

A Spatial Analysis of the Fuel Economy Rebound Effect in Vermont

VTrans Research and innovation symposium Barre, Vermont September 25, 2024

Narges Ahmadnia, Ph.D. Candidate

University of Vermont Department of Civil and Environmental Engineering Email: Narges.Ahmadnia@uvm.edu

Gregory Rowangould, Ph.D.

University of Vermont Department of Civil and Environmental Engineering Email: Gregory.Rowangould@uvm.edu

Fuel efficiency improvement is a way to reduce GHG emissions However

Reduction in trip cost may lead to more driving offsetting expected fuel savings.

Known as **Rebound Effect**

National and state studies overlook potential variations across communities by using aggregated data.

Fuel efficiency improvement is a way to reduce GHG emissions **However** Reduction in trip cost may lead to more driving offsetting expected fuel savings.

Known as **Rebound Effect**

National and state studies overlook potential variations across communities by using aggregated data.

Relying on national rebound estimates could mislead state and regional GHG reduction assessments.

MOTIVATION

Rural households rely heavily on automobiles for transportation.

Rural and small communities may face a **larger rebound effect** due to higher transportation costs as a share of household spending.

MOTIVATION

Rural households rely heavily on automobiles for transportation.

Rural and small communities may face a **larger rebound effect** due to higher transportation costs as a share of household spending.

CASE STUDY

Use Vermont detailed vehicle data

Vermont vehicle inspection and registration records Track households and their vehicles across time

~330,000 vehicles ~132,000 households

MOTIVATION

Rural households rely heavily on automobiles for transportation. Rural and small communities may face a **larger rebound effect** due to higher

transportation costs as a share of household spending.

CASE STUDY

RESEARCH QUESTION

Use Vermont detailed vehicle data

Vermont vehicle inspection and registration records Track households and their vehicles across time

~330,000 vehicles
~132,000 households

What is the magnitude of the rebound effect in Vermont?

Or how does driving mileage change with fuel-efficient vehicles?

How does this effect (rebound effect) vary across different areas?

14%

of the GHG savings from improved fuel efficiency are lost due to more driving in Vermont.

22%

more GHG savings are lost in rural and small towns compared to urban areas.

58,000

Metric tons of CO2 savings are overestimated in non-urbanized areas from 2020 to 2060 by not accounting for the rebound effect.

14%

of the GHG savings from improved fuel efficiency are lost due to more driving in Vermont.

22%

more GHG savings are lost in rural and small towns compared to urban areas.

58,000

Metric tons of CO2 savings are overestimated in non-urbanized areas from 2020 to 2060 by not accounting for the rebound effect.

There's more to discuss on the poster....

This study was funded by the National Science Foundation (NSF).