

THE UNIVERSITY OF VERMONT **COLLEGE OF ENGINEERING &** MATHEMATICAL SCIENCES

Introduction

Lane detection has achieved outstanding progress in recent years. However, the performance of lane detection algorithms struggle with low-quality marks as shown below. In this research, we propose LanePainter, a Generative Adversarial Network (GAN) based model, which simultaneously classifies and enhances lane markings. We also present a new public dataset which annotates low-quality lane marks to serve as a benchmark in the field.

Figure 1. Two low-quality lane mark images random sampled from our dataset.

Methodology

Due to the difficulty of gathering low-quality and high-quality lane mark pairs, we adopted a GAN which is an unsupervised technique. The overview of LanePainter is shown below. It contains a two-branch U-Net Generator and a multi-scale discriminator.

Figure 2. Overview of our proposed LanePainter model.

LanePainter: Lane Marks Enhancement via Generative Adversarial Network **Xiaohan Zhang and Safwan Wshah**

Department of Computer Science University of Vermont

Results

We performed classification analysis on our test set. We achieved 98.16%, 98.59%, 97.48%, and 97.99% in accuracy, precision, recall, and F1 score respectively which demonstrates that our proposed model accurately classifies the quality of the lane marks.

In our quantitative analysis, we adopted a pre-trained lane detection model, SCNN, to detect low-quality lane marks before and after it is augmented by LanePainter in 6 different configurations. The result demonstrated that we achieved an average 15.38% improvement on F1 score. Even with ResNet101 as the backbone, our model still achieved a 5.93% improvement on the F1 score.

Conclusion

Our proposed model will help VTrans in reducing their burden of manually annotating low-quality roads. Additionally, it can improve the performance of lane detection algorithms under low-quality lane mark conditions.

Acknowledgments

We also would like to express our special thanks to Rick Scott, Ken Valentine and Alex Geller for supporting our project.

References

Pan, Xingang, et al. "Spatial as deep: Spatial cnn for traffic scene understanding." Thirty-**Second AAAI Conference on Artificial Intelligence. 2018.** Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

Figure 3. Enhanced lane marks from Figure 1.