodplain; see M&M design; restore flood chute	Yes, most effective way to reduce downstream vulnerability	
1	0.13	0.22	Moderate	Medium	Check armor from post-Irene project	Armor appears small, check plans to determine if sized appropriately	
	0.33	0.41		-	Check bank from post-Irene project	OK, no need for further repairs	
	0.57	0.64			Check bed armor repair from post-irene project	OK, no need for further repairs	
	0.68	0.80		-	Check condition of embankment armor and tall bank from post- Irene project	OK, no need for further repairs	
	0.95	1.05		-	Check on floodplain conditions	No; too far from Route 9 ROW	
	1.07	1.10		-	Check on condition of post-Irene permanent repair	OK, no need for further repairs	
	1.35	1.42		-	Check town and private bridges, restore floodplain, address deposition from tributary, consider buyout	No; too far from Route 9 ROW	
3	1.46	1.54	Moderate	Medium	Check on condition of post-Irene permanent repair	Partially collapsed riprap and pavement damage; need to review plan details to determine approach	
2	1.83	1.87	Moderate	Medium	Narrows - check condition	Lots of erosion; undercutting fallen trees; large rocks on bank dislodged; 200 ft stretch. Trees can be placed lengthwise in waterway to improve habitat	

Legend

Flood Zone

Flood Hazard Area Floodway

(D&K, 2019)

Whetstone Watershed - Transportation Resiliency Planning Tool

VT Route 9 Priority Sites Marlboro | Brattleboro

Collision Repair Shop Destroyed in Tropical Storm Irene

Remove berm that channels flood water along road and causes erosion

Repair and reinforce bank erosion

Create flood bench to protect Route 9 and improve floodplain storage

HAMILTON DI

Restore floodplain and flood chute to reduce vulnerability of Route 9 Create flood bench to protect Route 9 and improve floodplain storage

0.1

HAMILTON RD

Reinforce embankment with larger stone

High level of erosion undercutting bank. Many fallen trees and dislodged large rocks. Trees can be placed lengthwise in waterway to improve habitat.

1.9

Permanent repair in good condition

2

1.8

All all

MARLBORO RD

1.5

Repair installed after TSI is partially collapsed with pavement damage. Rebuild wall with larger stone.

OLSON DR

1.6

1.4

SITE I STA. D 3+97 TO STA. D 11+50

- Benefit-Cost Ratio (BCR) of 1.14
- Estimated project cost = \$4,552,409
- Estimated benefits = \$5,180,998
- Trips per day = 9,700
- Detour time = 41 minutes
- Additional miles = 34
- Irene: full road closure for 10 days and onelane closure for 25 days.
- 2017 Flood: One-lane closure for 16 hours.
- Initial BCR = 0.92.
- Environmental Benefits for 84,200 square feet of riparian area increases BCR to 1.14.

Federal Fighway Administration Detailed Damage Inspection Reports (DDIRs)									
Tota	l Estimated Cost	DDIR	Town	Mile Marker					
\$	201,138.27	D1-086	Marlboro	7.92-8.00					
\$	514,203.04	D1-087	Marlboro & Brattleboro	8.2 - 0.0					
\$	762,696.02	D1-088	Brattleboro	0.2					
\$	294,568.75	D1-089	Brattleboro	0.4					
\$	305,617.63	D1-090	Brattleboro	0.4					
\$	6,278.04	D1-095	Brattleboro	1.8					
\$	37,423.05	D1-093	Brattleboro	1.41					
\$	39,814.97	D1-097	Brattleboro	2.15 - 3.45					
\$	2,161,739.77	= Sum Over Project Area							

Tropical Storm Irene Damage Data from Federal Highway Administration Detailed Damage Inspection Reports (DDIRs)

October 30, 2017 Damage Data from VTrans Daily Work Reports (DWRs)

Total Estimated Cost	DWR/ Invoice	Town	Mile Marker
\$ 15,125.00	Invoice 1792	Brattleboro	0.15
\$ 812.74	4542808	Brattleboro	0.15
\$ 16,053.18	4543229	Brattleboro	0.15
\$ 4,266.50	4542710	Brattleboro	0.15
\$ 2,573.81	4545720	Brattleboro	0.15
\$ 38,831.23	= Sum Over Pro	ject Area	

(VTrans, 2019)

III. POLICY STATEMENT:

FEMA will allow the inclusion of environmental benefits in benefit-cost analyses (BCA) to determine cost effectiveness of acquisition projects.

IV. PURPOSE:

The purpose of this policy is to identify and quantify the types of environmental benefits that FEMA will consider in the BCA for acquisition projects.

Environmental Benefit	Green Open Space	Riparian
Aesthetic Value	\$1,623	\$582
Air Quality	\$204	\$215
Biological Control		\$164
Climate Regulation	\$13	\$204
Erosion Control	\$65	\$11,447
Flood Hazard Reduction	-	\$4,007
Food Provisioning		\$609
Habitat		\$835
Pollination	\$290	
Recreation/Tourism	\$5,365	\$15,178
Storm Water Retention	\$293	
Water Filtration		\$4,252
Total Estimated Benefits	\$7,853	\$37,493

Table I: Annual Estimated Monetary Benefits per Acre per Year

Land Use	Total Estimated Benefits	Total Estimated Benefits (projected for 100 years with 7 percent discount rate)
Green Open Space	\$7,853 per acre per year	\$2.57 per square foot
Riparian	\$37,493 per acre per year	\$12.29 per square foot

Table II: Green Open Space and Riparian Benefits Allowed in the BCA Toolkit