Crowdsourcing and Data Analytics for Near-Miss Statistics

Mazdak Tootkaboni (CEN, UMassD), Arghavan Louhghalam (CEE UML), Franz-Josef Ulm (CEE, MIT) Mohammad PourghasemiSaghand (CEE, UMassD), Meshkat Botshekan (previously at MIT)

Near-miss events

Difficult to Capture

• Near-miss traffic events provide valuable information but are hard to quantify using traditional methods.

Extreme Statistics

- Cannot be captured through simple averaging procedures.
- Crowdsourced Data Integration
- Extreme Deceleration
 - Represents sudden deceleration from maximum to zero speed

This project utilizes crowdsourced data combined with physics-based models to better quantify near-miss events.

Extreme Deceleration: Is It Enough?

Limitations of Single Metric

- Might not fully capture near-miss events across varying traffic conditions.
- More deviation at high traffic density

Broader Deceleration Profiles Needed

- Higher correlation with deceleration from lower speeds
- Should consider various deceleration levels, including the ones

Enhanced Prediction

 Comprehensive Near-Miss Definition

$$y = 10^{\#_!} \times P_{\$}^{\#_"} \times P_{\%}^{\#_\#} \times P_{\&}^{\#_\$} \times P_{\i}^{\#_\%} \times P_{\i}^{\#_\&}$$

• Improved Prediction in High-Density
Traffic where extreme deceleration
alone is insufficient.

Impact

• Enhanced insights into driver behavior and traffic risks, allowing stakeholders to implement proactive safety measures and prevent accidents.