Winter Maintenance Budgeting Based on the Relationship between Winter Severity and Historical Costs

James Sullivan and Mitchell Robinson

University of Vermont Transportation Research Center

September 14, 2022

AWSSI Winter Severity Scoring

Points	Daily High Temp		Daily Low Temp		Daily S	nowfall	Snow Depth	
	Min	Max	Min	Max	Min	Max	Min	Max
0	33 and	above	33 and	above	0	0.1	0	1
1	25	33	25	33	0.1	1	1	2
2	20	25	20	25	1	2	2	3
3	15	20	15	20	2	3	3	4
4	10	15	10	15	3	4	4	6
5	5	10	5	10			6	9
6	0	5	0	5	4	5	9	12
7	-5	0	-5	0	5	6	12	15
8	-10	-5	-10	-5			15	18
9	-15	-10	-15	-10	6	7	18	24
10	-20	-15	-20	-15	7	8	24	36

TRANSPORTATION RESEARCH CENTER

Temporal Resolution

Seasonal Analysis

- Initial seasonal analysis for the AWSSI measures only showed modest predictive power
- Each point shows the total seasonal cost and seasonal AWSSI for a single garage, color coded by season

JNIVERSITY OF VERMON

Temporal Resolution

Storm-Event Analysis

- Limit comparison to days with RSIC activity, grouping consecutive days with activity into "storm events"
- Captures pre- and post-precipitation RSIC costs
- Aligns cost and severity of storms that cross multiple days
- Eliminates days with AWSSI points but no snowfall
- Captures higher costs associated with multiday events due to overtime etc.
- Helps smooth minor daily irregularities in the cost data

Temporal Resolution

Storm-Event Analysis

- High predictive power
- Each point shows the total cost and AWSSI score for a single garage for consecutive days of RSIC activity

THE UNIVERSITY OF VERMON

Spatial Resolution

TRANSPORTATION RESEARCH CENTER

Spatial Resolution

Spatial Resolution

THE UNIVERSITY OF VERMONT TRANSPORTATION RESEARCH CENTER

Forecasting Tool

Welcome to the VTrans Winter Simulation and SIC Cost Estimating Tool

Developed by the University of Vermont Transportation Research Center

Description		User Specification	Instructions and guidance				
Goographic Extent	Garage or Region	District 7	k the garage or region you are interested in from the list				
Geographic Extent	Lane-Miles	909.1	is the no. of lane-miles associated with this garage or region				
	Number of Sterms	EO	27 is the typical historical number of				
	Number of Storms	50	storms in a season for this geographic				
	Average Storm	20	44 is the historical average AWSSI for this				
Winter Season Severity	AWSSI	20	geographic extent				
	Std Dev of Storm	40	62 is the historical std. dev. of the AWSSI				
	AWSSI	40	for this geographic extent				
	Max AWSSI	521	is the historical maximum AWSSI for this geographic extent				
	Min AWSSI	1	is the historical minimum AWSSI for this geographic extent				

Run Simulation

TRANSPORT

RESEARCH CENTER

Instructions:

- 1. Select a garage or region from the dropdown list (in yellow)
- 2. Enter the frequency and severity of the winter storms for the simulation (light green)
- 3. Click the "Run Simulation" button and 10,000 winter seasons are simulated according to your specifications.
- 4. You will be taken to the resulting cost estimates on the "Results" sheet

Forecasting Tool

Snow Region	Average		Upper 75th %		Lower 25th %		Sub-Region
Northeast	\$	6,558,437	\$	8,422,544	\$	3,792,989	Statewide
Northwest	\$	7,881,269	\$	10,824,219	\$	3,514,716	Statewide
South	\$	14,262,229	\$	18,355,336	\$	8,189,973	Statewide
Statewide Total	\$	28,701,934	\$	37,602,099	\$	15,497,678	

E							
Snow Region Average		/erage	Upper 75th %			Lower 25th %	Sub-Region
Northeast	\$	3,627	\$	4,658	\$	2,098	Statewide
Northwest	\$	4,937	\$	6,780	\$	2,202	Statewide
South	\$	4,852	\$	6,244	\$	2,786	Statewide
Statewide Averag	;e \$	4,524	\$	5,927	\$	2,443	

Notes:

Northeast snow region includes Districts 7 and 9Northwest snow region includes Districts 5 and 8South snow region includes Districts 1, 2, 3 and 4Estimates include an added factor of2.3%

for administrative costs and transfers

