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EXECUTIVE SUMMARY 

The Global Warming Solutions Act or Act 153, enacted by the Vermont Legislature in 2020, set 

targets for Vermont to reduce greenhouse gas (GHG) emissions to 26% below 2005 levels by 

2025, 40% below 1990 levels by 2030, and 80% below 1990 levels by 2050. Recognizing that 

transportation accounts for the largest share of the State’s total GHG emissions at 39.7%, the 

Climate Action Plan identifies reduction in vehicle miles traveled (VMT) as a key pathway for 

meeting GHG reduction. The Climate Action Plan further identified a high priority action to 

quantify the effect of smart growth strategies on VMT and GHG reduction in the Vermont 

context. 

Delivering on this high priority action in the Climate Action Plan, this project explored the 

hypothesis that compact, mixed use development patterns generate fewer VMT and GHG 

emissions per person than more dispersed or rural settlement patterns. Further, this study 

explored built environment relationships with VMT across Vermont, inclusive of many rural 

areas across the state, which will help to fill a critical gap in the literature. Current and future 

patterns of built environment development, land use, population growth, and travel behavior 

were quantified in several scenarios to fulfill two primary focal points of the research: 

• Demonstrate the degree to which smart growth strategies in the Vermont context can 

reduce VMT to meet transportation related GHG emission reduction targets; and, 

• Quantify the co-benefits of smart growth strategies beyond GHG emission reductions to 

include health benefits of increased active and multimodal travel, safety benefits of 

reduced VMT, reduced maintenance associated with fewer vehicles and possibly fewer 

lane miles, and increased economic activity located in downtowns and community 

centers. 

The consultant team of VHB and RSG worked in close collaboration with a Champion from the 

Vermont Agency of Transportation’s Policy, Planning and Research Bureau, as well as a 

Technical Advisory Committee (TAC) composed of representatives from: 

• Agency of Transportation | Environmental Policy & Sustainability 

• Agency of Transportation | Highway Division 

• Agency of Transportation | Policy, Planning and Intermodal Development Division 

• Agency of Digital Services | Vermont Center for Geographic Information 

• Agency of Commerce & Community Development | Community Planning & Revitalization 

• Agency of Natural Resources | Climate Action Office 

• Vermont Natural Resources Council 

• Conservation Law Foundation 

The study’s TAC provided integral feedback at key decision points regarding the study scope, 

data exploration, findings, and applications discussed in greater detail below. 



 

 

Passively collected, location-based services (LBS) data were leveraged to develop weekly per 

capita VMT estimates for the state. Location based data were gathered for any device seen 

within Vermont's boundary in each season of 2019. Devices were filtered to remove sporadic or 

anomalous behavior. Data processing entailed enriching the device data to identify device 

locations using transportation network, land use, and point of interest features. For each 

device's records, stops and anchor locations as well as visits or dwell times were determined. 

Anchor locations (e.g., home, work) were classified and trips between locations were identified 

and assigned trip attributes. Post-processing entailed assigning quality tiers and removing 

suspected commercial trucks and junk devices. All non-Vermont residents were also removed. 

The data were resampled to extract the most representative week for each device in each 

season. Based on the characteristics of each trip, mode was assigned categorizing every trip 

into motorized, non-motorized, flights, and ferry trips. A two-stage weighting was applied to 

scale the sample of devices to represent weekly VMT by all Vermont residents. A demographic 

expansion factor was used to scale the sample based on how many people are represented by 

a given device. An adjusted VMT factor was used to account for missing VMT relative to the 

Local Area Transportation Characteristics for Households estimates. This procedure resulted in 

LBS-derived VMT estimates based on a data set containing 750,000 trips from nearly 30,000 

devices seen throughout 2019. 

Informed by the body of research that explores the relationship between travel behavior and the 

built environment, a database of built environment measures was assembled. The built 

environment measures focused on representing the ‘five D’ variables that influence travel 

behavior, including density, diversity of land use, design, destination accessibility, and distance 

to transit. VMT estimates and built environment measures were resolved to a hex-grid spatial 

database across the state of Vermont to develop a model that relates the built environment 

measures to the weekly per capita VMT estimates. 

Future growth scenarios were developed to represent a range of possible growth and built 

environment changes. The scenarios explored a few common themes – dispersed growth 

patterns versus concentrated growth patterns, concentrated growth prioritized to places with 

density versus places with low VMT, and employment growth in balance with concentrated 

residential growth versus allocated to places near established cores or lower density areas. The 

model was applied to these scenarios to predict how VMT and other related benefits might 

change under different future growth scenarios. The scenarios forecast growth to 2035 and 

2050 time horizons, included both a low and high growth scenarios, and derived various growth 

patterns as follows: 

• Dispersed growth: In this scenario, low-density residential development occurs across 

all developable land, ignoring existing community designations and wastewater service 

areas. From a smart growth perspective, this represents a “worst case” scenario. 

• Concentrated growth, concentrated jobs: In this scenario, future residential and 

employment growth is concentrated in already dense neighborhoods. Growth “overflows” 

to less dense neighborhoods when density exceeds a maximum density threshold. 
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• Concentrated growth, dispersed jobs: Like above, future residential growth is 

concentrated in already dense areas of the state. However, employment growth is 

allocated to lower density areas (i.e., greenfield development of employment centers). 

• Concentrated growth, balanced land use: In this scenario, future development is 

focused on copying places in Vermont that exemplify smart growth principles today. 

Growth is allocated so that future development mirrors the lowest VMT neighborhoods in 

Vermont currently by leveraging prototype smart growth neighborhood attributes. 

• Concentrated growth, unbalanced land use: This scenario allocates residential growth 

as described above. Employment growth, on the other hand, occurs in locations near 

established cores, but not in locations with high population density. 

The resulting VMT estimates were then used to estimate benefits associated with each 

scenario. In addition to changes in GHG emissions—the primary benefit explored in this study— 

co-benefits were estimated to quantify the following: 

• Safety: Changes in fatal and injury crashes, for motorized and non-motorized travel 

modes; 

• Health: Impacts associated with changes in physical activity from nonmotorized travel; 

• Cost Reductions: 

○ Changes in infrastructure maintenance costs associated with VMT; and, 

○ Potential reductions on infrastructure construction costs associated with more 

compact development patterns.  

Based on the analysis of future scenarios, concentrated growth reduced VMT by nearly 10 miles 

per person per week compared to dispersed patterns, demonstrating the opportunity for smart 

growth strategies in Vermont and the impact they might have on travel patterns. Of the 

scenarios evaluated, focusing growth in areas with low VMT and emulating prototype smart 

growth communities with low VMT were most effective in reducing weekly per capita VMT 

overall. The GHG emission reduction potential of smart growth, based on scenario 

evaluations, could amount to over 15% of the annual reduction needed to achieve the 

2050 Global Warming Solutions Act targets. Conversely, dispersed settlement patterns can 

produce an increase in emissions of up to 20% of the annual target, working against other 

mechanisms to drive down annual GHG emissions. Beyond VMT and GHG emission 

reductions, the most effective future scenarios (i.e., emulating the lowest VMT communities) 

demonstrated the benefit of smart growth strategies on outcomes associated with the 

transportation system in Vermont, including: 

• safety outcomes with 1 avoided traffic death and over 30 avoided traffic injuries per 

year; 

• health outcomes with reduced physical inactivity mortality by saving nearly 4 lives 

annually; and, 

• maintenance outcomes with reduced annual maintenance costs by over $1.5 million. 



 

 

There are communities within Vermont where the built environment supports more condensed 

travel patterns. There are also locations in Vermont that seem to produce more VMT and GHG 

emissions on average even though characteristics of their built environment reflect patterns of 

smart growth. Zooming in on a few communities through the lens of these scenarios illuminated 

some key takeaways for contextualizing the results of this study, including: 

• Denser, mixed land uses require job proximity to achieve targeted VMT and GHG 

reductions, necessitating holistic planning to co-locate jobs relative to compact centers 

and livable neighborhoods to strike a jobs-housing balance; 

• Vermont’s historical settlement patterns and predominant landscape of denser 

centers surrounded by more rural areas lends itself inherently to smart growth 

strategies where the state’s “good bones” can be enhanced through thoughtful, context 

sensitive modifications to density, land use mix, proximity to jobs, and civil infrastructure; 

• Regional neighbors influence VMT and travel patterns where condensed movement 

patterns within town centers may serve some needs complemented by more expansive 

travel patterns to adjacent communities to serve other needs.  

These communities offer insights on the potential scope and scale of VMT and GHG reductions 

that are possible through implementation of smart growth strategies. The work at the local and 

regional level to encourage and operationalize smart growth principles can have a statewide 

impact, contributing over 15% of the year-over-year GHG reduction targets required to meet the 

goals set forth in the Global Warming Solutions Act. 
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1.0 INTRODUCTION 

The Global Warming Solutions Act or Act 153, enacted by the Vermont Legislature in 2020, set 

targets for Vermont to reduce greenhouse gas (GHG) emissions to 26% below 2005 levels by 

2025, 40% below 1990 levels by 2030, and 80% below 1990 levels by 2050. Recognizing that 

transportation accounts for the largest share of the State’s total GHG emissions at 39.7%, the 

Climate Action Plan identifies reduction in vehicle miles traveled (VMT) as a key pathway for 

meeting GHG reduction. The Climate Action Plan further identified a high priority action to 

quantify the effect of smart growth strategies on VMT and GHG reduction in the Vermont 

context. 

This project evaluates how future patterns of land use and built environment development for 

the state of Vermont may influence transportation GHG emissions. The project explores the 

overarching hypothesis that compact, mixed use development patterns intrinsically generate 

less VMT and GHG emissions per person than more dispersed or rural settlement patterns. In 

such an exploration, the two primary focal points of the research were to: 

1. Demonstrate the degree to which smart growth strategies, particularly in the Vermont 

context, can reduce VMT to meet transportation related GHG emission reduction 

targets as promulgated in the Vermont Pathways Analysis Report (“Pathways”). 

2. Quantify the co-benefits of smart growth strategies beyond GHG emission reductions. 

Such benefits include health benefits of increased active and multimodal travel, safety 

benefits for reduced VMT, reduced maintenance associated with fewer vehicles and 

possibly fewer lane miles, and increased economic activity located in downtowns and 

community centers. 

To achieve these research objectives, a project was funded through the VTrans Research 

Program assembling a team including a project champion from VTrans Policy & Planning and 

researchers from RSG and VHB. In order to guide the research project and support key 

decision making, a Technical Advisory Committee (TAC) was assembled with representation 

from the Agency of Transportation’s Highway Division, Environmental Policy & Sustainability 

Section, Policy Planning and Intermodal Development Division, Agency of Digital Services’ 

Vermont Center for Geographic Information, Agency of Commerce & Community 

Development’s Community Planning & Revitalization Section, Agency of Natural Resources’ 

Climate Action Office, Vermont Natural Resources Council, and Conservation Law Foundation. 

With this team and advisory assembled, the project encompassed five phases of work: 

• A review of built environment measures and travel behavior. Described in Chapter 2, 

this foundational step reviewed academic literature exploring how the built environment 

shapes travel behavior. Findings from this review informed which built environment 

measures were to be included in a spatial database developed for the state of Vermont 

and used in the other phases of this project. 

• Developing estimates of baseline per capita VMT for Vermont residents. The next 

phase of work, described in Chapter 3, leveraged passively collected location data to 



 

 

develop estimates of typical weekly VMT based on a sample of approximately 30,000 

Vermonters.  

• Developing a Vermont-specific VMT model. The third phase of work combined the 

spatial database developed during the first phase with VMT estimates from the second 

phase to develop a regression model that can be used to estimate or predict how per 

capita VMT changes when built environment measure(s) in the spatial database change. 

This work is described in Chapter 4. 

• Estimating VMT for future development scenarios. The fourth phase of work, 

described in Chapter 5, developed future growth scenarios in conjunction with the 

project’s Technical Advisory Committee (TAC) for how the built environment might grow 

and change. The model developed in the third phase was applied to predict how these 

different scenarios would impact VMT and other benefits associated with reduced VMT. 

Potential benefits related to changes in VMT included greenhouse gas (GHG) emission 

reductions, public health and traffic safety benefits, and cost savings for VTrans. A 

dashboard tool was developed to support decisionmakers by providing a means to 

interact with scenario parameters and model outcomes in a GIS environment at the 

neighborhood scale and summarize the future scenario outcomes at the statewide scale. 

• Contextualizing future scenarios with case studies. Finally, case study narratives 

were developed for several Vermont communities. Illustrative examples from different 

Vermont communities across the spectrum of outcomes for future scenarios offers a 

roadmap for using the dashboard tool to evaluate localized and regional smart growth 

initiatives. The case studies and final takeaways for the study are described in Chapters 

6 and 7, respectively. 
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2.0 BUILT ENVIRONMENT MEASURES 

The first phase of this project reviewed existing literature on how the characteristics of the built 

environment impact travel behavior. This work informed the development of a spatial database 

of built environment measures comprised of the characteristics most relevant to understanding 

this relationship between the built environment and travel behavior in Vermont. A foundational 

step in understanding how the built environment shapes travel behavior is developing measures 

that describe characteristics of the built environment. This chapter summarizes this literature 

with three specific aims: 

• Inform the selection of built environment measures included in the spatial database. 

• Provide guidance on data sources and methods used to develop such measures. 

• Identify limitations and considerations that should be made in exploring the relationship 

between the built environment and travel behavior in the Vermont context. 

Section 2.1 presents a high-level overview of the literature review and Section 2.2 digs deeper 

into how specific built environment measures shape travel behaviors. Section 2.3 introduces 

three cross-cutting themes and Section 2.4 summarizes limitations of the existing literature. 

Finally, Section 2.5 discusses issues specific to the Vermont context and Section 2.6 describes 

the database of built environment measures. An annotated bibliography is provided in Appendix 

A for reference. 

2.1 LITERATURE REVIEW 

The literature investigating the relationship between the built environment and travel behavior is 

large and complex. Several recent review papers have succinctly summarized this expansive 

body of work. Rather than conducting our own independent review of the literature, we instead 

began this review by identifying these review papers. We then conducted a brief supplemental 

review using the snowball method (i.e., identifying more recent papers that cited these keystone 

reviews) and targeted searches with keywords to uncover work in the rural context. Identifying 

cross-cutting themes, we performed a more targeted review of studies exploring the relationship 

between VMT and the built environment in the context of these themes. 

Overview 

The keystone papers used in our snowball sampling approach—two recently authored by Reid 

Ewing and others—explore the relationships between the built environment and travel behavior 

using the ‘five D’ variables to frame their findings.1 These variables seek to independently 

characterize aspects of the built environment that influence travel choices. Each of these five 

elements typically represent built environment land use attributes that may or may not be 

intentionally designed to impact travel patterns: 

 
1 These two keystone papers are Ewing and Cervero 2017 and Ewing et al. 2019 



 

 

The Five Ds 

• Density: The number or concentration of land use opportunities per square mile, such as 

dwellings, households, people, and jobs. 

• Diversity: The number and mix of different land uses within a certain area, which is often 

measured by land use mix and jobs-housing balance. 

• Design: Physical features of the built environment that impact travel patterns, such as 

sidewalks, cycle paths, and street design. Metrics that are used to quantify design 

include intersection/street density and number of 4-way intersections. 

• Destination Accessibility: When destinations are more accessible, people may be able to 

travel shorter distances and/or use non-automobile modes to reach goods and services. 

• Distance to Transit: The proximity to transit service. 

Additional dimensions (Ds) have been proposed to supplement the original five Ds research. 

Travel demand management is a sixth D that is sometimes included in this research and 

consists of policy interventions or strategies which are explicitly designed to impact travel 

demand.2 Demand management is a broad category that may or may not include land use 

elements and includes strategies such as parking pricing, transit incentives, and technology. 

This review focuses on the traditional “five Ds” described above. 

2.2 VMT AND THE FIVE DS 

Within the five Ds framework, certain dimensions may impact different travel choices in different 

ways. For example, physical design and land use diversity may be more influential on mode 

choice decisions whereas destination accessibility may be more influential on trip distance. 

Importantly, VMT is influenced by many travel decisions, including mode choice, deciding 

when/how often to travel, and how much distance needs to be travelled to reach destinations. 

This complexity is well-described in Ewing et al:  

“…destinations that are closer, as a result of higher development density or greater land 

use diversity may be easier to walk or bike to than drive to. Also, origins that are closer 

to high quality transit, and hence to destinations regionally via transit, render transit a 

viable alternative to the automobile. People living in such environments will tend to own 

fewer vehicles. Also, a household’s vehicle fleet can be utilized more efficiently when 

destinations are close by, as trip chaining and carpooling become more practical.3 

Despite this complexity, the research consistently finds that households that live in dense, 

mixed-use, and transit served areas tend to drive less compared to households in areas that do 

not have these characteristics. 

 
2 Ogra, 2014 
3 Ewing et al. 2019 
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Quantifying the Effects of the Five Ds on VMT 

A prevailing approach in the literature is to develop elasticities describing how changes in the 

five Ds can be expected to change VMT. Elasticity refers to the relative change in an outcome 

variable (VMT) given a change in an exploratory variable (one of the five Ds). For example, the 

elasticity of a VMT in relation to the density of bicycle lanes would describe the expected 

percent change in VMT given a 1% change in the density of bicycle lanes. Ewing and Cervero 

presented elasticities for the five Ds using different methods and assert that the elasticities in 

the second column of the table below are the most reliable estimates available (Table 1). 

TABLE 1. VMT & 5 D VARIABLE ELASTICITIES4 

  

WEIGHTED 
AVERAGE 

ELASTICITIES 
a 

WEIGHTED 
AVERAGE 

ELASTICITIES 
b 

META-
REGRESSION 
ELASTICITIES 
ACCOUNTING 

FOR SELF-
SELECTION b 

META-
REGRESSION 
ELASTICITIES 
ACCOUNTING 

FOR SELF-
SELECTION 

AND 
REPORTING 

BIAS b 

Density 
Household/population 

density 
-0.04 -0.15 -0.22 -0.22 

 Job density 0.00 -0.01 -0.07 -0.07 

Diversity 
Land use mix (entropy 

index) 
-0.09 -0.07 +0.03 +0.11 

 Jobs-housing balance -0.02 -0.03 NA 0.00 

Design 
Intersection/street 

density 
-0.12 -0.16 NA -0.14 

 % 4-way intersections -0.12 -0.06 NA -0.06 

Destination 
Accessibility 

Job accessibility by 
auto 

-0.20 -0.25 NA -0.20 

 
Job accessibility by 

transit 
-0.05 -0.07 NA 0.00 

 Distance to downtown -0.22 +0.01 -0.29 -0.63 

Distance to 
Transit 

Distance to nearest 
transit stop 

-0.05 -0.06 NA -0.05 

a Ewing & Cervero sample 
b Stevens sample 

 

… increases in one built environment variable alone 

may not yield expected reductions in VMT without 

other variables supporting lower VMT levels—for 

example, increases in population density absent 

diverse land uses and access to transit may not result 

in VMT reductions below what would otherwise be 

expected. This highlights a possible “sum greater than 

the individual parts” characteristic of the five Ds. 

 

 
4 Adapted from Ewing & Cervero 2017 



 

 

Across different dimensions of the built environment, these elasticities vary dramatically. Within 

the “Weighted average elasticities: Stevens sample” estimates, for example, job density seems 

to have a minor effect—a 0.01% reduction in VMT given a 1% increase in job density—while job 

accessibility by auto has an effect size roughly 25 times higher (Table 1). Applying other 

methods, however, the impact of job density is larger while the impact of auto job accessibility is 

lower (column 4 of Table 1). 

The variability across studies and the five D measures themselves reflect the nuances in the 

relationship between the built environment and travel behavior, as described previously by 

Ewing. While the five Ds are typically treated as (somewhat) independent of one another in the 

literature, these variables are often correlated. Further, increases in one built environment 

variable alone may not yield expected reductions in VMT without other variables supporting 

lower VMT levels—for example, increases in population density absent diverse land uses and 

access to transit may not result in VMT reductions below what would otherwise be expected. 

This highlights a possible “sum greater than the individual parts” characteristic of the five Ds. 

While the literature has sought to isolate the effects of each, the effects of these variables in 

VMT may be interrelated. Interestingly, while plotting a single built environment measure alone 

may reveal a relationship with VMT—as demonstrated in work by Litman (Figure 1)—accounting 

for variables across different dimensions often strengthens such associations. 

FIGURE 1. VMT PER CAPITA AND POPULATION DENSITY5 

 

To better understand the nuances of these relationships, a recent study sought to isolate the 

effects of the five Ds on specific travel choices to support the development of travel model 

 
5 Adapted from Litman 2022 
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enhancement in the Salt Lake City, Utah region.6 This study reviewed existing work in the 

context of elements of the travel demand model, such as walk and bike mode choice models 

(Table 2 and Table 3, respectively). Walk mode choice tends to have a positive relationship with 

higher population, job density, higher commercial floor area ratio, more diverse land use, and 

short distance to commercial destinations. 

TABLE 2. WALK MODE CHOICE AND THE 5DS7 

  BUILT ENVIRONMENT MEASURES 

STUDY METHOD Density Diversity Design 
Destination 
accessibility 

Hamre & Buehler 
(2014) 

MNL 
Population 
density (+) 

- - - 

Reily & Landis 
(2002) 

MNL 
Population 
density (+) 

Distance to 
closest 

commercial 
use (-) 

- - 

Frank et al. 
(2008) 

NL 
Retail floor 

area ratio (+) 
Land use mix 

(+) 
Intersection density 

(+) 
- 

Ferrell et al. 
(2015) 

MNL 
Population 
density (+) 

- 
4-way intersection 

density (+) 
- 

Rajamani et al. 
(2003) 

MNL - 
Land use mix 

(+) 
% Cul-de-sac 

streets (-) 
- 

Mitra (2011) BNL - 
Jobs-to-

population ratio 
(-) 

Block density (+) - 

Ozbil & Peponis 
(2012) 

LNR - 
Mixed-use 
entropy (+) 

Street connectivity 
(+) 

- 

Ewing et al. 
(2004) 

MNL - - 
Average sidewalk 

coverage (+) 
Walk time to 

school (-) 

Ewing et al. 
(2009) 

MNL - - 
Intersection density 

(+), Sidewalk 
coverage (+) 

Jobs within one 
mile (+) 

Aziz et al. (2017) MNL - - Street width (+) - 

Khan et al. (2014) MNL - - 
3-way/4-way 

intersection density 
(+) 

 

MNL: Multinomial logit regression 
NL: Nested logit regression 
BNL: Binomial regression 
LNR: Linear regression 
(+) = positive relationship 
(-) = negative relationship 

 

Similarly, bike mode choice related to higher population densities and greater mix of land uses. 

Interestingly, higher job and population densities have also occasionally been found to result in 

less biking—potentially due to other built environment measures such as street design and 

automobile traffic that may be present barriers to cycling in dense environments (Table 3). 

  

 
6 Ewing et al. 2019 
7 Adapted from Ewing et al. 2019 



 

 

TABLE 3. BIKE MODE CHOICE AND THE 5DS8 

  BUILT ENVIRONMENT MEASURES 

STUDY METHOD Density Diversity Design 
Destination 
accessibility 

Ferrell et al. 
(2015) 

MNL 
Population 
density (+) 

Mixed use (+) 
4-way intersection 

density (+) 
- 

Hamre & Buehler 
(2014) 

MNL 
Population 
density (+) 

Urban core 
(+) 

Bikeway supply (+) - 

Khan et al. (2014) MNL 
Population 

density (+), Job 
density (-) 

- 
4-way intersection 

density (+) 
 

Aziz et al. (2017) MNL - - 
Bike land length 

width (+), Fraction 
open space (+) 

- 

Ewing et al. 
(2004) 

MNL - -  
Walk time to 

school (-) 
MNL: Multinomial logit regression 
(+) = positive relationship 
(-) = negative relationship 

A recent study from Portland State University provides additional support for the relationship 

between built environment measures and multimodal travel across the US.9 Controlling for 

sociodemographic variables, the author analyzed the relationship between multimodal travel 

behavior and built environment variables such as population density, accessibility, and job 

diversity for roughly 200,000 census block groups. Using linear regression and machine 

learning with American Community Survey and EPA Smart Location data, the author found 

statistically significant built environment predictors of multimodal travel. The author concludes 

that “planners who would like to encourage multimodal travel behavior should consider the 

features, particularly population density, regional accessibility, walkability index, and network 

density, when developing their land-use design strategies for the transportation system.” 

TABLE 4. REGRESSION ANALYSIS OF VMT, SMART LOCATION DATABASE VARIABLES10 

VARIABLES ESTIMATE STD. ERROR T-VALUE P-VALUE VIF 
Constant 0.359 0.007 48.780 <0.001 - 

Population density 0.010 <0.001 24.190 <0.001 1.535 
HH, job diversity -0.082 0.063 -1.294 0.196 1.017 

Job diversity -0.023 0.003 -7.851 <0.001 1.592 
Network density -5.998 1.140 -5.262 <0.001 6.031 

Intersection density 2.223 0.123 18.091 <0.001 3.936 
Walkability index 0.011 <0.001 45.797 <0.001 4.443 

Job proximity 0.014 <0.001 32.686 <0.001 1.180 
Auto accessibility -0.080 0.002 -36.339 <0.001 1.559 

Transit accessibility 0.146 0.003 42.948 <0.001 1.935 
Household size 0.024 0.001 22.794 <0.001 1.606 

Household income 0.001 <0.001 3.826 <0.001 2.995 
White  -0.018 <0.001 -37.876 <0.001 6.550 
Black -0.015 <0.001 -30.829 <0.001 4.905 
Asian 0.013 0.001 17.815 <0.001 2.202 
Single 0.037 <0.001 78.524 <0.001 1.857 

Low education -0.002 <0.001 -5.323 <0.001 2.960 
No car 0.025 <0.001 81.355 <0.001 1.410 

Work at home 0.044 0.001 49.115 <0.001 1.180 

Observations 206,380     
Model adjusted R2 0.309     

 
8 Adapted from Ewing, Sabour, et al, 2019 
9 Lee, 2022 
10 Adapted from Lee 2022 
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2.3 CROSS-CUTTING THEMES 

Apart from overall findings related to the five Ds and VMT, several other themes emerged 

during this review. First, a range of techniques are used to develop the built environment 

measures that are foundational to studies on this topic, and the way these variables are 

measured is important. Second, while there is strong evidence of these relationships in urban 

contexts, much less is known in rural contexts. Finally, built environments that support lower 

VMT often have other measurable benefits, such as reduced maintenance costs due to reduced 

infrastructure needs. 

Theme 1: Measurement Matters 

The five Ds can be calculated in different ways. Two common approaches in the literature use 

non-uniform geographies: 1) calculating variables within an underlying geography, such as 

census block groups; or 2) calculating variables within buffers around specific coordinates, such 

as home locations. Both non-uniform methods such as these have important drawbacks. First, 

calculating built environment measures within nonuniform geographies can present issues 

related to boundary effects and the modifiable unit problem, and tend to understate variation as 

the size of polygons in the underlying geography increases.11 This can be particularly 

problematic in rural areas where Census geometries are typically very large. Calculating the five 

Ds within buffers tends to mitigate these limitations but can be computationally difficult as the 

number of buffer operations required increase (e.g., when calculating buffers for big data 

sources, such as passively collected location data). 

Grid-based options, where built environment measures are calculated within grid cells spanning 

a study region offer a nice compromise between these two prevailing methods. Grid-based 

techniques can mitigate spatial sampling bias and the modifiable areal unit problem, result in 

less information loss when underlying data are available at high resolutions, and simplify 

computation across large geographic areas. An example of such an approach is described in 

Mansfield et al.12 

Theme 2: Understanding the Rural Context 

While there is ample research on the relationship between elements of the built environment 

and VMT in urban settings, there is less understanding of this relationship in rural settings 

where there are fewer, and lower densities, of both people and places. A 2009 study from the 

University of Vermont Research Center provides some evidence from two small size towns in 

Maine, Lisbon and Sanford, which have a similar built environment to many areas in Vermont.13 

The study showed relatively low reductions in VMT (less than 1%) for 3 different smart growth 

modeled scenarios, which assumed that household and employment growth would be 

redirected to dense, mixed-use infill developments in certain parts of each town. Notably, the 

study isolated the influence of dense mixed-use infill development without including significant 

upgrades to transit service. As a result, the authors concluded that “the efficacy of the smart 

 
11 Houston, 2014 
12 Mansfield et al 2023 
13 Weeks, 2009 



 

 

growth scenarios to reduce VMT in Lisbon and Sanford is greatly limited without transit to 

complement the proposed dense, mixed-use developments.” A more recent 2020 study from 

Florida provides some additional nuance about the VMT impact of land use strategies in rural 

areas14. This study was based upon a robust panel dataset of all 67 counties in Florida between 

the 2001 and 2014, with a total of 938 county/year data points, which the authors used to 

estimate a log-linear model of a county’s VMT in relation to eight land use types. Like other 

studies, this one demonstrated the general observation that compact development is generally 

associated with reductions in VMT. Yet, the study showed that for rural counties in Florida, the 

effects depend on the type of land use that is included in built environment. In particular, the 

study showed that in rural areas concentrating industrial and institutional properties produces 

VMT reductions while the concentration of residential housing units did not produce similar 

reductions. Critically, the Florida study quantified built environment measures at the county 

level, potentially missing the role of within-county variability (e.g., small town centers 

accompanied by more traditional suburban development patterns) in shaping VMT—further 

highlighting the importance of the measurement matters theme described above. 

Theme 3: The Benefits of VMT Reductions 

There also exists ample research to indicate the benefits of compact development. The 

literature documents the relationship between urban form and other attributes related to the built 

environment such as cost of maintenance and operations of the assets, stormwater and other 

environmental impacts such as health and safety. 

For example, a 2013 study in Nova Scotia showed that compact development that “increases 

the portion of new housing located in existing urban centers from 25%- 50% reduced 

infrastructure and transportation costs approximately 10% and helped improve public health and 

reduced pollution emissions”15. Furthermore, a 2017 analysis of 300 academic papers found 

that “69% identify positive effects associated with compact urban form: over 70% attribute 

positive effects of economic density (the number of people living or working in an area), 58% 

attribute positive effects to land use mix, and 56% attribute benefits to urban density16”. 

Moreover, there are space benefits of compact development that go beyond VMT. As density 

increases, fewer roadway facilities are needed on a per capital basis (Figure 2). In fact, smart 

growth development patterns require less than half as much land for housing, roads, and 

parking facilities relative to sprawl (Table 5). Such reductions in total space consumed from the 

built environment can benefit roadway maintenance costs as well as stormwater costs (Figure 

3). One estimate indicates that sprawl increases local road lane-miles 10%, annual public 

service costs about 10%, and housing development costs about 8%, increasing total costs an 

average of $13,000 per dwelling unit, or about $550 in annualized costs.17 In a recent study, 

Mattson reached similar conclusions, stating that “construction and operating costs of municipal 

streets and highways, emergency services (expect police operations), parks and recreation, 

 
14 Ihlanfedlt, 2020 
15 Stantec, 2013 
16 Ahlfeldt and Pietrostefani, 2017 
17 Burchell and Mukherji (2003) 
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water, sewage and solid waste management tend to decline with density”18. Other work has 

reached similar conclusions related to the cost of fire protection in Charlotte, North Carolina19 

and simar overall cost reductions with increasing density in the Latin American context20. 

FIGURE 2. URBAN DENSITY VERSUS ROADWAY SUPPLY ACROSS REGIONS IN THE UNITED 
STATES21 

 

TABLE 5. PER CAPITA IMPERVIOUS SURFACE AREA, SMART GROWTH VS SPRAWL 
CONDITIONS22 

 SMART GROWTH MIXED SPRAWL 
Vehicles per capita 0.8 0.65 0.5 

Road space per vehicle (ft2) 235 453 670 
Off-street parking spaces per capita 2 4 6 

Land area per parking space (ft2) 275 300 325 
Housing footprint per capita (ft2) 250 375 500 

Road and parking land area per capita (ft2) 878 1,344 1,810 

 

 
18 Mattson, 2021 
19 CDOT 2021 
20 de Duren and Compean, 2015 
21 Adapted from Litman, 2022 
22 Adapted from Litman, 2022 



 

 

FIGURE 3. RESIDENTIAL SERVICE COSTS INCREASE AS DENSITY DECREASES23 

 
 

2.4 LIMITATIONS 

There are two notable limitations of the literature reviewed here. The first, described above, is 

the relative lack of rural studies on this topic. Critically, this study will help fill this gap in the 

literature by exploring built environment relationships with VMT across Vermont, inclusive of 

many rural areas across the state. Second, much of the existing literature relies on cross- 

sectional data, and self-selection may bias findings (i.e., individuals may sort into 

neighborhoods that support lower VMT, resulting in differences in underlying preferences for 

non-auto travel between neighborhoods that bias regression models). Two notable studies have 

addressed this issue using longitudinal panel data—Ihlanfeldt and Knuiman et al.—and both 

have still found associations between built environment and travel behavior, though attenuated 

relative to other studies that did not account for self-selection24. While the passively collected 

data that will be used for this study are longitudinal, privacy restrictions preclude our ability to 

control for possible self-selection bias. Nonetheless, using a novel data source to explore the 

relationship between VMT and the built environment will strengthen the findings of the literature. 

Critically, this study will help fill this gap in the 

literature by exploring built environment relationships 

with VMT across Vermont, inclusive of many rural 

areas across the state. 

2.5 UNDERSTANDING THE VERMONT CONTEXT 

While the themes from the literature review describe the relationship between the built 

environment and VMT in more urban and suburban contexts, Vermont is a predominantly rural 

 
23 Adapted from Litman, 1989 
24 Knuiman et al., 2014  
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state with relatively low population density. There is evidence that, despite its predominantly 

rural character, areas in Vermont with more urban-like built environment still generate reduced 

VMT demonstrating a similar directional relationship to more urban places. Importantly, there is 

evidence that downtown residents across most of the state travel less than average, though 

there is variation across the state (Figure 4). While limited, there is also evidence from the 2009 

National Household Travel Survey that downtown residents produced less VMT than others in 

the state (Figure 5).  

 

FIGURE 4. ANALYSIS OF OCTOBER 2019 SAFEGRAPH DATA IN VERMONT25 

 

There is evidence that, despite its predominantly rural 

character, areas in Vermont with more urban-like built 

environment still generate reduced VMT 

demonstrating a similar directional relationship to 

more urban places.  

 

 
25 John E. Adams using Safegraph data from 2019 



 

 

 

FIGURE 5. ANNUAL VMT BY LOCATION, FROM VERMONT 2009 NHTS26 

 

2.6 SPATIAL DATABASE OF BUILT ENVIRONMENT 
MEASURES 

Based on the findings of this literature review the project team assembled a built environment 

database for Vermont. Built environment measures included in this database characterize the 

five Ds described in this chapter, including measures of population and employment density, 

land use diversity, physical design, destination accessibility, and access to transit. A uniform 

hexagonal grid was used as the underlying geographic unit for calculating these measures, 

adopting the grid-and-buffer methods described previously.27 A summary of this database is 

presented in Appendix B. 

 
26 John E. Adams using the 2009 NHTS (Vermont purchased the add on) 
27 https://h3geo.org/docs 
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3.0 ESTIMATING BASELINE VMT 

In addition to the built environment measures described in Chapter 2, estimates of VMT are 

required to develop a model predicting VMT based on built environment measures. To develop 

VMT estimates under current land use and built environment conditions, the project team 

leveraged passively collected location-based services (LBS) data. LBS data are generated by 

location-aware applications installed on mobile devices and typically offer samples sizes orders 

of magnitude larger than those in most travel surveys. However, unlike travel surveys, these 

data contain minimal contextual data in raw form and require extensive processing to develop 

useful transportation metrics. For this project, RSG obtained and processed passively collected 

LBS data for all devices seen in Vermont in 2019.  

3.1 LBS DATA PROCESSING 

Raw LBS data records have limited information—typically only a unique identifier, a timestamp, 

and a location. As a result of this limitation, all information on travel behavior and attributes of 

the device owner (home and work/habitual locations) must be imputed. Furthermore, raw LBS 

data includes devices with a wide range of data quality. Some devices may generate only a 

handful of location records per month while others may generate thousands of records daily. 

Thus, it is critical for data processing steps to include devices only with sufficient data quality to 

produce reliable inferences and apply methods, such as weighting, to account for differences in 

device quality. The workflow RSG has developed to process LBS data includes three primary 

components: preparing study geometry, data filtering, and data processing (Figure 6). These 

components are described in turn below.  

 

FIGURE 6. DATA PROCESSING WORKFLOW 

Preparing Study Geometry 

Before processing LBS data for Vermont, the project team compiled demographic, land use, 

transportation network, and point-of-interest (POI) data across the state. Census blockgroups 



 

 

were used to generate an underlying geometry for the region, and transportation network data 

were obtained via the OpenStreetMap (OSM) API using the OSMnx Python package.28 

Additionally, a nationwide layer of airports was obtained, and all airport polygons were included 

as airport POI data for the study. 

The project team also obtained E911 data for the state, including point data with land use 

descriptions and building footprint polygon data (with no land use designation). The RSG team 

used E911 point data to append land use designations to the E911 building footprint data. To do 

so, the 133 unique land use descriptions in the point data were collapsed into 21 categories 

(Table 6). Next, the E911 point closest to each building footprint was calculated using a nearest 

neighbor search and land use designations were assigned to the building footprints. If multiple 

uses were present within a single building footprint, that building was assigned one of the 

mixed-use categories (mixed-use with residential or mixed-use without residential, depending 

on whether one of the uses tagged to the footprint was residential). Finally, non-building 

footprints categories (airport, agriculture, golf course, park, shopping, stadium, trail, quarry) 

were tagged as “non-building” POI. The resulted in a comprehensive land-use dataset spanning 

the state (Figure 7) and a POI dataset containing airports nationwide and other “non-building” 

POI within Vermont. 

 

FIGURE 7. COMPILED LAND-USE DATASET IN BURLINGTON, VT 

 

 
28 Boeing, G. 2017. “OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing 

Complex Street Networks.” Computers, Environment and Urban Systems. 65, 126-139. 
doi:10.1016/j.compenvurbsys.2017.05.004 

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
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TABLE 6. AGGREGATION OF E911 LAND-USE CATEGORIES 

AGGREGATE LAND-USE CATEGORIES E911 LAND-USE LABELS 

Agriculture 
Sugarhouse, accessory bard, greenhouse/nursery, 

commercial farm, fish farm/hatchery 

Airport 
Air support/maintenance facility, helipad/heliport/helispot, 

airport terminal 

Commercial Commercial, other commercial, bank, commercial garage 

Education Educational, school k-12, college/university 

Entertainment 

Museum, historic site/point-of-interest, fair/exhibition/rodeo 
grounds. 

auditorium/concert hall/theater/opera house, cultural, fitness 
facility, ice arena, public gathering, golf course 

Gas stations, rest areas Gas station, rest stop/roadside park, visitor/information center 

Healthcare 
Health clinic, veterinary hospital/clinic, ambulance service, 

outpatient clinic, hospital/medical center 

Hotel RV hookup, lodging b&b/hotel/motel/inn 

Industrial/utility 

Oil/gas facility, gravel pit/quarry/mine, industrial, lumber 
mill/saw mill, transfer station, manufacturing facility, 

commercial construction service, hazardous materials facility, 
communication box, communication tower, solar facility, utility 

pole w/phone, water tank, substation, pump station, public 
telephone, utility, hydroelectric facility, water tower, 

wastewater treatment plant, wind facility/wind tower, public 
water supply well, landfill, public water supply intake, 

hazardous storage facility, waste/biomass facility 

Mixed-use w/ residential 
Any combination of two uses in same building footprint, 

including at least one residential use 

Mixed-use w/out residential 
Any combination of two uses in same building footprint, 

including at least one residential use 

Office/institutional 
Government, office building, town office, city/town hall, town 

garage, state garage, state government facility 

Other Other, accessory building, unknown 

Park-and-ride Park-and-ride/commuter lot, bus station/dispatch facility 

Recreation 

Camp, campground, trailhead, shooting range, cemetery, 
boat ramp/dock, ski area/alpine resort, community/recreation 

facility, picnic area, state park, racetrack/dragstrip, sports 
arena/stadium, lookout tower, public beach, harbor/marina, 

youth camp 

Residential 

Commercial w/residence, single-family dwelling, multi-family 
dwelling, seasonal home, mobile home, condominium, other 
residential, residential farm, nursing home/long term care, 

institutional residence/dorm/barracks 

Retail Restaurant, grocery store, retail facility, brewery, pharmacy 

Services 

House of worship, fire station, national guard/armory, law 
enforcement, library, US government facility, courthouse, 

post office, day care facility, US forest facility, border 
crossing, morgue, state capitol, coast guard, border patrol, 

prison/correctional facility 

Train station Railroad station 

Warehouse 
Storage units, warehouse, food distribution center, private 

and express shipping facility 

Ignore 
Development site, access point, gated w/building, gated w/o 
building, abandoned, temporary structure, EBS tower, PSAP, 

emergency phone/callbox 



 

 

Data Filtering 

Once underlying geometry data were compiled, RSG’s nationwide LBS datastore was queried 

to obtain all location records for any device seen within the Vermont state boundary in each 

season of 2019. Data from 2019 was selected as a full year of data with seasonal affects was 

desired for the study outside of the influence of the COVID-19 pandemic. For each device seen 

within Vermont, this query obtained all records (both within and outside the state) to infer home 

locations for both Vermont residents and Vermont visitors. 

There is significant variation in quality across devices in the nationwide LBS sample. Some 

devices are seen only sporadically while others show anomalous behavior (e.g., impossibly fast 

travel times between locations records). Such devices are not useful for deriving travel behavior 

information and including them in later analysis would produce unreliable inferences. RSG uses 

a set of empirically derived inclusion criteria to isolate devices with data of sufficient quality to 

produce reliable travel behavior estimates. Specifically, devices are only included if: 

• The median speed between sightings over the full study period less than 91 feet per 

second.29 

• The average daily distance traveled is less than 2,400 miles (about the width of the 

United States). 

• Location records are present in at least 5% of all possible 30-minute time bins over the 

study time period (referred to as “data density”). 

• The device is observed in at least 10 unique 7-digit geohashes over the course of the 

study time period.30 

Data Processing 

After filtering out poor quality devices, location records for all remaining devices are processed 

on a device-by-device basis. For each device, a series of processing steps are used: 

Enrich location records. While raw LBS data contain limited information, the land use, POI, 

and transportation network data described above contain a wealth of contextual information that 

can improve the accuracy of data processing. The following pieces of contextual information 

were appended to each location record in the dataset: 

1. Distance from nearest transportation network link and classification of nearest link31 

2. Distance from nearest building footprint and land-use classification for nearest building 

footprint 

3. Boolean indicating whether location record was inside a POI polygon and, if true, the 

POI type 

 
29 The set of all sightings for any given device includes both stationary and moving sightings. Devices 
removed by this filter either periodically jump between locations at extreme speed or are rarely at rest. 
30 Geohashing is a method to encode geographic coordinates. A seven-digit geohash represents 
approximately a 153-meter by 153-meter square. 
31 Classification based on OSM facility types (motorway, trunk, primary, secondary, tertiary, residential 
street) 
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Identify stops. First, a smoothing algorithm is applied to calculate 5-minute average speed 

across all location records and records are classified as “stopped” if smoothed speed is below 3 

miles per hour. This smoothing algorithm helps identify true stopped sightings while not falsely 

classifying short stops (e.g., stops at traffic lights or stops due to congestion) as “stopped.” 

Identify anchor locations. Next, a spatial clustering algorithm32 is applied on all stopped 

sightings for each device. A weighting function is used so that location records within or near 

building footprint are more likely to produce clusters while location records near transportation 

network links are less likely to produce clusters. The resulting groups of stopped sightings 

represent anchor locations for the device; these are referred to as “clusters.” These clusters are 

tagged to the study region’s underlying geometry—in this case, census block groups within the 

state of Vermont. 

Identify visits. Once clusters are established for the device, a “dwell” (or visit) is formed each 

time a device is seen staying in the same cluster. The start of the visit is defined as the first 

location record within the cluster and the end of the visit defined by the last location record 

within the cluster. 

Classify anchor locations. A device’s home location is inferred using observed overnighting 

at anchor locations. A device’s work/habitual location is inferred by assessing the importance of 

each location using methods from graph theory.33 Inferred home locations are used to classify 

devices as resident devices (inferred home location inside Vermont) or visitor devices (inferred 

home location anywhere else). 

Identify trips. A “trip” is formed each time a device is seen moving from one cluster to 

another. Each trip is routed on the OSM transportation network using a shortest travel time 

algorithm. Long-distance trips and intermediate stops (e.g., a quick stop at a service station on a 

longer trip) are identified as part of this process. Finally, trip attributes are calculated, including 

trip purpose (e.g., home-based habitual trip), time of day (e.g., AM period), and routed trip 

distance. 

3.2 CUSTOM POST-PROCESSING 

While the pipeline described in Section 2.1 includes devices that meet empirically derived 

inclusion criteria suitable for most applications of passively collected data, generating reliable 

VMT estimates requires stricter device filtering. To support device-level VMT estimation, a 

custom post-processing pipeline was developed (Figure 8). First, a clustering algorithm was 

applied to identify the highest quality tier of processed devices to improve the reliability of VMT 

estimates and remove devices that likely represent non-passenger (e.g., commercial truck) 

travel. Next, device records were resampled to identify the most representative travel week 

within each time period. Finally, a mode choice estimation model was developed to identify trips 

that do not contribute to VMT (non-motorized trips, ferry trips, and flights). These steps are 

described in greater detail below. 

 
32 Specifically, density-based spatial clustering algorithm with noise (DBSCAN). 
33 PageRank calculated for a directed graph representing all the devices’ dwells. 



 

 

 

FIGURE 8. POST-PROCESSING WORKFLOW 

Developing Device Quality Tiers 

To further differentiate processed devices into quality tiers and device type (passenger versus 

commercial truck), several device quality metrics were calculated: 

• Data density: the number of 15-minute timebins with at least one location record divided 

by the total number of 15-minute timebins between the device’s first and last timestamp. 

• Average daily travel distance: total distance travelled by the device divided by the 

number of days with at least one location record. 

• Percentage of days that start and end at home: the percentage of days on which the 

device’s first and last location records were within the device’s home cluster divided by 

the number of days with at least one location record. 

• Typical location score: the mean value of the location frequency score for all four-digit 

geohashes visited by the device over the week, where the location frequency score for 

each four-digit geohash is the percentage of all days in which the device visited the four-

digit geohash.34 

• Average trip distance: the average great circle (as the bird flies) distance of all trips 

identified for the device. 

 
34 A four-digit geohash represents approximately a 24-mile by 12-mile rectangle. 



 

25 
 

 

• Average trip duration: the average duration of all trips identified for the device. 

• Percentage of truck visits: the percentage of visits identified for the device inside 

Vermont for which the nearest land use is associated with commercial truck activity (gas 

stations, industrial/utility land uses, rest areas, or warehouses) 

• Percentage of flights: the percentage of trips that were flagged as suspected flights. 

• Frequency of data anomalies: the average number of anomalous data events35 identified 

per day for the device. 

Next, a kmeans clustering algorithm was applied, using the quality metrics above to identify five 

device clusters. kmeans is an unsupervised machine learning technique which splits a dataset 

into n clusters (in this case, 5) by maximizing the differences in metrics between clusters and 

minimizing the differences in metrics within clusters. However, there is no guarantee that the 

groups identified will be labeled consistently across applications of the algorithm (i.e., in some 

cases the highest-quality devices may be labeled as group 1, in other cases the highest-quality 

devices may be labeled as group 4, and so on). To ensure comparability across the four 

seasons, a set of rules was developed to re-label kmeans-derived clusters into useful categories 

(three quality tiers, commercial trucks, and junk devices. These rules were: 

• Median data density and percentage of days that start and end at home scores were 

calculated for each cluster and clusters were sorted based on the average of these two 

scores. 

• The cluster with the highest percentage of truck visits was labeled as “commercial 

trucks”. 

• The cluster with the highest combined frequency of data anomalies and percentage of 

flights was labeled as “junk devices”. 

• The three remaining unlabeled clusters were labeled as Tier 1 (highest mean data 

density and percentage of days that start and end at home scores), Tier 2 (second- 

highest scores) and Tier 3 (lowest scores). 

Over the year, nearly 700,000 devices were seen in Vermont, over 145,000 of which were 

identified as Vermont resident devices. Nearly 50,000 of these devices were identified as 

commercial trucks or junk devices. Around 95,000 devices (including 26,651 Vermont residents) 

were placed in the quality Tier 1, with larger numbers of devices in Tiers 2 and 3 (Table 7). 

TABLE 7. PROCESSED DEVICE COUNTS, BY KMEANS-DERIVED GROUP 

 ALL DEVICES VERMONT RESIDENT DEVICES 
Group Winter Spring Summer Fall Year Winter Spring Summer Fall Year 
Tier 1 23,772  16,162  38,948  16,911  95,793  6,811  5,447  9,422  4,971  26,651  
Tier 2 51,893  35,460  65,497  42,092  194,942  13,901  10,567  13,150  9,449  47,067  
Tier 3 99,226  61,047  118,406  57,126  335,805  19,931  13,233  18,675  10,390  62,229  

Trucks 3,585  2,390  3,794  2,289  12,058  1,715  1,111  1,009  534  4,369  
Junk 7,881  7,109  12,105  4,928  32,023  1,786  1,553  2,154  950  6,443  

Total 186,357  122,168  238,750  123,346  670,621  44,144  31,911  44,410  26,294  146,759  

 
35 Anomalous data events including sequential location records that are more than 100 kilometers apart 
that travel greater than 1,000 kilometers per hour 



 

 

Given the scope of this project and in response to feedback from the Technical Advisory 

Committee received during the December 16th Technical Advisory Committee meeting, the 

commercial truck and junk devices were dropped from the dataset. Additionally, all non-Vermont 

residents were removed, leaving a dataset containing only Vermont residents grouped into three 

quality tiers (bolded and shaded groups in Table 7). 

Resampling Devices 

Previous studies examining the relationship between built environment factors and VMT have 

typically used travel survey data reporting only one day of travel, though a handful of studies 

have used longer time periods.36 While passively collected data offer much longer time frames 

of data collection, data quality can vary dramatically over time and can include periods of 

atypical travel, like vacations. For this study, the project team developed a technique to 

resample passively collected data to provide data like the travel survey data used in previous 

studies, including only the highest-quality and most representative week for each device in each 

season processed. 

To resample these data, a set of quality metrics were calculated over a 7-day rolling window 

over the length of each device’s record (that is, calculated for each consecutive 7-day period of 

device records). To the extent possible, these quality metrics were different than those used to 

identify device quality tiers. Importantly, these metrics also reference a third-party ground truth 

per capita VMT datasets: the Bureau of Transportation Statistics (BTS) Local Area 

Transportation Characteristics for Households (LATCH) estimates. LATCH estimates were 

developed using data form the 2017 National Household Travel Survey (NHTS) and supply 

tract-level suites of per capita VMT and person-miles travelled (PMT) across the United States, 

based largely on socioeconomic characteristics and household types in each tract.37 

Resampling was performed in two stages. First, device-weeks were included if they included all 

7 days (i.e., had at least one location record for each day of the week), included at least one 

trip, included at least 4 days inside Vermont, and had a data density of 0.33 or higher (at least 

252 15-minute timebins with at least one location record over the week). Next, a composite 

quality score was developed for each device-week using four quality indicators: 

• Data density: the number of 15-minute timebins in the past week with at least one 

location record divided by 762 (the maximum number of timebins in a week) 

• Typical location score: mean location frequency score for the week. 

• Deviation in trip rate relative to LATCH estimate: the absolute value of the difference 

between the daily trip rate over the past week and the LATCH estimate of daily trips for 

the tract identified as the device’s home location. 

 
36 For example, Mansfield, Ehrlich, Zmud, and Lee, Built environment influences on active travel in the 
Twin Cities region: evidence from a smartphone-based household travel survey, 2022 
37 https://www.bts.gov/sites/bts.dot.gov/files/docs/browse-statistical-products-and-
data/surveys/224076/latch2017methodology.pdf 
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• Deviation in observed miles travelled relative to LATCH estimate: the absolute value of 

the difference between the sum of trip distances over the past week and the LATCH 

estimate of PMT for the tract identified as the device’s home location. 

For each device, the week with the highest quality score was retained and all other weeks were 

discarded. Across the 4 seasons, a total of 135,947 devices were processed, and 29,943 

devices had at least one qualifying device-week (labeled “qualifying devices” in Table 8 below). 

Most Tier 1 devices (79%) had at least one week that met the inclusion criteria described above 

while relatively few Tier 2 and Tier 3 devices had qualifying weeks (8.3% and 8.5%, 

respectively; Table 8).  

TABLE 8. DEVICES WITH AT LEAST ONE QUALIFYING DEVICE-WEEK AFTER RESAMPLING 

 WINTER SPRING SUMMER FALL 

 Devices 
Qualifying 

devices 
Devices 

Qualifying 
devices 

Devices 
Qualifying 

devices 
Devices 

Qualifying 
devices 

Tier 1 6,811 4,416 5,447 4,525  9,422 7,350 4,971 3,929  
Tier 2 13,901 2,259 10,567 603  13,150 2,176 9,449 780  
Tier 3 19,931 608 13,233 1,228  18,675 1,181 10,390 888  

Total 40,643 7,283 29,247 6,356 41,247 10,707 24,810 5,597 

Mode Choice Estimation 

While LBS data contain information on all movements made by a device, not all movements 

contribute to VMT. Critically, trips inferred from LBS data contain flights, non-motorized trips, 

and trips made on public transportation modes such as ferries and buses. A multi-stage mode 

choice model was used to identify four transportation modes for this study: motorized, non- 

motorized, flights, and ferry trips. First, flights were identified directly using a combination of POI 

information and trip characteristics: 

• Trips with an origin and destination in an airport POI 

• Trips with on origin or a destination in an airport POI and a speed greater than 125 mph 

• Trips longer than 340 miles with a speed greater than 125 mph 

Similarly, ferry trips were identified if a device had a trip with more than 25% of its location 

records located in Lake Champlain. 

To identify non-motorized trips, a logit regression model was fitted to Vermont trip data present 

in the 2017 NHTS (n=2,620 trips) predicting the likelihood of a non-motorized trip (walking or 

bicycling) based on trip attributes that could be calculated for trips in the passively collected 

data. Prior to estimating the model, flights and ferry trips—trips for which mode was estimated 

using other data sources—were removed: 

𝜋𝑖 = 𝛽0 + 𝜷𝜲𝑖 + 𝜀           

where 𝜋𝑖 is the probability that trip 𝑖 used a non-motorized mode (walking or biking), 𝜲𝑖 

is a vector of trip variables for individual 𝑖 with regression coefficients 𝜷, and 𝜀 is an error term. 

This regression model revealed largely expected relationship: A 1-mph increase in trip speed is 

significantly associated with a 6% decrease in the likelihood that a trip was non-motorized while 

a 1-unit increase in population density was associated with a 0.01% increase in likelihood (or a 

1% increase in likelihood per 100-unit increase in population density). Weekend trips were 47% 



 

 

more likely to be nonmotorized (Table 9). Trip distance was also borderline significant in the 

expected direction and was retained in the model to improve the application of the model to LBS 

trips. 

TABLE 9. NONMOTORIZED REGRESSION MODEL RESULTS 

TRIP VARIABLE ODDS RATIO T-STAT 

Trip length (miles) 0.94 -1.56 
Trip speed (mph) 0.79 -13.44*** 

Trip OD population density (persons/mi2) 1.0001 4.36*** 
Trip on weekend 1.47 2.25* 

Intercept 0.367 2.91** 

AIC 1,292.4  
Pseudo-R2 0.39  

***p<0.001  **p<0.01  *p<0.05   

To identify non-motorized trips in the LBS data, coefficients from the NHTS model were applied 

to calculate the non-motorized likelihood of each trip, after removing flights and ferry trips. For 

each season, all LBS trips were then ordered based on the calculated likelihood, forcing the 

likelihood to equal zero if the trip distance was greater than 25 miles (the longest non-motorized 

trip length reported in the NHTS). Then, the top n ordered trips in each were labelled as non- 

motorized so that the percentage of non-motorized trips in the LBS data matched the 

percentage non-motorized in the NHTS. In general, trip metrics differed as expected based on 

imputed mode, with the shortest mean distance and slowest mean speed for nonmotorized trips 

and the highest mean distance and speed for flights (Table 10). 

TABLE 10. TRIP SUMMARY BY MODE 

 MOTORIZED NON-MOTORIZED FLIGHTS FERRY TRIPS 

Mean trip length (miles) 7.80 0.89 286 8.34 
Mean trip speed (mph) 18.0 1.23 139 11.8 

Number of trips 665,768 89,989 159 2,927 

 

3.3 DEVICE WEIGHTING 

LBS data contain only a sample of all persons in the population and, even after isolating the 

highest quality available week for each device, may contain incomplete information on device 

travel. A two-state weighting process was applied to scale observed VMT in the sample of LBS 

devices for each season to the expected population-level VMT across the state of Vermont: a 

demographic expansion to scale the sample of LBS devices to represent the population and a 

temporal adjustment applied to account for travel that may have been missed when a device 

was not providing data. 

First, the sample rate for LBS devices was calculated at the blockgroup level by dividing the 

number of devices with a home location in each blockgroup by the 2019 American Community 

Survey (ACS) population of adults38. A demographic weight (i.e., the number of devices 

represented by the device) was then calculated for each device by taking the inverse of the 

sample rate. A demographically expanded population-level VMT was then calculated at the tract 

level: 

 
38 LBS data obtained from our supplier do not contain data for children under the age of 18 
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 𝑉𝑀𝑇_𝑙𝑏𝑠𝑡 = ∑ 𝑣𝑚𝑡𝑖,𝑡 𝑊𝑡 

 where 𝑉𝑀𝑇_𝑙𝑏𝑠𝑡 is the LBS-estimated VMT for tract 𝑡, 𝑣𝑚𝑡𝑖,𝑡 is the estimated VMT for 

device 𝑖 in tract 𝑡, and 𝑊𝑡 is the demographic expansion factor for tract 𝑡. 

Next, the daytime data density (i.e., data density calculated only during daytime hours when we 

would expect most trip making to occur) was calculated for each device. The difference between 

tract-level VMT estimates and expected values derived from LATCH estimates was the 

calculated, providing an estimate of “missing” VMT in the LBS estimates before any temporal 

adjustments:  

 𝑉𝑀𝑇_𝑟𝑒𝑠𝑡 = 𝑉𝑀𝑇_𝑙𝑎𝑡𝑐ℎ𝑡 − 𝑉𝑀𝑇_𝑙𝑏𝑠𝑡 

 where 𝑉𝑀𝑇_𝑟𝑒𝑠𝑡 is the error in LBS-estimated VMT relative to the LATCH VMT estimate 

for the tract, 𝑉𝑀𝑇_𝑙𝑎𝑡𝑐ℎ𝑡. Finally, missing VMT for each tract was assigned to devices 

proportionally based on the number of missing daytime timebins, in the form of a temporal 

adjustment factor: 

 𝑣𝑚𝑡_𝑎𝑑𝑗𝑖,𝑡 = 𝑣𝑚𝑡𝑖,𝑡 ∙
(1−𝑑𝑖,𝑡)∙𝑉𝑀𝑇_𝑟𝑒𝑠𝑡

∑ 1−𝑑𝑖,𝑡
 

 where 𝑣𝑚𝑡_𝑎𝑑𝑗𝑖,𝑡 is the adjusted VMT for device 𝑖 in tract 𝑡 and  𝑑𝑖,𝑡 data density for 

device 𝑖 in tract 𝑡. 

After this two-stage weighting process, each device has two distinct expansion factors: a 

demographic expansion factor that represents how many persons are represented by the device 

and an adjusted VMT estimate (𝑣𝑚𝑡_𝑎𝑑𝑗𝑖,𝑡) that accounts for “missing VMT” relative to LATCH 

estimates, accounting for difference in sampling across blockgroups. The difference in these 

two factors is important for Task 4: while the demographic factor may be useful as a weight in 

regression modeling, the temporal adjustment is critical in grounding LBS-based estimates of 

VMT to a third-party dataset and ensuring models estimated using these data fully account for 

expected VMT across the state. 

3.4 RESULTS 

The data processing steps described in Section 3.2 produced a dataset consisting of devices, 

trips made by these devices over the course of a week, and an adjusted estimate of weekly 

VMT. These data are described below. 

VMT Dataset Summaries 

The resampled dataset contains over 750,000 trips made by nearly 30,000 devices across the 

year (Table 11). This sample is orders of magnitude larger than survey data available in 

Vermont, including the 2017 NHTS, and much larger than most samples used to produce the 

studies summarized in Task 1. While very larger, the sample does exhibit expected bias 

towards more urban areas, resulting in higher sample rates in these areas and lower sample 

rates in more rural regions of the state (Figure 9). However, these biases can be addressed in 

the Task 4 model through the careful application of the demographic weights developed as 

described in Section 2.3. 



 

 

TABLE 11. DEVICE AND TRIP COUNTS IN RESAMPLED DATASET 

 
TIER 1 TIER 2 TIER 3 TOTAL  

Trips Devices Trips Devices Trips Devices Trips Devices 
Winter 97,987 97,987 20,695 780 36,155 888 154,837 5,597 
Spring 115,679 4,525 18,010 603 47,776 1,228 181,465 6,356 

Summer 173,825 7,350 53,782 2,176 33,129 1,181 260,736 10,707 
Fall 94,010 4,416 51,156 2,259 16,815 608 161,981 7,283 

Full Year 481,501 20,220 143,643 5,818 133,875 3,905 759,019 29,943 

 

  

FIGURE 9. DISTRIBUTION OF DEVICE HOME LOCATIONS (LEFT) AND SAMPLING RATE (RIGHT) 
ACROSS VERMONT 

A similar spatial distribution is present for trips origins. Interestingly, while trip counts are 

substantially higher in urban parts of Vermont, median trip distance in more urban areas is 

much lower than in rural areas (Figure 10). This finding harkens back to some of the Task 1 

findings—namely, that neighborhoods with higher “five D” variables produce less driving, but not 

necessarily fewer trips, because trip distances may be shorter and non-motorized modes may 

be better supported. In fact, higher shares of non-motorized trips are estimated in more urban 

areas of the state and near large recreational areas, including trails and ski slopes (Figure 11). 
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FIGURE 10. DISTRIBUTION OF TRIP ORIGINS (LEFT) AND MEDIAN TRIP DISTANCES (LEFT) 

 

 

 

FIGURE 11. DISTRIBUTION OF NON-MOTORIZED MODE SHARE 



 

 

Data Validation 

An important data validation exercise for LBS-derived trip data is to check for expected weekday 

AM and PM peaking (and lack of peaking on weekends) in trip time-of-day profiles. Trip time-of- 

day distributions for Tier 1 devices show strong AM and PM peaking, as expected, while 

weekend trips rise slowly over the day (Figure 12). Further, AM peaking is especially prominent 

for home-based work trips, and home-based other trips dominate the weekend distribution. 

While the trip time-of-day distributions for Tier 2/3 devices have similar characteristics, peaking 

is slightly less prominent and a higher number of trips start very early in the morning, reflecting 

slightly lower quality data for the Tier 2/3 devices (Figure 13). 

  
FIGURE 12. TIER 1 TRIP TIME-OF-DAY PLOTS BY TRIP PURPOSE FOR WEEKDAY (LEFT) AND 
WEEKEND (RIGHT) 
 

  
FIGURE 13. TIER 2/3 TRIP TIME-OF-DAY PLOTS BY TRIP PURPOSE FOR WEEKDAY (LEFT) AND 
WEEKEND (RIGHT) 
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As an additional validation step, tract-level VMT estimates derived from LBS data were 

compared to LATCH estimates. At the tract level, aggregate VMT from these two data sources 

are well aligned, with an R2 value near 0.90 (Figure 14). Given this project’s focus on VMT, this 

validation is particularly important and demonstrates that the methods described in this memo 

have produced VMT estimates from LBS data. 

 

FIGURE 14. COMPARISON OF TRACT-LEVEL VMT DERIVED FROM LBS DATA (HORIZONTAL 
AXIS) AND LATCH ESTIMATES (VERTICAL AXIS) 

The combination of RSG’s standard LBS data processing approach and a custom-developed 

post-processing pipeline generated a high-quality, LBS-derived dataset containing over 750,000 

trips from nearly 30,000 devices seen throughout 2019. Broadly, these data are aligned with the 

findings from Chapter 1: areas of the states with higher “5 d” variables tend to have lower 

average per capita VMT.  

The development of the Vermont VMT model described in the next chapter will dig deeper into 

these relationships by joining the device-level VMT estimates described here to built 

environment measures developed in Task 2 modeling the relationships between built 

environment factors and VMT in Vermont. 



 

 

4.0 DEVELOPING A VMT MODEL FOR VERMONT 

This Chapter describes how the data developed during previous phases of this project were 

integrated to create a model that predicts how land use and built environment choices in 

Vermont will impact VMT. First, 2019 estimates derived from location-based services (LBS) 

data, as described in Chapter 2, were joined to the spatial database of built environment 

measures, as described in Chapter 2, using underlying hex cell geometry as described in 

Section 2.6. Next, exploratory analysis informed the development of additional built 

environment variables, including summaries of many “5d” variables in buffers of varying sizes 

around each hex cell across the state. Next, a structured variable selection process was 

employed to reduce the 200+ possible predictor variables in the built environment database to a 

more parsimonious set of variables for the regression model. Finally, the regression model was 

used to generate a 2019 VMT estimate, which could then be compared to other 2019 VMT 

estimates to validate the model for estimating VMT based on built environment measures. Each 

of these steps are described in greater detail below. 

4.1 DATA PREPARATION 

A foundational step in developing the regression model was to join LBS-derived VMT estimates 

to built environment measures. The built environment database described in Section 2.7 used 

hex cells covering the state as a base geometry. To join VMT estimates to these data, the hex 

cell containing devices’ imputed home location was determined and built environment measures 

for that hex cell were joined to the VMT dataset. This resulted in a VMT dataset where each 

observation represents the LBS-derived VMT for a device (the outcome variable in the VMT 

model), with built environment variables describing the hex cell containing that device’s home 

location joined to these VMT estimates. 

Initial exploratory analysis revealed expected relationships between LBS-derived VMT and built 

environment factors: as density and land-use diversity increased, VMT tended to decrease 

(Table 12). 

 

TABLE 12. RELATIONSHIP OF BUILT ENVIRONMENT VARIABLES AND OF LBS-DERIVED VMT 

LBS VMT QUINTILE 
LBS-DERIVED WEEKLY 

VMT (MEAN) 
POP. DENSITY 

(MEAN) 
EMPLOYMENT 

DENSITY (MEAN) 
LAND-USE MIX 

(MEAN) 
1 (lowest 20%) 36.4 1,383 1,118 0.85 

2 92.3 754 552 0.77 
3 122.1 406 260 0.66 
4 145.7 304 175 0.60 

5 (highest 20%) 247.8 295 182 0.58 

However, this exploratory analysis revealed a shortcoming in the built environment database: 

density and diversity variables were calculated for each cell, which represent a very small 

spatial area. Commonly, built environment variables are calculated across larger spatial areas 

to better represent neighborhood-level effects of the built environment on travel behavior. To 

better capture such effects, a grid-and-buffer method was applied. First, population and 

employment density (by employment type) were calculated within each grid cell. Next, for each 
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grid cell, all other grid cells within an x-mile buffer of that grid cell were identified, and average 

population and employment density were calculated across all identified grid cells. The resulting 

value was assigned to the grid cell used as the center of the buffer. This process was repeated 

for all grid cells in the state, using buffer sizes ranging from ¼ mile to 3 miles (Table 13). As 

illustrated below, the size of the grid cell has a significant impact on the distribution of density 

values, with smaller buffer sizes tending to generate “spikier” distributions and larger buffer 

sizes tending to generate smoother distributions (Figure 15).  

  

FIGURE 15. IMPACT OF BUFFER SIZE ON DENSITY VARIABLES 

Exploratory analysis also revealed that the VMT variable and several predictor variables were 

not normally distributed in the sample, a common problem in regression analysis. As needed, 

log transformations were applied to these variables. Log-transformation of the outcome (VMT) 

variable improved model performance, so the regression models described below use log- 

transformed VMT as the outcome variable. 

4.2 VARIABLE SELECTION 

The joined dataset described above contained many possible predictive variables, and many of 

these variables were correlated with one another (e.g., high population density may be 

correlated with higher intersection density). To reduce this large set of possible predictive 

variables to a smaller set, a structured variable selection process was employed. First, an initial 

stepwise regression was performed using all non-buffered variables in the built environment 

database. Buffer variables were then assessed independently, and the highest-performing 

buffer variables were introduced to the model resulting from the initial stepwise regression and 



 

 

final variable selection was performed, once again using a stepwise regression approach. 

These steps are detailed below.  

Initial Stepwise Regression 

A linear regression model was specified, using log-transformed VMT as the outcome variable 

and all variables in the built environment database as possible predictor variables. Stepwise 

linear regression was performed using the caret package in R. Variables were retained if they 

met three criteria: 1) were identified by the TAC as variables that could respond to available 

policy levers (e.g., land use and transportation system variables) or controlled for important non- 

modifiable influences of travel behavior (e.g., household income), 2) improved the model’s 

Akaike information criterion (AIC) value, and 3) had a sign in the expected direction, based on 

the Task 1 literature review (e.g., increased transit service should reduce VMT, and have a 

negative sign). This initial variable selection process yielded five significant variables with signs 

in the expected direction: 

• Median household income  

• OSM-derived sidewalk density 

• Intersection density with auto-oriented intersections removed (variable D3B in the Smart 

Location Database) 

• Transit service density (variable D4C in the Smart Location Database; log-transformed) 

• Job accessibility within a 45-minute drive (variable D5AR in the Smart Location 

Database) 

Buffer Variable Selection 

The buffer variables calculated as described above present their own challenges in variable 

selection: within each type of buffer variable, different buffer sizes are highly correlated. For 

example, population density calculated using a 1-mile buffer is highly correlated with population 

density calculated using a 2-mile buffer, and so on. Because of this high degree of correlation, it 

was important to identify the set of buffer variables that most improved model fit before 

performing a final variable selection process.  

To do so, a series of models was estimated, each using the five variables listed above and one 

of the buffer variables. Within each category of buffer variables (e.g., population density 

buffers), the model AIC was calculated, and the two-highest performing variables were 

identified.39 Interestingly, across all categories of buffer variables, the highest performing 

models used buffer sizes between 1 and 3 miles and used a log transformation (Table 13). 

  

 
39 While the absolute value of the AIC does not indicate anything about model performance directly, the 
AIC can be used to test two variations of the same model (for example, one with an extra variable) and 
smaller AIC values indicate better model performance. 
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TABLE 13. EFFECT OF BUFFER SIZE ON VMT MODEL PERFORMANCE. TOP-TWO BUFFER 
VARIABLES IN EACH CATEGORY ARE BOLDED AND SHADED 

BUFFER 
SIZE 

POP. 
DENSITY 

EMPLOYMENT 
DENSITY 

RETAIL 
DENSITY 

OFFICE 
DENSITY 

INDUSTRIAL 
DENSITY 

SERVICE 
DENSITY 

ENTERTAIN. 
DENSITY 

¼ mile 47,917 48,046 48,047 48,046 48,027  47,999   48,044  
½ mile 47,849 48,027 48,055 48,044 48,019  47,978   48,044  
¾ mile 47,840 47,988 48,054 48,054 47,999  47,954   48,053  
1 mile 47,847 47,923 47,956 48,038 47,962  47,951   48,047  
2 miles 47,929 47,953 47,928 47,984 47,906  47,989   48,016  
3 miles 48,032 48,024 47,995 48,034 48,010  48,033   48,048  

¼ mile* 47,600 47,597 47,822 47,870 47,833  47,588   47,797  
½ mile* 47,540 47,528 47,691 47,771 47,753  47,527   47,624  
¾ mile* 47,487 47,460 47,590 47,641 47,681  47,465   47,521  
1 mile* 47,426 47,383 47,479 47,491 47,598  47,395   47,394  
2 miles* 47,380 47,302 47,356 47,402 47,501  47,310   47,297  
3 miles* 47,522 47,376 47,362 47,464 47,576  47,386   47,409  
* log-transformed 

Final Stepwise Regression 

Final variable selection was performed by combining the set of variables from the initial 

stepwise regression process with the set of highest-performing buffer variables (i.e., the bolded 

and shaded variables in Table 13). A second stepwise regression was performed, again 

retaining variables if they improved the model’s AIC and had a sign in the expected direction. 

This final variable selection process yielded eight significant variables: 

• Median household income  

• OSM-derived sidewalk density 

• Intersection density with auto-oriented intersections removed (variable D3B in the Smart 

Location Database) 

• Transit service density (variable D4C in the Smart Location Database; log-transformed) 

• Population density in 2-mile buffer (log-transformed) 

• Retail job in 3-mile buffer (log-transformed) 

• Office job density in 2-mile buffer (log-transformed) 

• Land-use mix in 3-mile buffer 

4.3 REGRESSION MODEL 

The final regression model performed quite well, with highly significant coefficients for each 

predictive variable and a coefficient of determination (r2) of roughly 0.25. In simple terms, this 

means that the variables in the model are explaining roughly 25% of the observed variation in 

VMT in the sample which, considering the lack of demographic attributes in the LBS data 

sample and the complexity of travel behavior, is a strong result (Table 14). 

  



 

 

TABLE 14. VMT MODEL RESULTS 

BUILT ENVIRONMENT 
VARIABLE 

COEFFICIENT T-STAT 

Median household income 0.003 15.91*** 
OSM-derived sidewalk density -0.050 -20.18*** 

Intersection density -0.001 -7.07*** 
Transit service density -0.020 -2.36* 

Population density in 2-mile buffer a -0.048 -5.07*** 
Retail job in 3-mile buffer a -0.027 -3.54*** 

Office job density in 2-mile buffer a -0.038 -6.24*** 
Land-use mix in 3-mile buffer -0.048 -2.36* 

Intercept 5.016 146.23*** 
***p<0.001  **p<0.01  *p<0.05 AIC 50,145.6 
a log-transformed Adjusted-R2 0.25 

As expected, increases in population density, retail job density, office job density, and land-use 

mix are associated with reduced VMT. Increases in intersection density, transit accessibility, 

and sidewalk density are also associated with VMT reductions. Conversely, census block group 

median household income is associated with increased VMT. 

Because the outcome variable and several predictor variables are log-transformed in this model, 

interpreting the coefficients in Table 14 can be difficult. To better illustrate the effects of each 

variable, the marginal effect of a change in each variable on VMT was calculated (Table 15). To 

interpret these results, the marginal effect represents the average change in predicted VMT 

across the sample if the built environment variable were to be changed by the amount in the 

“unit change” column. For example, if population density was increased by 100 persons/mi2 

uniformly across all observations, the model would predict a 10.6 mile, or roughly 7%, reduction 

in per capita VMT. 

TABLE 15. VMT MODEL MARGINAL EFFECTS 

BUILT ENVIRONMENT 
VARIABLE 

UNIT CHANGE IN BUILT ENVIRONMENT 
MEASURE 

MARGINAL EFFECT 
ON WEEKLY VMT 

Median household income $10,000 increase in median income +4.7 (+3%) 
OSM-derived sidewalk density 1 unit increase in sidewalk density -7.2 (-5%) 

Intersection density 50-unit increase in intersection density -8.4 (-6%) 
Transit service density 5-unit increase in transit service density -4.7 (-3%) 

Population density in 2-mile buffer a 100 persons/mi2 increase in population density -10.6 (-7%) 
Retail job in 3-mile buffer a 100 jobs/mi2 increase in job density -15.3 (-10%) 

Office job density in 2-mile buffer a 100 jobs /mi2 increase in job density -21.4 (-15%) 
Land-use mix in 3-mile buffer 0.10 increase in land-use mix -0.7 (-0.5%) 

4.4 MODEL VALIDATION AND APPLICATION 

To validate the model, VMT was predicted for each observation in the sample, aggregated to 

census tracts, and compared to both LBS-derived VMT estimates and estimates from the 

Bureau of Transportation Statistics Local-Area Transportation Characteristics (LATCH) dataset. 

Model predictions match observed data very well, with an r2 value over 0.80. Model predictions 

are not as well aligned with LATCH estimates, with an r2 value approaching 0.65 (Figure 16).  
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FIGURE 16. VMT MODEL PREDICTIONS VERSUS LBS OBSERVATIONS (LEFT) AND LATCH 
ESTIMATES (RIGHT) 

However, the model does reliably tend to predict low VMT in places with low LATCH VMT 

estimates: for the lowest LATCH VMT quintile in the state, the model predicts an average 

weekly VMT of 81.2 miles compared to 93.7 miles in the LATCH data; in the highest LATCH 

VMT quintile, the model predicts an average weekly VMT of 141.5 miles compared to 169.2 

miles in the LATCH data (Table 16). It is likely that the discrepancy between model predictions 

and LATCH estimates are due in large part to the lack of demographic information for LBS-

derived data. 

TABLE 16. COMPARISON OF MODEL PREDICTIONS TO LATCH ESTIMATES, BY LATCH VMT 
QUINTILE 

LATCH VMT QUINTILE MEAN WEEKLY VMT, LATCH MEAN WEEKLY VMT, MODEL 

1 (lowest 20%) 93.7 81.2 
2 138.0 115.9 
3 148.9 127.7 
4 159.3 133.0 

5 (highest 20%) 169.2 141.5 

 

Finally, to apply the model across the state, 2019 Vermont population was distributed to hex 

cells using the E911 point and parcel datasets, which were joined as described in Task 3 memo. 

2019 Census block group data were first used to calculate average household size for each 

census block, and households were allocated to hex cells based on the number of single-family 

residential parcels in each cell. Any remaining households were distributed evenly across all 

multi-family parcels in each cell. Finally, the number of households in each cell was multiplied 

by the block group average household size to obtain the number of persons residing in each cell 

across the state. To generate aggregate VMT estimates, the VMT model was used to generate 

a prediction for each resident of Vermont, using the built environment variables for the cell that 

person was allocated to as predictor variables in the model (Figure 17). 



 

 

  

FIGURE 17. VERMONT RESIDENTS ALLOCATED TO CELLS (LEFT) AND VMT MODEL 
PREDICTIONS (RIGHT) 

Overall, the VMT model provides intuitive results: denser regions across the state tend to have 

lower per capita VMT, with these areas with lower per capita VMT sprinkled evenly across the 

state. Interestingly, while some of the lowest per capita VMT predictions occur in and near 

Burlington, some of the highest per capita VMT predictions occur in communities that circle 

Burlington. This raises an interesting question that can be explored as scenarios are developed 

in future tasks: is it more effective to focus on areas with already low VMT, or is it more effective 

to encourage dense development in areas near low-VMT areas, but that currently have high 

predicted VMT? The future development scenarios described in the next chapter are designed 

in part to shed light on such questions. 
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5.0 VERMONT FUTURE GROWTH SCENARIOS 

This chapter describes the methods used to develop future growth scenarios for Vermont, apply 

the VMT model described in Chapter 4 to these scenarios, and estimate for each scenario the 

benefits of the predicted change to VMT changes. This chapter is accompanied by an 

interactive online dashboard which allows readers to explore scenarios at greater depth.40 

5.1 SCENARIO NARRATIVES 

In coordination with the project TAC, the project team first developed a series of narratives to 

describe five possible patterns of future development of the built environment in Vermont. These 

narratives are provided below: 

• Dispersed growth: In this scenario, low-density residential development occurs across all 

developable land, ignoring existing community designations and wastewater service 

areas. From a smart growth perspective, this represents a “worst case” scenario. 

• Concentrated growth, concentrated jobs: In this scenario, future residential and 

employment growth is concentrated in already dense neighborhoods. Growth “overflows” 

to less dense neighborhoods when density exceeds a maximum density threshold.  

• Concentrated growth, dispersed jobs: Like above, future residential growth is 

concentrated in already dense areas of the state. However, employment growth in 

allocated to lower density areas (i.e., greenfield development of employment centers). 

• Concentrated growth, balanced land use: In this scenario, future development is focused 

on copying places in Vermont that exemplify smart growth principles today. Growth is 

allocated so that future development mirrors the lowest VMT neighborhoods in Vermont 

today (prototype smart growth neighborhoods). 

• Concentrated growth, unbalanced land use: This scenario allocates residential growth as 

described above. Employment growth, on the other hand, occurs in locations near 

established cores, but not in locations with high population density.  

5.2 DEVELOPING FUTURE SCENARIOS 

The narratives described in the previous section were used to develop a series of “allocation 

rules” for each scenario that assign projected population and employment growth to specific 

areas of Vermont based on the patterns of future development in each scenario. The allocations 

of population and employment are distributed across the 31,739 grid cells covering the state as 

described in Chapter 3. Growth projections are described below, followed by descriptions of 

these allocation rules. 

 
40 Dashboard tool link: https://rsginc.shinyapps.io/VTrans_Smart_Growth/ 

https://rsginc.shinyapps.io/VTrans_Smart_Growth/


 

 

Growth Projections 

Rather than develop population growth projections specifically for this project, we adopted 

population growth projections assumed in the LEAP developed in support of the Pathways 

report.41 The LEAP model offers two projections—a ‘low-growth’ and a ‘high-growth’ projection. 

Each projection estimates county-level population totals from 2019 through 2050. Because the 

projections in the LEAP model pre-dated the 2020 Census., we adjusted these  projections by 

re-indexing the projections to the 2020 Census values, maintaining growth rates through 2050 

(Table 17). 

TABLE 17. LEAP GROWTH PROJECTIONS 

COUNTY PROJECTION 2020 2035 2050 

Addison Low growth, unadjusted 36,777 38,929 39,618 

 Low growth, adjusted 37,363 39,515 41,633 

 High growth, adjusted 37,363 40,761 45,319 

Bennington Low growth, unadjusted 35,470 36,706 37,099 

 Low growth, adjusted 37,347 38,583 39,777 

 High growth, adjusted 37,347 39,786 43,332 

Caledonia Low growth, unadjusted 29,993 28,010 27,410 

 Low growth, adjusted 30,233 28,250 26,499 

 High growth, adjusted 30,233 29,267 29,505 

Chittenden Low growth, unadjusted 163,774 178,433 183,193 

 Low growth, adjusted 168,323 182,982 197,782 

 High growth, adjusted 168,323 188,536 214,195 

Essex Low growth, unadjusted 6,163 5,385 5,157 

 Low growth, adjusted 5,920 5,142 4,494 

 High growth, adjusted 5,920 5,351 5,112 

Franklin Low growth, unadjusted 49,402 50,887 51,357 

 Low growth, adjusted 49,946 51,431 52,859 

 High growth, adjusted 49,946 53,106 57,810 

Grand Isle Low growth, unadjusted 7,235 7,751 7,917 

 Low growth, adjusted 7,293 7,809 8,322 

 High growth, adjusted 7,293 8,054 9,047 

Lamoille Low growth, unadjusted 25,362 26,700 27,128 

 Low growth, adjusted 25,945 27,283 28,594 

 High growth, adjusted 25,945 28,143 31,136 

Orange Low growth, unadjusted 28,892 30,977 31,649 

 Low growth, adjusted 29,277 31,362 33,438 

 High growth, adjusted 29,277 32,342 36,334 

Orleans Low growth, unadjusted 27,037 26,132 25,853 

 Low growth, adjusted 27,393 26,488 25,664 

 High growth, adjusted 27,393 27,405 28,373 

Rutland Low growth, unadjusted 58,191 54,526 53,415 

 Low growth, adjusted 60,572 56,907 53,661 

 High growth, adjusted 60,572 58,881 59,493 

Washington Low growth, unadjusted 58,409 55,797 53,524 

 Low growth, adjusted 59,807 56,059 52,742 

 High growth, adjusted 59,807 58,040 58,596 

Windham Low growth, unadjusted 42,222 41,107 40,119 

 
41 https://climatechange.vermont.gov/sites/climatecouncilsandbox/files/2022-
03/Pathways%20Analysis%20Report_Version%202.0.pdf 
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 Low growth, adjusted 45,905 44,296 42,838 

 High growth, adjusted 45,905 45,728 47,069 

Windsor Low growth, unadjusted 55,062 53,863 52,795 

 Low growth, adjusted 57,753 56,020 54,440 

 High growth, adjusted 57,753 57,887 59,958 

Statewide Low growth, unadjusted 623,989 629,845 636,234 

 Low growth, adjusted 643,077 652,127 662,744 

 High growth, adjusted 643,077 673,286 725,279 

Prototype Smart Growth Neighborhoods 

The concentrated growth, balanced land use and concentrated growth, unbalanced land use 

scenarios are based on the concept of prototype smart growth neighborhoods. These prototype 

neighborhoods represent places in Vermont that embody smart growth principles today. 

Prototype neighborhoods were identified by first grouping counties into four typologies (Table 

18). Within each of these typologies, cells were sorted by baseline per capita VMT and, 

depending on the value of the smart growth prototype percentile parameter, average built 

environment measures were calculated for cells in the top X% of this distribution. These values 

were then used to define the characteristics for prototype neighborhoods within each typology. 

TABLE 18. COUNTY GROUPINGS FOR IDENTIFYING PROTOTYPE SMART GROWTH 
NEIGHBORHOODS 

COUNTY TYPOLOGY COUNTIES 

Urban Chittenden 

Medium centers Rutland, Washington, Windsor 

Small centers 
Addison, Bennington, Caledonia, Franklin, 

Lamoille, Orleans, Windham 

Rural Essex, Grand Isle, Orange 

Allocation Rules 

To estimate VMT for each future scenario, the scenario narratives developed in conjunction with 

the TAC needed to be transformed into a framework for allocating growth to certain locations in 

each county. To do so, we developed an allocation framework for each scenario narrative. 

Broadly, an allocation framework consists of four components:  

• Growth cells: a list of cells within each county that are eligible to grow in the future. 

Depending on the scenario narrative, this list of cells can be restrictive (e.g., cells that 

currently have wastewater service) or unconstrained (e.g., cells with developable land) 

• Allocation parameters: variables that impact how growth is allocated to cells. For 

example, the maximum population density parameter used in the concentrated growth, 

concentrated jobs scenario controls how dense cells are allowed to become when 

allocating growth. Multiple values are tested for each parameter to provide a range of 

possible futures for each scenario narrative. 

• Ruleset for growing counties: for counties that are projected to gain population, a 

series of discrete steps are used to allocate growth projections to cells across the 

county. These rulesets are designed so that the distribution of population and 

employment in future scenarios is consistent with the scenario narrative. 



 

 

• Ruleset for shrinking counties: several counties are projected to lose population in 

the LEAP growth projections. For these counties, a series of discrete steps are used to 

allocate growth projections to cells across the county. These rulesets are designed so 

that shrinking counties preserve population and employment in a manner consistent 

with each scenario narrative. 

While the LEAP growth projections contain only population projections, employment projections 

are also needed to develop future scenarios. To calculate employment growth for each county, 

the population-to-employment ratio for each county is calculated for the base year. This ratio is 

applied to population growth projections in subsequent years to estimate employment growth 

projections. These aggregate employment totals are used for scenario allocations. At the end of 

each allocation process, employment allocation was assigned to industry sectors (retail, 

office/institutional, services, entertainment, or other) using the baseline ratio of these sectors in 

each cell.  

Scenario Rulesets 

Rulesets developed for each growth scenario are provided in a synopsis below and in detail in 

the Appendix C. Each of these rulesets is accompanied by Python code that generates 

allocations given baseline distribution of population and employment and county-level growth 

control totals (Table 17). 

Ruleset 1: Dispersed Growth 

For the ruleset for the dispersed growth scenario, all cells with non-protected land are eligible to 

receive future growth. The scenario employed a planning regulation density cap based on the 

population density above which planning regulations are required. For growing counties, 

population and employment growth was allocated up to the planning regulation density cap, 

prioritizing the least dense cells in the county to receive growth first and allocating with that 

priority until growth was exhausted or until all the cells had received growth up to their cap. In 

the latter case, remaining growth was split across all cells. For shrinking counties, population 

and employment was deallocated from cells. Starting with the densest cells, the difference 

between the baseline and planning regulation density cap was removed from the densest cell 

then the next densest cell and so on until the targeted total was deallocated or until removal 

from all cells had occurred. In the latter case, the remaining deallocation was split evenly across 

all cells.  

Ruleset 2: Concentrated growth, concentrated jobs 

For the ruleset for the concentrated growth, concentrated jobs scenario, all cells that have 

wastewater service in the baseline year (2019) were eligible to receive future growth. For this 

scenario, maximum allowed density and a jobs-population mix ratio were the parameters 

controlling the allocation. For growing counties, the amount of population allocated to the 

densest cells first was calculated as the new population the cell could receive before exceeding 

the maximum allowed density. Moving to the next densest cell and so on, the population was 

allocated until the county allocation was exhausted or all possible growth cells had received 

growth, with any remaining split evenly among the eligible cells. Employment was allocated 

using the same process, with the jobs-population mix ratio determining the number of jobs 
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allocated to the growth cell. For shrinking counties, removal of population and employment was 

prioritized for the least dense, non-growth cells up to the target deallocation or until removal 

from all non-growth cells was achieved, in which case the remaining deallocation was split 

evenly across the non-growth cells. 

Ruleset 3: Concentrated growth, dispersed jobs  

For the ruleset for the concentrated growth, dispersed jobs scenario, cells that have wastewater 

service in the baseline year were again eligible to receive future population growth. For growing 

counties, the amount of growth that could be allocated to a cell was calculated as the amount it 

could receive before exceeding the maximum allowed density. This allocation was prioritized to 

the growth cells with the lowest employment density, moving to the growth cell with the next 

lowest employment density until the population allocation was exhausted or all growth cells had 

received population, in which case the remainder was split evenly among those eligible to 

receive growth. The employment was then allocated to non-growth cells, prioritizing those with 

the lowest employment density and using the jobs-population mix parameter to determine the 

number of jobs to allocate. For shrinking counties, the least dense non-growth counties were 

prioritized for population removal, continuing until the deallocation target was reached or 

population had been removed from all non-growth cells, at which point the remaining 

deallocation was evenly removed from the growth cells. The same process was used for 

employment.  

Ruleset 4: Concentrated growth, balanced land use  

For the concentrated growth, balanced land use scenario, the growth cells were identified as 

those cells within an Agency of Commerce and Community Development (ACCD) designated 

area (Tier 1), cells immediately adjacent to ACCD designated areas (Tier 2), or cells 

neighboring Tier 2 cells (Tier 3). Two parameters were used to allocate growth in this scenario. 

A smart growth prototype percentile represented the percentile value of baseline cell VMT used 

to define “exemplar” smart growth neighborhoods within each county typology. A prototype 

boost percentage represented a boost applied to the build environment characteristics 

calculated for prototype smart growth neighborhoods (e.g., 25% more dense). For growing 

counties, the Tier 1 growth cell with the lowest VMT was prioritized to receive growth up to the 

reference population density as derived from the exemplar smart growth neighborhoods. The 

growth was then allocated to the next lowest VMT Tier 1 growth cell and so on until the targeted 

population was allocated to all Tier 1 growth cells. If there was remaining growth to be allocated, 

the process was repeated for Tier 2 cells, then Tier 3 cells, then split evenly across all growth 

cells. Employment was allocated through the same process. For shrinking counties, population 

was removed from the highest VMT non-growth cell first, moving to the next highest VMT non-

growth cell and so on, until reaching the target deallocation or exhausting all of the non-growth 

cells. Any remaining deallocation was removed evenly across all Tier 1, 2, and 3 growth cells. 

Employment was deallocated through the same process. 

Ruleset 5: Concentrated growth, unbalanced land use  

For the concentrated growth, unbalanced land use scenario, growth cells were similarly defined 

as those cells within ACCD designated areas (Tier 1), immediately adjacent to ACCD 

designated areas (Tier 2), and cells neighboring Tier 2 cells (Tier 3). Again, the smart growth 



 

 

prototype percentile and prototype boost percentage were leveraged in this scenario. For 

growing counties, the population was allocated in the same way as the ruleset above for 

concentrated growth, balanced land use. However, for employment the allocation was prioritized 

to the cell with the highest employment density, skipping any Tier 1 cells. For shrinking counties, 

removal was prioritized from the highest VMT non-growth cells, moving to the next highest VMT 

non-growth cell and repeating until the deallocation was exhausted or all non-growth cells had 

population removed. If there was remaining deallocation, that was removed evenly from the Tier 

1, 2, and 3 growth cells. The employment deallocation for this scenario was conducted using the 

same process as the population. 

5.3 CALCULATING SCENARIO BENEFITS 

The resulting VMT estimates were then used to estimate benefits associated with each 

scenario. In addition to changes in GHG emissions—the primary benefit explored in this study—

four co-benefits were estimated: 

• Changes in fatal and injury crashes, for motorized and non-motorized travel modes. 

• Health impacts associated with changes in physical activity from nonmotorized travel. 

• Changes in infrastructure maintenance costs associated with VMT. 

• Potential reductions on infrastructure construction costs associated with more compact 

development patterns. 

Methods used to quantify each of these benefit pathways are described in turn below. 

GHG Emission Reductions 

To estimate changes in GHG emissions for each development scenario, per capita VMT 

estimates in each hex cell were multiplied by the population of that cell in each scenario to 

obtain an estimate of total weekly VMT produced by each cell. This total was then annualized 

and multiplied by fleet-average CO2-equivalent (CO2eq) emissions per mile to obtain GHG 

emissions for each cell and aggregated across the state to obtain a statewide total. This model 

can be expressed as: 

𝐺𝐻𝐺𝑠𝑡𝑎𝑡𝑒𝑤𝑖𝑑𝑒 = ∑ 𝑉𝑀𝑇𝑗 × 𝑝𝑜𝑝𝑗 × 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐶𝑂2  × 52 

Where 𝐺𝐻𝐺𝑠𝑡𝑎𝑡𝑒𝑤𝑖𝑑𝑒 is the estimate of statewide GHG emissions from private vehicles, 𝑉𝑀𝑇𝑗 is 

the model estimated per capita VMT in hex cell 𝑗, 𝑝𝑜𝑝𝑗 is the scenario population in hex cell 𝑗, 

and 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝐶𝑂2 is the fleet-average CO2eq emissions per mile. Estimates for fleet average 

CO2eq were adopted from a recent MOVES analysis performed for the Chittenden County 

region in 2020 and 2050 (Table 19). The key data is the CO2eq per mile is 430 grams per mile 

today and expected to decrease to 86 grams per mile by 2050 with the shift toward higher 

shares of electrified transportation. The fleet electrification assumptions that underly this 

reduction in CO2eq per mile for Chittenden County were adopted from the Vermont Climate 

Action Plan and thus assumed relevant for this statewide application.42 

 
42 https://climatechange.vermont.gov/readtheplan 
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TABLE 19: CHITTENDEN COUNTY LONG RANGE PLAN - MOVES OUTPUTS 

 2020 
MODEL YEAR 

2050 YEAR WITH  
MTP TIP 

CO2eq (kilograms)              1,932,969                    455,547  

Methane (kg) CH4                       143                          13.3  

Nitrous Oxide (kg) N2O                         25                            6.3  

Total Energy (Million BTUs)                  25,208                      19,962  

Distance (VMT) 4,497,488 5,268,122 

CO2eq / VMT (g / mile) 430 86 

MTP: metropolitan transportation plan 
TIP: transportation improvement program 

Safety Co-Benefit 

Changes in fatal and injury crashes were estimated for both motorized and non-motorized travel 

modes. To do so, crash data were obtained from the Vermont crash data portal for the base 

year (2019), split into motorized and non-motorized travel modes and injury severity (fatal and 

injury crashes). Baseline crash rates per mile travelled were obtained by dividing baseline fatal 

and injury crashes by baseline VMT estimates derived from passively collected data as 

described in Chapter 3. Similarly, non-motorized crashes were divided by estimated statewide 

non-motorized travel duration described in Chapter 3 to develop non-motorized fatal and injury 

crash rates per minute of non-motorized travel (Table 20).  

TABLE 20: VERMONT CRASH RATES 

 MOTORIZED NON-MOTORIZED 

Injuries              1,772                   173  

Fatalities                       42                          3  

Total travel 3,867,005,887 (VMT) 1,112,933,520 (active minutes) 

Injury rate                  0.109 per million VMT                  0.027 per million active minutes 

Fatality rate 4.58 per million VMT 1.56 per million active minutes 

For each future scenario, the rates derived above were multiplied by VMT and active travel 

estimates to obtain fatality and injury estimates for motorized and non-motorized modes at the 

neighborhood scale. Interestingly, because VMT reductions are often accompanied by 

increases in active travel, scenarios that tend to reduce VMT tend to have estimated reductions 

in motorized fatalities and injuries but small increases in non-motorized injuries and fatalities. 

Health Co-Benefit 

In addition to safety co-benefits described above, other health impacts associated with 

increases in active travel were estimated using the population attributable fraction (PAF) 

approach. The PAF approach is commonly applied in comparative risk assessment frameworks 

and is used in several leading transportation health impact tools including the World Health 



 

 

Organization’s Health Economic Assessment Tool (HEAT)43 and the Integrated Transport and 

Health Impact Model (ITHIM).44 The PAF model uses the estimated change in transportation 

physical activity to predict changes in mortality risks from all causes, using relative risk 

estimates obtained from epidemiological evidence that characterized this relationship. 

The first step in developing this model was obtaining the baseline death rate for Vermont, 

excluding accidental deaths and intentional self-harm. The epidemiological evidence used for 

this estimate is valid only for persons aged 15 to 74, so the baseline death rate was calculated 

for this group of Vermonters. These data were obtained from the Vermont Department of Health 

and are summarized below. 

TABLE 21. VERMONT DEATH RATES 

AGE RANGE POPULATION 
DEATHS, EXCLUDING 

ACCIDENTAL AND 
SELF-HARM 

DEATH RATE 
INCLUDE IN RATE 

CALCULATION 

Under 1 5,579 15 0.002689 No 

1-4 years 23,464 8 0.000341 No 

5-14 years 64,156 7 0.000109 No 

15-24 years 86,646 38 0.000439 Yes 

25-34 years 74,408 41 0.000551 Yes 

35-44 years 71,267 95 0.001333 Yes 

45-54 years 78,051 233 0.002985 Yes 

55-64 years 95,379 671 0.007035 Yes 

65-74 years 75,206 1,163 0.015464 Yes 

75-84 years 35,396 1,355 0.038281 No 

85+ years 14,437 1,911 0.132368 No 

15-74 years 480,957 2,241 0.002689  

To estimate changes in mortality associated with changes in active travel, per capita active 

travel time for each cell were first converted in metabolic equivalents (MET-hrs), and the 

difference the MET-hrs between each scenario and the baseline scenario were used to 

calculated the population attributable fraction (PAF):  

𝑃𝐴𝐹𝑗 =
𝑅𝑅𝑗,𝑏 − 𝑅𝑅𝑗,𝑠

𝑅𝑅𝑗,𝑏
  

where 𝑃𝐴𝐹𝑗 is the population attributable fraction for cell 𝑗, 𝑅𝑅𝑗,𝑏 is the relative risk of all-

cause mortality for cell 𝑗 given estimated active travel in the baseline scenario 𝑏 and 𝑅𝑅𝑗,𝑠 is the 

relative risk of all-cause mortality for cell 𝑗 given estimated active travel for scenario 𝑠,. Relative 

risk values were estimated using a log-linear dose-response function:  

𝑅𝑅𝑗 = 0.90
𝑀𝐸𝑇𝑗

 11.25  

where 𝑀𝐸𝑇𝑗 is the estimated per capita transportation physical activity for cell 𝑗. Finally, 

attributable mortality for each cell was estimated: 

𝐴𝑀𝑗 = 𝑝𝑜𝑝𝑗 × 𝐷𝑅𝑏 × 𝑃𝐴𝐹𝑗  

 
43 https://www.heatwalkingcycling.org 
44 https://github.com/ITHIM/ITHIM-R 
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where 𝐷𝑅𝑏 is the baseline death rate as derived in Table 21.  

Maintenance Co-Benefit 

Reductions in per capita VMT are expected to reduce VTrans infrastructure maintenance costs 

related to wear and tear. Because this project focuses on passenger VMT, an estimate of the 

share of roadway maintenance costs contributed by passenger vehicles (auto) was required. 

The 2019 weight-based annual registration report apportions roadway maintenance costs to 

specific vehicles classes and derives estimates of maintenance costs per mile travelled within 

each vehicle class (Table 22). While the cost responsibility per mile for autos is substantially 

lower than for other vehicle types, the larger number of miles travelled by autos makes the total 

auto cost responsibility roughly 30% of the total across all vehicle classes. We adopted the 

estimate derived for private passenger vehicles in this report: $0.01 per mile.  

TABLE 22. VTRANS MAINTENANCE COSTS PER MILE TRAVELED, FROM THE 2019 WEIGHT-
BASED ANNUAL REGISTRATION REPORT 

VEHICLE 

CLASS 

BRIDGES 

($THOUSANDS) 

PAVEMENT 

($THOUSANDS) 

COST 

RESPONSIBILITY 

($THOUSANDS) 

COST 

RESPONSIBILITY PER 

MILE 

(CENTS PER MILE) 

Auto $38.10  $5.90  $44.00  1¢ 

LT4 $12.70  $2.50  $15.20  1¢ 

SU2 $6.50  $17.90  $24.50  9¢ 

SU3 $2.20  $6.70  $9.00  13¢ 

SU4+ $0.50  $1.60  $2.10  20¢ 

CS3 $0.70  $1.70  $2.40  11¢ 

CS4 $1.30  $3.10  $4.50  14¢ 

3S2 $5.80  $24.10  $29.90  39¢ 

CS5 $0.50  $1.60  $2.00  33¢ 

CS6 $1.40  $5.00  $6.40  47¢ 

CS7+ $1.20  $4.00  $5.20  1,357¢ 

CT4- $0.00  $0.00  $0.10  16¢ 

CT5 $0.40  $1.80  $2.20  47¢ 

CT6+ $0.10  $0.20  $0.30  26¢ 

DS5 $0.10  $0.20  $0.40  33¢ 

DS6 $0.20  $0.30  $0.50  71¢ 

DS7 $0.10  $0.20  $0.40  794¢ 

Avoided Infrastructure Co-Benefit 

To estimate potential reduction in required roadway miles for future smart growth scenarios, we 

applied the relationship between population density and per capita roadway miles described in 

Chapter 2. To do so, we first obtained data from Table HM 72 of the Federal Highway 

Administration’s Highway Statistics 201945 and modeled the relationship between population 

density and lane-miles (Figure 18). We then assigned each grid cell within Vermont to its 

 
45 https://www.fhwa.dot.gov/policyinformation/statistics/2019/hm72.cfm 



 

 

township and applied the derived function to estimate township-level roadway miles needed for 

each scenario: 

𝑅𝑀𝑡𝑜𝑤𝑛 = 192.02 × 𝑒−0.48𝑝𝑜𝑝𝑑𝑒𝑛 

where 𝑅𝑀𝑡𝑜𝑤𝑛 is the number of road-miles per person for each township and 𝑝𝑜𝑝𝑑𝑒𝑛 is 

the population density in the township. 

 

FIGURE 18. RELATIONSHIP BETWEEN POPULATION DENSITY AND ROADWAY MILES PER 
CAPITA 

5.4 RESULTS 

Applying the allocation rulesets as described in Section 5.2 resulted in unique distributions of 

population and employment by industry sector across the 31,739 cells covering Vermont for 

each scenario. Given that many of the benefits calculations presented in Section 5.3 are based 

on per capita VMT, a fundamental step in calculating the benefits associated with each of these 

scenarios is calculating VMT and non-motorized travel duration associated with each scenario. 

To do so, the VMT model and non-motorized travel duration models described in Chapter 3 

were applied. As necessary, buffered built environment variables were developed as previously 

described, using scenario population and employment values instead of baseline values. 

The VMT results for each of the scenarios are depicted in Figure 19. After calculating per capita 

VMT across the state, GHG emissions and associated co-benefits were calculated by applying 

each benefit calculation. These calculations were performed for both horizon years in the LEAP 
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projections (2035 and 2050) and for both the low- and high-growth scenarios. All permutations 

of scenario parameters were also tested, resulting in a range of values for each scenario. These 

results are presented in Table 23 and Table 24. Statewide per capita VMT for each scenario is 

presented, alongside scenario benefits relative to the baseline scenario for each growth 

projection. When interpreting benefits, positive values indicate a benefit (e.g., avoided traffic 

fatalities or a reduction in GHG emissions) while negative values indicate a worsening of the 

situation (e.g., an increase in traffic fatalities or GHG emissions). 

 

FIGURE 19. WEEKLY PER CAPITA VMT ACROSS ALL SCENARIOS 

 

Across most benefit categories, the concentrated growth, concentrated jobs and concentrated 

growth, balanced land use scenarios perform best, illustrating the benefits of the smart growth 

strategies embedded in these scenarios. It is noted that the low growth futures in 2035 and 

2050 produce similar outcomes for these two scenarios, but in the high growth futures 

concentrated growth, balanced land use outperforms concentrated growth, concentrated jobs 

scenarios. Results indicate that concentrating growth in areas with density and in areas where 

VMT is low are both capable of significantly reducing per capita VMT; however, in a high growth 

future, focusing growth in areas with low VMT while emulating prototype communities has an 

advantage in achieving further VMT reductions.  

Further, the concentrated growth, concentrated jobs and concentrated growth, balanced land 

use scenarios indicate the importance of concentrating jobs in proximity and in balance with 

population growth. Each of these scenarios outperform the concentrated growth, dispersed jobs 

and concentrated growth, unbalanced land use scenarios in reducing VMT. This outcome has 

implications for future development patterns, indicating that statewide initiatives, regional 

102

104

106

108

110

112

114

116

118

120

122

L
o
w

 2
0

3
5

H
ig

h
 2

0
3
5

L
o
w

 2
0

5
0

H
ig

h
 2

0
5
0

L
o
w

 2
0

3
5

H
ig

h
 2

0
3
5

L
o
w

 2
0

5
0

H
ig

h
 2

0
5
0

L
o
w

 2
0

3
5

H
ig

h
 2

0
3
5

L
o
w

 2
0

5
0

H
ig

h
 2

0
5
0

L
o
w

 2
0

3
5

H
ig

h
 2

0
3
5

L
o
w

 2
0

5
0

H
ig

h
 2

0
5
0

L
o
w

 2
0

3
5

H
ig

h
 2

0
3
5

L
o
w

 2
0

5
0

H
ig

h
 2

0
5
0

Dispersed growth Concentrated
growth,

concentrated jobs

Concentrated
growth, dispersed

jobs

Concentrated
growth, balanced

land use

Concentrated
growth,

unbalanced land
use

W
e
e
k
ly

 V
M

T
 (

p
e
r 

c
a
p
it
a
)



 

 

planning, and local zoning should focus attention on the proximity and balance of job generating 

land uses with population density and growth.  

Conversely, the dispersed growth scenario performs worse than the baseline across all 

outcomes, reinforcing the importance of smart growth principles in reducing transportation GHG 

emissions and providing important co-benefits to Vermont residents. 

With a focus on quantifying the implications of smart growth principles in future scenarios, the 

concentrated growth, balanced land use scenario out to 2050 is poised to produce the following 

results:  

• Reduce weekly VMT to 110 miles per capita; 

• Reduce GHG emissions by over 13,000 metric tons annually; 

• Avoid 1 traffic death per year; 

• Avoid over 31 traffic injuries per year; 

• Reduce physical inactivity mortality by nearly 4 lives annually; 

• Reduce annual maintenance costs by over $1.5 million; and, 

• Avoid 364 additional road miles. 

Conversely, the dispersed growth scenario out to 2050 was poised to produce the following 

results:  

• Increase weekly VMT to nearly 120 miles per capita; 

• Increase GHG emissions by over 17,000 metric tons annually; 

• Increase traffic deaths per year by 1.5; 

• Increase traffic injuries per year by 52; 

• Increase physical activity mortality by nearly 3 lives annually; 

• Cost an additional $2 million in annual maintenance costs; and, 

• Require over 500 additional road miles. 

A comparison of the best (concentrated growth, balanced land use) to worst (dispersed growth) 

scenarios results in a difference of 10 additional miles per capita VMT, 2.5 traffic fatalities per 

year, over 80 traffic injuries per year, physical inactivity mortality of 7 lives annually, and 

approximately $3.5 million in maintenance costs.  

To put these results in context, the GHG emission reductions were compared to the targets set 

forth in the Global Warming Solutions Act. To achieve the target of 80% below 1990 GHG 

emissions levels by 2050, annual reductions of 84,000 metric tons of CO2 equivalent (MTCO2e) 

would be required when starting from 2019 levels (i.e., 3.34 million MTCO2e).46 The GHG 

reductions produced by the concentrated growth, balanced land use scenario would represent 

approximately 15.5% of the annual reduction needed to achieve the target out to 2050. 

 
46 Vermont Greenhouse Gas Emissions Inventory and Forecast: 1990-2020 

https://outside.vermont.gov/agency/anr/climatecouncil/Shared%20Documents/_Vermont_Greenhouse_Gas_Emissions_Inventory_Update_1990-2020_Final.pdf
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Conversely, a dispersed growth scenario would contribute to an annual increase in GHG 

emissions, representing an adverse increase in emissions of approximately 20% of the annual 

change needed.    

Full results for each of the scenarios out to 2035- and 2050-time horizons for both low and high 

growth scenarios are tabulated below. In addition, results for each scenario at the statewide and 

hex grid scale can be explored through the project dashboard.47  

 

 
47 Dashboard tool link: https://rsginc.shinyapps.io/VTrans_Smart_Growth/ 

https://rsginc.shinyapps.io/VTrans_Smart_Growth/
https://rsginc.shinyapps.io/VTrans_Smart_Growth/


 

 

TABLE 23. SCENARIO BENEFITS, 2035 

 BENEFITS CATEGORY DISPERSED GROWTH 

CONCENTRATED 

GROWTH, 

CONCENTRATED 

JOBS 

CONCENTRATED 

GROWTH, 

DISPERSED JOBS 

CONCENTRATED 

GROWTH, 

BALANCED LAND 

USE  

CONCENTRATED 

GROWTH, 

UNBALANCED LAND 

USE 

L
o
w

 G
ro

w
th

 

Per capita VMT (weekly) 
118.4 

(118.3 – 118.5) 

114.1 

(113.9 – 114.4) 

115.9 

(115.7 – 116.1) 

114.3 

(114.0 – 114.6) 

115.0 

(114.6 – 115.3) 

GHG emission reductions 

(annual metric tons) 

-7,484 

(-7,719 – -7,244) 

4,888 

(4,091 – 5,589) 

-284 

(-941 – 264) 

4,533 

(3,544 – 5,331) 

2,430 

(1,435 – 3,473) 

Annually avoided traffic 

deaths 

-0.66 

(-0.69 – -0.63) 

0.48 

(0.33 – 0.60) 

0.08 

(-0.02 – 0.16) 

0.25 

(0.05 – 0.46) 

0.19 

(-0.02 – 0.40) 

Annually avoided traffic 

injuries 

-23.33 

(-24.76 – -21.89) 

17.99 

(10.84 – 23.51) 

4.92 

(0.86 – 8.58) 

5.47 

(-4.16 – 16.07) 

6.14 

(-4.00 – 16.56) 

Annually avoided physical 

inactivity mortality  

-1.20 

(-1.23 – -1.17) 

0.67 

(0.41 – 1.02) 

-0.54 

(-0.63 – -0.46) 

1.55 

(1.17 – 1.83) 

-0.10 

(-0.31 – 0.07) 

Annually avoided 

maintenance ($) 

-870,313 

(-897,620 – -842,377) 

568,386 

(475,767 – 649,976) 

-33,040 

(-109,422 – 30,760) 

527,148 

(412,102 – 619,930) 

282,618 

(166,874 – 403,935) 

Avoided road miles 
-279.9 

(-295.5 – -267.5) 

225.1 

(215.2 – 237.2) 

95.32 

(75.93 – 114.05) 

95.65 

(80.88 – 104.01) 

77.59 

(49.03 – 98.47) 

H
ig

h
 G

ro
w

th
 

Per capita VMT (weekly) 
118.4 

(118.3 – 118.5) 

113.4 

(113.0 – 113.9) 

116.6 

(116.3 – 116.8) 

112.7 

(112.1 – 113.2) 

113.8 

(113.2 – 114.3) 

GHG emission reductions 

(annual metric tons) 

-9,410 

(-9,707 – -9,224) 

6,060 

(4,519 – 7,282) 

-3,850 

(-4,507 – -3,017) 

8,085 

(6,414 – 9,751) 

4,717 

(3,083 – 6,457) 

Annually avoided traffic 

deaths 

-0.83 

(-0.87 – -0.80) 

0.58 

(0.32 – 0.81) 

-0.23 

(-0.33 – -0.11) 

0.57 

(0.20 – 0.95) 

0.46 

(0.14 – 0.79) 

Annually avoided traffic 

injuries 

-29.59 

(-31.41 – -28.34) 

21.47 

(9.50 – 32.62) 

-5.71 

(-9.93 – -0.68) 

16.81 

(-1.11 – 35.54) 

17.56 

(2.02 – 32.79) 

Annually avoided physical 

inactivity mortality  

-1.59 

(-1.63 – -1.51) 

0.95 

(0.66 – 1.30) 

-1.18 

(-1.31 – -1.05) 

2.36 

(1.76 – 2.95) 

-0.40 

(-0.62 – -0.20) 

Annually avoided 

maintenance ($) 

-1,094,272 

(-1,128,781 – -1,072,646) 

704,660 

(525,528 – 846,854) 

-447,695 

(-524,153 – -350,883) 

940,116 

(745,816 – 1,133,938) 

548,534 

(358,500 – 750,919) 

Avoided road miles 
-339.3 

(-345.3 – -331.1) 

254.6 

(226.4 – 275.8) 

-24.39 

(-53.85 – 2.29) 

217.5 

(175.9 – 250.8) 

177.6 

(136.9 – 237.3) 
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TABLE 24. SCENARIO BENEFITS, 2050 

 BENEFITS CATEGORY 
DISPERSED   

GROWTH 

CONCENTRATED 

GROWTH, 

CONCENTRATED 

JOBS 

CONCENTRATED 

GROWTH, 

DISPERSED JOBS 

CONCENTRATED 

GROWTH, 

BALANCED LAND 

USE  

CONCENTRATED 

GROWTH, 

UNBALANCED 

LAND USE 

L
o

w
 G

ro
w

th
 

Per capita VMT (weekly) 
120.1 

(120.0 – 120.3) 

112.4 

(111.9 – 113.0) 

115.8 

(115.6 – 116.0) 

112.4 

(111.8 – 113.0) 

113.7 

(113.2 – 114.2) 

GHG emission reductions 

(annual metric tons) 

-14,324 

(-14,846 – -13,977) 

8,484 

(6,682 – 9,777) 

-1,630 

(-2,323 – -1043) 

8,384 

(6,527 – 10,244) 

4,608 

(2,983 – 6,181) 

Annually avoided traffic 

deaths 

-1.26 

(-1.33 – -1.21) 

0.83 

(0.52 – 1.11) 

0.05 

(-0.05 – 0.14) 

0.53 

(0.11 – 0.97) 

0.42 

(0.09 – 0.73) 

Annually avoided traffic 

injuries 

-44.67 

(-47.67 – -42.46) 

31.44 

(16.94 – 44.63) 

5.93 

(1.52 – 9.89) 

14.10 

(-6.46 – 35.94) 

15.19 

(-0.64 – 30.11) 

Annually avoided physical 

inactivity mortality  

-2.10 

(-2.16 – -2.04) 

1.39 

(0.84 – 1.95) 

-1.08 

(-1.26 – -0.91) 

2.89 

(1.94 – 3.60) 

-0.32 

(-0.56 – -0.01) 

Annually avoided 

maintenance ($) 

-1,665,668 

(-1,726,345 – -1,625,321) 

986,591 

(777,028 – 1,136,974) 

-189,581 

(-270,162 – -121,335) 

974,978 

(758,997 – 1,191,212) 

535,820 

(34,6890 – 718,807) 

Avoided road miles 
-477.6 

(-486.6 – -468.1) 

404.4 

(367.1 – 423.7) 

145.7 

(124.9 – 166.9) 

209.0 

(166.8 – 243.0) 

178.2 

(149.6 – 231.8) 

H
ig

h
 G

ro
w

th
 

Per capita VMT (weekly) 
119.8 

(119.6 – 119.8) 

111.3 

(110.5 – 112.2) 

116.8 

(116.4 – 117.2) 

110.3 

(109.3 – 111.4) 

112.2 

(111.3 – 113.2) 

GHG emission reductions 

(annual metric tons) 

-17,418 

(-17,685 – -16,987) 

9,996 

(7,229 – 12,671) 

-7,708 

(-9,055 – -6,375) 

13,261 

(9,768 – 16,648) 

7,112 

(3,999 – 10,127) 

Annually avoided traffic 

deaths 

-1.49 

(-1.53 – -1.43) 

0.96 

(0.44 – 1.48) 

-0.45 

(-0.65 – -0.25) 

0.99 

(0.21 – 1.69) 

0.78 

(0.21 – 1.35) 

Annually avoided traffic 

injuries 

-52.06 

(-53.87 – -49.38) 

35.84 

(11.45 – 60.38) 

-10.83 

(-19.83 – -2.13) 

31.42 

(-6.79 – 65.03) 

30.87 

(4.24 – 58.04) 

Annually avoided physical 

inactivity mortality  

-2.96 

(-3.15 – -2.87) 

1.82 

(0.68 – 2.82) 

-2.16 

(-2.45 – -1.83) 

3.96 

(2.93 – 5.89) 

-1.20 

(-1.66 – -0.91) 

Annually avoided 

maintenance ($) 

-2,025,391 

(-2,056,434 – -1,975,310) 

1,162,389 

(840,682 – 1,473,478) 

-896,280 

(-1,052,971 – -741,281) 

1,5420,12 

(1,135,824 – 1,935,881) 

827,009 

(465,062 – 1,177,634) 

Avoided road miles 
-513.9 

(-527.6 – -500.2) 

430.5 

(350.8 – 491.2) 

-61.24 

(-107.70 – -16.57) 

364.0 

(273.7 – 451.1) 

298.8 

(191.1 – 385.1) 

 



 

 

6.0 CASE STUDIES 

As observed through the estimation of vehicle miles travelled (VMT) from passively collected, location-

based data, there are a number of exemplary communities that have lower VMT activity relative to other 

Vermont communities, due to their settlement pattern and characteristics of the local built environment. 

These prototype communities were identified as those with the top 10% performing (i.e., lowest VMT) hex 

cells in the base scenario within the particular county typology (i.e., rural, small centers, medium centers, 

urban). County typologies were identified with feedback from the TAC and their top 10% performing 

communities were identified as outlined in Table 25.  

TABLE 25. COUNTY TYPOLOGIES AND PROTOTYPE COMMUNITIES 

 TYPOLOGIES 

 RURAL SMALL CENTERS 
MEDIUM 

CENTERS 
URBAN 

Counties Grand Isle 
Essex  
Orange 

Addison 
Bennington 
Caledonia 
Franklin 
Lamoille 
Orleans 
Windham 

Rutland 
Washington 
Windsor 

Chittenden 

Prototype 
Communities 

Bradford 
Fairlee 
Randolph 

Middlebury 
Vergennes 
Manchester 
Stowe 
St. Albans 
Bennington 
Brattleboro 

Montpelier 
Barre 
Rutland 

Burlington 

 

Zooming in on these places, most prototype communities that have low per capita VMT travel patterns in 

the Vermont context tend to exhibit the following features: 

• Dense core area (typically a main street, merchants’ row, or center of a grid network); 

• Mix of uses, services, and amenities; 

• Concentration of population and employment; 

• Water and sewer district; 

• Sidewalk network; and, 

• Access to transit. 

In depth case studies were developed to examine a couple of communities more closely. A selection of 

communities was identified to represent different community sizes distributed across different parts of the 
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state in coordination with the TAC. Springfield, Rutland, and Morrisville were selected as locations to be 

further investigated to contextualize the base and future forecasted scenarios while providing insights into 

opportunities for smart growth at the community level. Each case study serves to demonstrate the 

opportunities for VMT reduction through implementation of smart growth principles and the utility of the 

forecasted scenarios in identifying the potential challenges, opportunities, and benefits to employing smart 

growth principles at the community scale. 

  



 

 

6.1 RUTLAND CITY 

Rutland City is a relatively densely populated city that, 

like many Vermont communities, already has a lot of the 

elements in place to support smart growth. This includes 

a relatively dense downtown district with mostly three- to 

five-story buildings along Merchants Row, Center Street, 

and West Street as depicted in Figure 20. Most of these 

buildings have first floor retail spaces at the back of wide 

sidewalks connecting to a grid pattern street network.  

These attributes contribute to the travel behaviors in the 

City and the identification of Rutland as a prototype 

community when compared to other places within the 

medium center county typology. The densest parts of 

downtown Rutland have weekly per capita VMT of less 

than 50 miles traveled in the base scenario.  

Further, the surrounding area land uses outside of the 

City contribute to a smaller footprint of travel activity for 

Rutland City as demonstrated in Figure 21. The US-7 

and US-4 corridors provide connectivity to the areas surrounding Rutland City, which are highlighted in the 

lighter color in Figure 21 based on observed travel patterns (i.e., >20% of devices). Travel along these 

corridors results in a relatively tight activity space, with the most concentration of trips occurring at the 

center within Rutland City and some concentration of trips further afield but generally not expanding 

beyond neighboring towns in each direction (i.e., Brandon, Killington, Wallingford, and Castleton).  

 

FIGURE 20. RUTLAND’S CITY CENTER 

 

City Population | 15,807 persons (2020) 
 
County Population | 60,572 persons 
(2020) 
 
City Land Area | 7.6 miles2 

 
Population Density | 2,096 persons / mi2 
 
✓ Transit Agency | Marble Valley 
Regional Transit District (The Bus) 
 
✓ Designated Downtown District 
 
✓ Water / Sewer District 
 

RUTLAND PROFILE 
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Even though Rutland is a prototype 

community, future population growth 

projections forecast Rutland County to lose 

population. Although Rutland City, particularly 

the densest parts of the City’s downtown 

district, would be ideal for concentrating 

growth with the aim of further reducing VMT, 

the anticipated contraction of population at the 

county scale may challenge the community 

when looking to enhance their smart growth 

strategy. 

Looking to the future scenarios, maintaining 

density in the lowest VMT areas of the county 

results in marginal increases in population and 

employment opportunities in Rutland City. This 

is evident when comparing the concentrated 

growth scenarios to the baseline scenario. 

Despite the county contraction of population, 

slight increases to population and employment 

in the City’s downtown enables slightly more 

density in the core area supporting a 0.1% 

decrease in weekly per capita VMT.   

This contrasts with the dispersed growth 

scenario. Although low levels of VMT remain 

in the core area, the downtown loses population and jobs. Additionally, the settlement pattern stretches 

along the US-7 corridor, particularly south of the City, contributing to more sprawl. Although more moderate 

(i.e., slightly lower) weekly VMT per capita can be seen extending south along US-7 in the dispersed 

pattern depicted in Figure 22 as compared to the concentrated growth scenario, population is 

simultaneously drawn away from those core areas with low levels of VMT. The combination of the effects 

of population shifting from areas with low VMT to areas with moderate VMT has the net effect of a 1.1% 

increase in weekly VMT for the City. 

The resulting travel pattern under the dispersed growth scenario can be visualized in contrast to the 

concentrated growth, balanced land use scenario as demonstrated in Figure 22. Further exploration of the 

scenarios within the dashboard tool48 reveals the dynamics of shifting population and jobs, providing a 

fuller picture of the future scenarios for a prototype community that faces countywide reduction in 

population. With a contracting population anticipated for the county, more strategic approaches may be 

required to draw population, jobs, and other smart growth opportunities into the places with more density 

and lower VMT.    

 
48 Dashboard Tool: Vermont Smart Growth Project Dashboard (shinyapps.io) 

 

FIGURE 21. RUTLAND ACTIVITY SPACE 

https://rsginc.shinyapps.io/VTrans_Smart_Growth/


 

 

 
 

 

Dispersed Growth Concentrated Growth 

  

FIGURE 22. COMPARISON OF DISPERSED AND CONCENTRATED GROWTH SCENARIOS FOR RUTLAND 
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6.2 SPRINGFIELD  

Springfield is a medium sized community situated adjacent 

to the Black River and Black River Falls, like many 

Vermont communities established along a river and water 

falls for the resources (i.e., water and power) they provide. 

The community has a designated downtown district that 

runs along Main Street and encompasses parcels on both 

sides of the river. The core of this area has two- and three-

story buildings with first floor retail and a connected 

sidewalk network. There are also mill buildings within the 

district, some of which have been adaptively repurposed 

for other, updated uses.   

Springfield has neighboring small communities, 

like North Springfield, Chester, Bellows Falls, 

and Claremont, NH, that contribute to a tight 

network of trips to and from Springfield’s 

downtown. The connections to these other 

small communities in close proximity to the 

area makes for a mix of jobs, services, and 

amenities that support one another through this 

clustered set of defined places. These 

complementary communities and land uses 

represent the majority of trips in the 

demonstrated activity space from the location-

based data as shown in Figure 23. 

Although the downtown is topographically 

restricted with the river and steep surrounding 

landscape, the area in the downtown district is 

 

FIGURE 23. ACTIVITY SPACE FOR SPRINGFIELD 

 

Town Population | 9,062 (2020) 
 
County Population | 57,753 (2020) 
 
Town Land Area | 49.3 miles2 
 
Town Density | 180 persons / mi2 
 
Downtown District Density | 
Approximately 1,200 persons / mi2 
  
✓ Transit Agency | Southeast 
Vermont Transit (MOOver)  
 
✓ Designated Downtown District 
 
✓ Water / Sewer District 
 
 

SPRINGFIELD PROFILE 



 

 

ripe with opportunities to increase density, which would reduce VMT compared to a more dispersed growth 

pattern. Progress towards repurposing underutilized spaces is outlined in the Main Street Master Plan for 

Springfield49. The Plan recognizes the opportunity to draw more population and employment into the 

district, and the co-benefits this could create, such as activation of public spaces, support for economic 

development, and a more vibrant downtown. 

Springfield on the Move is active in supporting the expansion of opportunities within the district. Challenges 

and costs associated with the repurposing of former industrial spaces and other barriers to increasing 

density can be overcome by some of the mechanisms already available, like the opportunity zone 

designation. Expansion of these types of programs can help to alleviate the significant burden in 

repurposing underutilized, developed areas and encouraging density.  

FIGURE 24. DOWNTOWN SPRINGFIELD 

 
 

Dispersed growth scenarios for Springfield indicate a less than 1% increase in weekly per capita VMT. 

However, the concentrated growth and balanced land use scenario could reduce VMT by 6.6%. Comparing 

the baseline pattern to the concentrated growth, balanced land use scenario reveals a broader area of 

reduced weekly per capita VMT (i.e., expanded dark purple area in Figure 25). As demonstrated in Figure 

25, closer examination reveals the scale of increased population and employment in the core area and 

affiliated increase in active transportation and reduction in VMT. Looking at the same core area across 

scenarios, a reduction of 3.6 miles traveled and 9 additional minutes of active transportation per capita is 

associated with a concentration of population and jobs in the downtown core. The scenario is consistent 

with plans for the area in terms of redevelopment and adaptive reuse and aligns with the magnitude of 

change potentially achieved through the scale of revitalization and economic development anticipated for 

the area.    

 
49 https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-
F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf  

https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf
https://springfieldvt.gov/vertical/sites/%7B234B28A5-DB73-489E-ABFA-F2FB1EF67C08%7D/uploads/Springfield_Report_6_30_17_Complete.pdf
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Baseline Concentrated Growth Balanced Land Use 

 

 

 

FIGURE 25. COMPARISON OF BASELINE AND CONCENTRATED GROWTH BALANCED LAND USE SCENARIOS FOR 
SPRINGFIELD  



 

 

6.3 MORRISVILLE 

Morrisville is a village in Morristown, Vermont. The 

downtown village area has a small, dense core along 

Main Street and Portland Street, coinciding with the 

Historic VT-100 corridor and junction with VT-15A and 

VT-12. Similar to other Vermont villages, it is adjacent to 

the Lamoille River and a set of falls. The core area has 

primarily two- and some three-story buildings with first 

floor retail running along a connected sidewalk network 

as shown in Figure 26. Morrisville has an adjacent 

alignment of VT-100 that connects the surrounding areas 

to VT-100 to the south and VT-15 to the north.  

The core village area has many of the characteristics of 

smart growth; however, the area has a relatively high 

weekly per capita VMT at approximately 100 miles per 

week. This is significantly higher than other comparable 

village centers. Given the proximity to opportunities in 

surrounding communities and in neighboring Chittenden 

County, the activity space depicted in Figure 27 for the community indicates that travel to and from the 

Burlington area and other neighbors is a significant contributor to the high average weekly per capita VMT.  

 

FIGURE 26. DOWNTOWN MORRISVILLE   

 

Village Population | 2,086 (2020) 
 
County Population | 25,945 (2020) 
 
Village Land Area | 1.96 miles2 
 
Village Density | 1,000 persons / mi2 
 
✓ Transit Agency | Rural 
Community Transportation  
 
 Designated Downtown District 
 
✓ Water / Sewer District 
 

MORRISVILLE PROFILE 



 
 

65 
 

 

For Morrisville, context and employment 

are key to the demonstrated travel 

patterns and the opportunities to reduce 

VMT. Not only do Morrisville residents 

access neighboring Chittenden County 

with frequency, but Morrisville also 

serves as an employment center drawing 

workforce from the Northeast Kingdom, 

or the large geographic area to the 

northeast. Jobs are concentrated 

northeast of the downtown and 

commercial services are dispersed 

outside of the core area. These 

employment opportunities and services 

are outside of a walkable distance from 

downtown. This lack of intermixing of 

uses locally combined with the draw from 

a wide geographic region may contribute 

to the higher per capita VMT 

demonstrated in the baseline scenario.     

Examination of the future scenarios 

provides further insight. In the dispersed 

growth scenario, weekly per capita VMT 

increased by just over 1%. The 

concentrated growth, balanced land use 

scenario could reduce VMT by 2.1%. 

However, it is the concentrated growth, 

concentrated jobs scenario that seems to 

move the needle on bringing the area’s 

weekly per capita VMT down. It may be that the wide commute shed and geographic pull of neighboring 

areas of employment imposes diminishing returns for the concentrated growth scenarios until employment 

is also concentrated in the area.   

The area with the greatest demonstrated VMT reduction is spread across Morrisville north of the core 

downtown, where current industrial and commercial uses are more prevalent. Drawing more employment 

and thus commute trips into these areas in closer proximity to the population density may reduce the need 

for longer trip making to neighboring areas for employment, therefore reducing VMT. This indicates that 

other mechanisms to support job growth may be required to spur the type of smart growth patterns that will 

induce further decreases in VMT, particularly for the historic center of Morrisville. Further, more direct 

connections from the historic center to these areas north of the core may be required to facilitate improved 

 

FIGURE 27. MORRISVILLE ACTIVITY SPACE 

 



 

 

access and VMT reductions. It is notable that some of these areas north of the historic center where growth 

and VMT reductions are anticipated fall outside of the existing water and sewer district.    

The contrast between the dispersed scenario and concentrated growth, concentrated jobs scenario is 

depicted in Figure 28 and can be further explored in the dashboard tool50. For Morrisville, the concentration 

of growth and jobs combines to create a broader area where weekly per capita VMT reductions are 

possible. In this scenario, the concentration of population and employment is most significant in the area 

that encapsulates the historic center of Morrisville, which could achieve a reduction of nearly 5 miles of 

travel per week per capita and an increase of over 9 minutes of weekly active travel.      

 

 
50 Dashboard Tool: Vermont Smart Growth Project Dashboard (shinyapps.io) 

https://rsginc.shinyapps.io/VTrans_Smart_Growth/
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Dispersed Growth Concentrated Growth, Concentrated Jobs 

  

FIGURE 28.  COMPARISON OF DISPERSED AND CONCENTRATED GROWTH, CONCENTRATED JOBS SCENARIOS FOR MORRISVILLE 



 

 

6.4 KEY TAKEAWAYS 

Combined with the results of the future scenarios overall, key takeaways demonstrated in these 

case studies include the following: 

• Land Use alone doesn’t move the needle – balance with job proximity is needed; 

while denser, mixed land uses reduce VMT by reducing trip lengths and inducing shift to 

active transportation modes, such as walking, biking or the use of public transit, for daily 

travel activities, an equally important factor that influences VMT is proximity to jobs. Each 

of the case study communities exemplifies the dynamic where, broadly speaking, the 

closer jobs are to where people live, the greater the additional VMT reduction exhibited. 

This inelasticity of VMT as a function of job proximity serves as a crucial reminder that 

wholistically planning communities from a smart growth perspective requires envisioning 

the location of jobs relative to town centers and lived neighborhoods. 

• Vermont has “good bones;” smart growth land use patterns that inherently lead to 

reductions in VMT are rooted in Vermont’s land use goal of town centers surrounded by 

rural countryside and can be enhanced through thoughtful modifications to density, mix of 

land use, and proximity to jobs. Contextual scaling that corresponds to character of place 

and careful coordination to align local actions with state and regional land use plans and 

visions are crucial next steps to build on Vermont’s “good bones” and position the state to 

make further strides in the reduction of VMT. Each of the case study communities has a 

specific type of “good bones” that is elaborated on through the modelling undertaken in 

this study to test and demonstrate how VMT can further be reduced. 

• Regional neighbors influence VMT and travel patterns; Vermont’s scale lends itself to 

region- wide and state-wide travel patterns. This creates a dynamic where folks live, 

work, and play in condensed movement patterns in their town centers to service various 

needs, and complement these needs with more expansive patterns via travel to adjacent 

communities and regions. Each of the case study communities exemplifies and 

documents a specific corresponding VMT response to this complementarity.  
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7.0 CONCLUSIONS 

This project explored the hypothesis that compact, mixed use development patterns generate 

fewer VMT and GHG emissions per person than more dispersed or rural settlement patterns. 

Current and future patterns of built environment development, land use, population growth, and 

travel behavior were quantified in several scenarios to demonstrate the degree to which smart 

growth strategies in the Vermont context can reduce VMT to meet transportation related GHG 

emission reduction targets.  

Passively collected, location-based data were leveraged to develop weekly per capita VMT 

estimates for the state. VMT estimates and built environment measures were resolved to a hex-

grid spatial database across the state of Vermont to develop a model relating these measures to 

the weekly per capita VMT. Future scenarios were developed to represent a range of possible 

growth and built environment changes. The passive data derived VMT estimates and model 

relating VMT to built environment measures was applied to the scenarios to predict how VMT 

and other related benefits might change across the potential futures.   

Scenario Evaluations 

Based on the analysis, compact development patterns in future scenarios reduced VMT by 

nearly 10 miles per person per week compared to dispersed patterns, demonstrating the 

opportunity for smart growth strategies in Vermont and the impact they might have on travel 

patterns. Further, the most effective scenarios for smart growth were focused on 

concentrating balanced residential and employment growth in areas with demonstrated 

low VMT based on the characteristics of exemplary low VMT communities. 

The GHG emissions reduction potential of smart growth, based on the most effective 

scenarios evaluated, could amount to over 15% of the annual reduction needed to 

achieve the 2050 Global Warming Solutions Act targets. Conversely, dispersed settlement 

patterns could produce an increase in emissions of approximately 20% of the annual target, 

working against other mechanisms to achieve Vermont’s GHG emissions reduction goals.  

Beyond VMT and GHG emission reductions, smart growth strategies were demonstrated to 

benefit safety (e.g., 1 avoided traffic death and over 30 avoided traffic injuries), health (e.g., 

reduced physical inactivity mortality by nearly 4 lives annually), and maintenance (e.g., reduced 

annual maintenance costs by over $1.5 million) outcomes associated with the transportation 

system in Vermont.  

Case Study Evaluations 

There are communities within Vermont where the built environment supports more condensed 

travel patterns. These exemplary VMT communities, or places with lower VMT compared to 

other communities within the same county typology, tend to have a dense core area, mix of 

uses, concentration of population and employment, water and sewer districts, a sidewalk 

network, and access to transit. There are also locations in Vermont that seem to produce more 

VMT and GHG emissions on average despite a built environment that has smart growth 



 

 

characteristics. Zooming in on a few communities through the lens of the future scenarios 

illuminated some key takeaways for contextualizing the results of this study, including: 

• Denser, mixed land uses require complementary economic opportunities where 

job proximity is a factor for some communities to achieve targeted VMT and GHG 

reductions. Achieving this requires holistic planning to locate jobs relative to compact 

centers and livable neighborhoods; 

• Vermont’s historical settlement patterns and land use goal of denser centers 

surrounded by more rural areas lends itself inherently to smart growth strategies 

where the state’s “good bones” can be enhanced through thoughtful, context sensitive 

modifications to density, land use mix, proximity to jobs, and civil infrastructure; 

• Regional neighbors influence VMT and travel patterns where condensed movement 

patterns within town centers may serve some needs complemented by more expansive 

patterns with travel to adjacent communities to serve other needs. Such activity is 

affected by proximity of neighboring communities to provide complementary services and 

amenities. 

These communities offer insights on the potential scope and scale of VMT and GHG reductions 

that are possible through implementation of smart growth strategies. The work at the local and 

regional level to encourage and operationalize smart growth principles can have a statewide 

impact of contributing over 15% towards the annual reduction needed to achieve the targeted 

GHG emissions reduction in the Global Warming Solutions Act.   
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APPENDIX A. ANNOTATED BIBLIOGRAPHY 

The existing literature outlined below includes a mix of peer reviewed studies, case studies, and 

policy guidance documents for practitioners. The peer reviewed literature methodologies include 

meta-regression, meta-analysis, case studies, and other statistical methodologies. Notable 

limitations of the existing studies include small sample size, homogenous sample composition, 

and the understanding that correlation between variables does not necessarily imply causation. 

Additional caveats about the existing literature include the use of only some of the D variables 

when there are interdependencies and the use of different metrics to represent the Ds. 

Ahlfedt and Pietrostefani, 2017 

The Economic Effects of Density: A Synthesis 

This paper synthesizes the state of knowledge on the economic effects of density. We consider 

15 outcome categories and 209 estimates of density elasticities from 103 studies. More than 

50% of these estimates have not been previously published and have been provided by authors 

on request or inferred from published results in auxiliary analyses. We contribute own estimates 

of density elasticities of 16 distinct outcome variables that belong to categories where the 

evidence base is thin, inconsistent or non-existent. Along with a critical discussion of the quality 

and the quantity of the evidence base we present a set of recommended elasticities. Applying 

them to a scenario that roughly corresponds to an average high-income city, we find that a 1% 

increase in density implies positive per capita net present values of wage and rent effects of 

$280 and $485. The decrease in real wage net of taxes of $342 is partially compensated for by 

an aggregate amenity effect of $221 and there is a positive external welfare effect of $52. 

Density has important positive amenity and resource implications, but also appears to create a 

scarcity rent, which harms renters and first-time buyers. 

Burchell and Mukherji, 2003 

Conventional Development Versus Managed Growth: The Costs of Sprawl 

We examined the effects of sprawl, or conventional development, versus managed (or "smart") 

growth on land and infrastructure consumption as well as on real estate development and public 

service costs in the United States. Mathematical impact models were used to produce US 

estimates of differences in resources consumed according to each growth scenario over the 

period 2000-2025. Sprawl produces a 21% increase in amount of undeveloped land converted 

to developed land (2.4 million acres) and approximately a 10% increase in local road lane-miles 

(188 300). Furthermore, sprawl causes about 10% more annual public service (fiscal) deficits 

($4.2 billion US dollars) and 8% higher housing occupancy costs ($13 000 US dollars per 

dwelling unit). Managed growth can save significant amounts of human and natural resources 

with limited effects on traditional development procedures. 

Burchell, Robert & Mukherji, Sahan. (2003). Conventional Development Versus Managed 

Growth: The Costs of Sprawl. American journal of public health. 93. 1534-40. 

10.2105/AJPH.93.9.1534. 



 

 

CAPCOA, 2021 

Handbook for Analyzing Greenhouse Gas Emission Reductions, Assessing Climate 

Vulnerabilities, and Advancing Health and Equity 

The California Air Pollution Control Officers Association (CAPCOA) produced an updated, 2021 

handful which provides methods to quantify greenhouse gas emission reductions from a 

specified list of measures, primarily focused on project level actions. In particular, the handbook 

provides guidance for combining emission reductions from transportation measures and 

adjusting VMT reductions to expected GHG savings. For several of the measures, CAPCOA 

uses Stevens, 2016 meta-regression elasticities of VMT which accounts for self-selection. 

 
https://www.caleemod.com/handbook/index.html 
 

Project Level Strategy Maximum GHG Reduction 

Increased residential density -30% 

Increased employment density -30% 

Transit oriented development -31% 

Affordable housing -28% 

Increased Residential Density 
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Increased Employment Density 

 

Transit Oriented Development 

 
  



 

 

Affordable Housing 

 

de Duren and Compean, 2015 

Growing Resources for Growing Cities: Density and the Cost of Municipal Public 

Services in Latin America 

We find that per capita municipal spending on public services is strongly and non-linearly 

correlated to urban population density. Optimal expenditure levels for municipal services are 

achieved with densities close to 9,000 residents per square kilometre. In our study of about 

8,600 municipalities of Brazil, Chile, Ecuador and Mexico, 85% of all municipalities are below 

this ideal density level. This result provides strong policy support for densification, particularly in 

medium-sized cities of developing countries, which are currently absorbing most of the world’s 

urban population growth. 

Libertun de Duren, N., & Guerrero Compeán, R. (2016). Growing resources for growing cities: 

Density and the cost of municipal public services in Latin America. Urban Studies, 53(14), 

3082–3107. https://doi.org/10.1177/0042098015601579 

EPA Smart Location Database 

The U.S. Environmental Protection Agency’s (EPA) and U.S. General Services Administration 

(GSA) Smart Location Database (SLD) addresses the growing demand for data products and 

tools that consistently compare the location efficiency of various places. The SLD summarizes 

several demographic, employment, and built environment variables for every Census block 

group (CBG) in the United States.2 The database includes indicators of the commonly cited “D” 

variables shown in the transportation research literature to be related to travel behavior. The Ds 

include residential and employment density, land use diversity, design of the built environment, 

access to destinations, and distance to transit. SLD variables can be used as inputs to travel 

demand models, baseline data for scenario planning studies, and combined into composite 

indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions. 

https://doi.org/10.1177/0042098015601579
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https://www.epa.gov/smartgrowth/smart-location-database-technical-documentation-and-user-
guide 

Ewing and Cervero, 2001 

Travel and the Built Environment: A Synthesis 

The potential to moderate travel demand through changes in the built environment is the subject 

of more than 50 recent empirical studies. Elasticities of travel demand with respect to density, 

diversity, design, and regional accessibility are then derived from selected studies. These 

elasticity values may be useful in travel forecasting and sketch planning and have already been 

incorporated into one sketch planning tool, the Environmental Protection Agency’s Smart 

Growth Index model. In weighing the evidence, what can be said, with a degree of certainty, 

about the effects of built environments on key transportation “outcome” variables: trip frequency, 

trip length, mode choice, and composite measures of travel demand, vehicle miles traveled 

(VMT) and vehicle hours traveled (VHT). Trip frequencies have attracted considerable academic 

interest of late. They appear to be primarily a function of socioeconomic characteristics of 

travelers and secondarily a function of the built environment. Trip lengths have received 

relatively little attention, which may account for the various degrees of importance attributed to 

the built environment in recent studies. Trip lengths are primarily a function of the built 

environment and secondarily a function of socioeconomic characteristics. Mode choices have 

received the most intensive study over the decades. Mode choices depend on both the built 

environment and socioeconomics (although they probably depend more on the latter). Studies 

of overall VMT or VHT find the built environment to be much more significant, a product of the 

differential trip lengths that factor into calculations of VMT and VHT. 

Ewing R, Cervero R. Travel and the Built Environment: A Synthesis. Transportation Research 
Record. 2001;1780(1):87-114. doi:10.3141/1780-10 

Ewing and Cervero, 2010 

Travel and the Built Environment: A Meta-Analysis 

Travel variables are generally inelastic with respect to change in measures of the built 

environment. Of the environmental variables considered here, none has a weighted average 

travel elasticity of absolute magnitude greater than 0.39, and most are much less. Still, the 

combined effect of several such variables on travel could be quite large. Consistent with prior 

work, we find that vehicle miles traveled (VMT) is most strongly related to measures of 

accessibility to destinations and secondarily to street network design variables. Walking is most 

strongly related to measures of land use diversity, intersection density, and the number of 

destinations within walking distance. Bus and train use are equally related to proximity to transit 

and street network design variables, with land use diversity a secondary factor. Surprisingly, we 

find population and job densities to be only weakly associated with travel behavior once these 

other variables are controlled. 

Reid Ewing & Robert Cervero (2010) Travel and the Built Environment, Journal of the American 
Planning Association, 76:3, 265-294, DOI: 10.1080/01944361003766766 

https://www.epa.gov/smartgrowth/smart-location-database-technical-documentation-and-user-guide
https://www.epa.gov/smartgrowth/smart-location-database-technical-documentation-and-user-guide
https://doi.org/10.1080/01944361003766766


 

 

Ewing and Cervero, 2017 

Does Compact Development Make People Drive Less?” the Answer Is Yes 

Both Stevens (2016) and we measure effect sizes in terms of elasticities of vehicles miles 

traveled (VMT) per capita with respect to the five D variables. So we are measuring the same 

thing but getting different results, characterizing them differently, and reaching different 

conclusions. The questions are why the differences, and who has come closest to capturing the 

truth about travel and the built environment? We would never equate Stevens’s well-

documented, well-reasoned, empirical study to Echenique’s poorly documented simulation 

study, but it may have the potential to do more harm simply because of its relative rigor 

combined with its overreaching on conclusions. Saying that relationships are “inelastic” is not 

the same as saying that relationships are “small.” Inelastic means that elasticities have an 

absolute magnitude of less than 1.0, which means that a 1% change in an independent variable 

may produce up to a 1% change in a dependent variable. No one would call that upper limit 

“small.” Indeed, we don’t think an elasticity of −0.22 is small. A halving of distance to downtown 

leads to a 22% reduction in VMT. 

Ewing et al, 2019 

Key Enhancements to the WFRC/MAG Four-Step Travel Demand Model 

In a National Transit Institute course on “Coordinating Land Use and Transportation,” co-taught 

by Robert Cervero, Uri Avin, and the Principal Investigator on this project, the analytic tools 

session began with a hypothetical: assume that all households, jobs, and other trip generators 

are concentrated in a walkable village rather than segregated by use and spread across a traffic 

analysis zone in the standard suburban fashion. The instructor then asks: How would the 

outputs of conventional four-step travel demand models differ between these two future land 

use scenarios. The answer, to most participants’ surprise, was “Not at all.” Conventional four-

step travel demand models are used by nearly all metropolitan planning organizations (MPOs), 

state departments of transportation, and local planning agencies, as the basis for long-range 

transportation planning in the United States. In the simplest terms, the four-step model proceeds 

from trip generation, to trip distribution, to mode choice, and finally to route assignment. Trip 

generation tells us the number of trips generated (produced or attracted) in each traffic analysis 

zone (TAZ), usually based on some prediction of vehicle ownership. Trip distribution tells us 

where the trips go, matching trip productions to trip attractions by considering the spatial 

distribution of productions and attractions as well as the impedance (time or cost) of 

connections. Particularly tricky are predictions of trips that remain within the same zone. Mode 

choice tells us which mode of travel is used for these trips, factoring trip tables to reflect the 

relative shares of different modes. Route assignment tells us what routes are taken, assigning 

trips to networks that are specific to each mode. A flaw of the four-step model is its relative 

insensitivity to the so-called D variables. The D variables are characteristics of the built 

environment that are known to affect travel behavior. The Ds are development density, land use 

diversity, street network design, destination accessibility, and distance to transit. This report 

develops a vehicle ownership model (car shedding model), an intrazonal travel model (internal 

capture model), and mode choice model that consider all of the D variables based on household 

travel surveys and built environmental data for 32, 31, and 29 regions, respectively, validates 
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the models, and demonstrates that the models have far better predictive accuracy than Wasatch 

Front Regional Council (WFRC)/Mountainland Association of Governments’ (MAG) current 

models. 

Ewing, R., Sabouri, S., Park, K., Lyons, T., & Tian, G. Key Enhancements to the WFRC/MAG 
Four-Step Travel Demand Model. NITC-RR-1086. Portland, OR: Transportation Research and 
Education Center (TREC), 2019. https://dx.doi.org/10.15760/trec.246 

Ewing et al, 2014 

Varying Influences of the Built Environment on Household Travel in 15 Diverse Regions 
of the United States 

This study pools household travel and built environment data from 15 diverse US regions to 

produce travel models with more external validity than any to date. It uses a large number of 

consistently defined built environmental variables to predict five household travel outcomes – 

car trips, walk trips, bike trips, transit trips and vehicle miles traveled (VMT). It employs 

multilevel modelling to account for the dependence of households in the same region on shared 

regional characteristics and estimates ‘hurdle’ models to account for the excess number of zero 

values in the distributions of dependent variables such as household transit trips. It tests built 

environment variables for three different buffer widths around household locations to see which 

scale best explains travel behavior. The resulting models are appropriate for postprocessing 

outputs of conventional travel demand models, and for sketch planning applications in traffic 

impact analysis, climate action planning and health impact assessment. 

Ewing, R., Tian, G., Goates, JP., Zhang, M., Greenwald, M. J., Joyce, A., Kircher, J., & Greene, 
W. (2015). Varying influences of the built environment on household travel in 15 diverse regions 
of the United States. URBAN STUDIES, 52(13), 2330-
2348. https://doi.org/10.1177/0042098014560991 

Ganson and Miller, 2015 

Mitigating Vehicle-Miles Traveled (VMT) in Rural Development 

Vehicle-miles traveled (VMT) as an environmental review metric is more effective at combating 

climate change than level of service (LOS), and policymakers are beginning to advance its 

adoption for this purpose. Years of research and development prove that VMT mitigation 

strategies such as density, diversity, and design succeed in urban areas, but doubts remain 

about how VMT can be mitigated in rural development. This report reviews the current 

understanding of both urban VMT mitigation and rural development. Finally, additional literature 

and evidential case studies are explored to identify urban VMT mitigation strategies that can be 

modified for the rural scale as well as mitigation strategies unique to the rural context. 

Ruth Miller, 415-373-6442, ruth@blinktag.com and Christopher Ganson, Governor’s Office of 

Planning and Research, 916-324-9236, Email: chris.ganson@opr.ca.gov for National 

Academies Transportation Research Board (TRB) Annual Meeting 2015 

Houston, 2014 

Implications of the modifiable areal unit problem for assessing built environment 

correlates of moderate and vigorous physical activity 

https://dx.doi.org/10.15760/trec.246


 

 

This study assesses the influence of the Modifiable Areal Unit Problem (MAUP) in analysis of 

the effect of built environment (BE) exposure on moderate and vigorous physical activity 

(MVPA) during walking periods. Adults (n = 55) wore a GPS unit and accelerometer for up to 7 

days. More nearby green space, residential use, and open space were positively associated 

with MVPA after controlling for socio-demographics. Scale and zoning effects were observed in 

models of momentary BE-MVPA relationships using different scales and zone configurations. 

Compared to larger aggregation zones, proximate measures may be better for assessing green 

space and land use exposure during walking periods. Results do not support a prescriptive 

recommendation whether future studies should use a buffer- or grid-based zonal configuration. 

Douglas Houston, Implications of the modifiable areal unit problem for assessing built 
environment correlates of moderate and vigorous physical activity, Applied Geography, Volume 
50, 2014, Pages 40-47, ISSN 0143-6228, https://doi.org/10.1016/j.apgeog.2014.02.008. 

Ihlanfedlt, 2020 

Vehicle Miles Traveled and the Built Environment: New Evidence from Panel Data 

There has been considerable interest in the impact that the built environment has on vehicle 

miles traveled (VMT). While this issue has been extensively researched, due to the heavy 

reliance on crosssectional data, there remains uncertainty regarding how effective local land 

use planning and regulation might be in reducing VMT. Based on a 13-year panel of Florida 

counties, models are estimated that relate VMT to new measures of the spatial distribution of 

alternative land uses within counties and county urban expansion. Identification of causal effects 

is established by including year and county fixed effects, along with an extensive set of control 

variables, and instrumenting those land uses that may be endogenous. Incremental annual 

changes in the spatial concentration of alternative land uses are found to affect VMT. The policy 

implication is that appropriate land use policy can reduce VMT and should be considered part of 

the strategy for dealing with the problem of global warming. 

Ihlanfeldt, K. (2020). Vehicle miles traveled and the built environment: New evidence from panel 
data. Journal of Transport and Land Use, 13(1), 23–48. https://www.jstor.org/stable/26967234 

Knuiman et al, 2014 

A longitudinal analysis of the influence of the neighborhood built environment on 

walking for transportation: the RESIDE study  

The purpose of the present analysis was to use longitudinal data collected over 7 years (from 4 

surveys) in the Residential Environments (RESIDE) Study (Perth, Australia, 2003-2012) to more 

carefully examine the relationship of neighborhood walkability and destination accessibility with 

walking for transportation that has been seen in many cross-sectional studies. We compared 

effect estimates from 3 types of logistic regression models: 2 that utilize all available data (a 

population marginal model and a subject-level mixed model) and a third subject-level conditional 

model that exclusively uses within-person longitudinal evidence. The results support the 

evidence that neighborhood walkability (especially land-use mix and street connectivity), local 

access to public transit stops, and variety in the types of local destinations are important 

determinants of walking for transportation. The similarity of subject-level effect estimates from 

logistic mixed models and those from conditional logistic models indicates that there is little or 

https://www.jstor.org/stable/26967234
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no bias from uncontrolled time-constant residential preference (self-selection) factors; however, 

confounding by uncontrolled time-varying factors, such as health status, remains a possibility. 

These findings provide policy makers and urban planners with further evidence that certain 

features of the built environment may be important in the design of neighborhoods to increase 

walking for transportation and meet the health needs of residents. 

Knuiman MW, Christian HE, Divitini ML, Foster SA, Bull FC, Badland HM, Giles-Corti B. A 
longitudinal analysis of the influence of the neighborhood built environment on walking for 
transportation: the RESIDE study. Am J Epidemiol. 2014 Sep 1;180(5):453-61. doi: 
10.1093/aje/kwu171. Epub 2014 Aug 11. PMID: 25117660. 

Lee, 2022 

Exploring Associations Between Multimodality and Built Environment Characteristics in 
the U.S. 

This study demonstrated associations between multimodality and built environment 

characteristics, and proposed policy implications for fostering multimodal travel behaviors. It 

conducted a U.S. nationwide analysis using ordinary least square regression and gradient 

boosting decision tree regressor models with American Community Survey 2015–2019 5-year 

estimates and the United States Environmental Protection Agency Smart Location Database 

version 3.0. Notable findings were as follows: First, built environment characteristics were found 

to be statistically significant predictors of multimodality across the U.S. Second, certain features 

were identified as having considerable importance, specifically including population density, 

regional accessibility, walkability index, and network density, all of which should be given 

particular attention by transportation and land use planners. Third, the non-linear effects of built 

environment characteristics on multimodality suggested an effective range to encourage 

multimodal transportation choice behaviors in various situations. The findings can guide the 

development of effective strategies to transform the built environment, which may subsequently 

be used to minimize reliance on automobiles and promote people to travel more sustainably. 

Lee, Sangwan. 2022. "Exploring Associations between Multimodality and Built Environment 
Characteristics in the U.S." SUSTAINABILITY 14, no. 11: 6629. 
https://doi.org/10.3390/su14116629 

Litman, 2022 

Understanding Smart Growth Savings Evaluating Economic Savings and Benefits of 

Compact Development 

How communities develop can have many direct and indirect impacts. Smart Growth policies 

create more compact, multimodal development which reduces per capita land consumption and 

the distances between destinations. This, in turn, reduces the costs of providing public 

infrastructure and services, improves accessibility, and reduces motor vehicle travel, which 

provides many economic, social and environmental benefits. This report examines these 

impacts. It defines Smart Growth and its alternative, sprawl, summarizes current research 

concerning their costs and benefits, investigates consumer preferences, and evaluates Smart 

Growth criticisms. This report should be useful to anybody involved in development policy 

analysis. 

https://doi.org/10.3390/su14116629


 

 

Todd Litman (2014), Analysis of Public Policies That Unintentionally Encourage and Subsidize 

Urban Sprawl, commissioned by LSE Cities (www.lsecities.net), for the Global Commission on 

the Economy and Climate (www.newclimateeconomy.net); at https://bit.ly/2QqPhzc. 

Mansfield, Ehrlich, Zmud, and Lee, 2022 

Built Environment Influences on Active Travel in the Twin Cities Region: Evidence from a 
Smartphone-based Household Travel Survey. 

Using travel survey data collected via both smartphone and web-based survey methods, we 

found string associations between built environment factors and the likelihood of meeting 

Centers for Disease Control and Prevention (CDC) physical activity recommendations via active 

transportation. Additionally, we found that using location data beyond respondents’ home 

location to characterize built environment factors strengthened our findings, particularly related 

to employment density for the smartphone sample. This finding speaks to the importance of built 

environment factors in supporting active travel at non-home locations for non-home based trips. 

In addition, we found that measuring aspects of the transportation system itself, such as the 

density of bike facilities and the relative absence of major roadway barriers, are significantly 

associated with an increased likelihood of meeting CDC physical activity recommendations 

through active transportation. More broadly, the findings of this study provide strong evidence 

that rich location information provided by smartphone-based travel survey instruments can 

further our understanding of how the built environment shapes travel behavior. Further, our 

findings demonstrate how such data can be useful to stakeholders beyond traditional 

transportation professionals, including public health researchers and practitioners. 

Mansfield, Ehrlich, Zmud, and Lee, Built environment influences on active travel in the Twin 
Cities region: evidence from a smartphone-based household travel survey, 2022 

Mattson, 2021 

Relationships Between Density and Per Capita Municipal Spending in the United States 

The objective of this research is to determine the relationship between land use, particularly 

density, and per capita spending levels in cities across the United States. A model was 

developed using data from the U.S. Census Bureau’s Annual Survey of State and Local 

Government Finances to estimate the impacts of population-weighted density and other factors 

on per capita municipal spending. This study focused on municipal spending for eight categories 

that theoretically could be influenced by land use development: fire protection, streets and 

highways, libraries, parks and recreation, police, sewer, solid waste management, and water. 

Density was found to be negatively associated with per capita municipal expenditures for the 

following cost categories: operational costs for fire protection, streets and highways, parks and 

recreation, sewer, solid waste management, and water; construction costs for streets and 

highways, parks and recreation, sewer, and water; and land and existing facility costs for police, 

sewer, and water. Results were insignificant for other cost categories, and a positive 

relationship was found for police operations costs. In general, results support the conclusion 

that increased density is associated with reduced per capita municipal spending for several cost 

categories. 

https://bit.ly/2QqPhzc
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Jeremy Mattson (2021), “Relationships between Density and per Capita Municipal Spending in 

the United States,” Urban Science, Vo. 5/3: 69 (https://doi.org/10.3390/urbansci5030069). 

Ogra, 2014 

The Role of 6Ds: Density, Diversity, Design, Destination, Distance, and Demand 
Management in Transit Oriented Development (TOD) 

This paper reflects on the efficacy of Transit Oriented Development (TOD) and the primary 

components that constitute it. These components are widely recognized as manifesting 

themselves through the concept of “6Ds": Design, Diversity, Density, Distance, Destination, and 

Demand management. The paper thus investigates the main aspects that underlie these “Ds" 

and how they can equally be taken up in TOD initiatives. The development of efficient and 

sustainable transport systems has become a key mitigation method for major traffic problems 

such as congestion, poor mobility and access to services, as well as greenhouse gas 

emissions. The primary argument of this paper centers on the premise that the application of 

“6Ds" through TOD can go a long way in addressing current challenges that confront urban 

transport within cities. Using a case study, the paper contextualizes one of the “6Ds" and 

subsequent conclusions are drawn thereof in the form of key determinants. 

Aurobindo, Ogra, Robert, Ndebele, Department of Town and Regional Planning Faculty of 
Engineering and the Built Environment (FEBE)University of Johannesburg Beit Street, 
Doornfontein- 2028, Johannesburg, South Africa1aogra@uj.ac.za,2ziphoe@gmail.com 

Stantec, 2013 

Quantifying the Costs and Benefits to HRM, Residents and the Environment of Alternate 

Growth Scenarios 

Stantec (2013), Quantifying the Costs and Benefits to HRM, Residents and the Environment of 

Alternate Growth Scenarios, Halifax Regional Municipality (www.halifax.ca); at 

https://bit.ly/2X9k0TI. 

Stevens, 2016 

Does Compact Development Make People Drive Less? 

Planners commonly recommend compact development in part as a way of getting people to 

drive less, with the idea that less driving will lead to more sustainable communities. Planners 

base their recommendations on a substantial body of research that examines the impact of 

compact development on driving. Different studies, however, have found different outcomes: 

Some studies find that compact development causes people to drive less, while other studies do 

not. I use meta-regression analysis to a) explain why different studies on driving and compact 

development yield different results, and b) combine different findings from many studies into 

reliable statistics that can better inform planning practice. I address the following questions: 

Does compact development make people drive less, and if so, how much less? I find that 

compact development does make people drive less, because most of the compact development 

features I study have a statistically significant negative influence on driving. The impact, 

however, is fairly small: Compact development features do not appear to have much influence 

on driving. My findings are limited to some extent because they are derived from small sample 

https://doi.org/10.3390/urbansci5030069
mailto:Africa1aogra@uj.ac.za,2ziphoe@gmail.com


 

 

sizes. Planners should not rely on compact development as their only strategy for reducing 

driving unless their goals for reduced driving are very modest and can be achieved at a low 

cost. 

 
Stevens, M. R. (2017). Does Compact Development Make People Drive Less? Journal of the 

American Planning Association, 83(1), 7–18. https://doi.org/10.1080/01944363.2016.1240044 

Reid Ewing & Robert Cervero (2017) “Does Compact Development Make People Drive Less?” 
The Answer Is Yes, Journal of the American Planning Association, 83:1, 19-
25, DOI: 10.1080/01944363.2016.1245112 

Weeks, 2009 

Transportation Impacts of Smart Growth Development in Maine – Town of Lisbon and 

Town of Sanford 

This study evaluates the reductions in average trip lengths, daily vehicle miles traveled (VMT), 

and daily greenhouse gas (GHG) emissions from on-road automobiles due to smart growth 

development strategies in two Maine towns, Lisbon in Androscoggin County and Sanford in 

York County. In summary, analysis results for Lisbon and Sanford indicate that the densification 

and mixing of residential and employment growth as infill developments has a slight but 

observable impact on VMT and average trip lengths, some roadways in the towns experienced 

VMT increases, which were offset by greater VMT reductions on other roadways, resulting in 

net, network-wide VMT reductions, and greater reductions in VMT and GHG emissions could be 

attained through an increased share of daily transit trips by providing new transit service to/from 

the smart growth developments along existing transportation corridors. The results indicate that 

the efficacy of the smart growth scenarios to reduce VMT in Lisbon and Sanford is greatly 

limited without transit to complement the proposed dense, mixed-use developments. 

Andrew Weeks, University of Vermont Transportation Research Center, 2009.Transportation 

Impacts of Smart Growth Development in Maine – Town of Lisbon and Town of Sanford. 802) 

656‐1312, www.uvm.edu/trc 
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APPENDIX B. BUILT ENVIRONMENT DATABASE 

This document includes a list of built environment datasets compiled for the VTrans Smart 

Growth project. The source of each dataset is described along with any assumptions made or 

any pre-processing performed. 

All datasets listed were aggregated to H3 cells at level 8 resolution to create statewide hex 

layers. These data are compiled here: 

https://vhb.maps.arcgis.com/apps/mapviewer/index.html?webmap=a4f2713286eb46a6ab19f48

bccb7122e 

Socio-Economic Data 

Population 

• Vermont Census 2020 Redistricting Blocks 

• Source - Esri 

• Source Data URL: 

https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/Vermont_Census_

2020_Redistricting_Blocks/FeatureServer/0 

• ‘Total Population Count’ (POP100) attribute field was used to generate the hex layer 

• A lot of other demographic attributes are also available in this dataset 

• Technical documentation for the 2020 Census Redistricting block data: 

https://www2.census.gov/programs-surveys/decennial/2020/technical-

documentation/complete-tech-docs/summary-

file/2020Census_PL94_171Redistricting_StatesTechDoc_English.pdf 

Employment 

• ArcGIS Business Analyst Employment Data 

• Points of Interest Search for all business categories – Data Source: Data Axle 

• Statewide dataset had to be pieced together due to 5000 record display/export limit. 

Combined dataset available for project team to download from ‘VTrans Smart Growth’ 

ArcGIS Online group 

• Two hex layers were created from this dataset: ‘Count of Employees’ which summarizes 

the ‘Number of Employees’ (EMPNUM) attribute field for each cell, and ‘Count of 

Employers’ which totals the number of business point feature within each cell 

Income 

• ArcGIS Business Analyst 2022 Median Household Income 

• Statewide dataset had to be pieced together due to 5000 record display/export limit. 

Data downloaded in tabular format then joined to the Vermont Census 2020 Redistricting 



 

 

Block dataset. Combined dataset available for project team to download from ‘VTrans 

Smart Growth’ ArcGIS Online group 

Built Environment Data 

Land-Use Diversity 

• VT Data - Statewide Standardized Parcel Data - parcel polygons 

• Source: VCGI (Vermont Center for Geographic Information) 

• Source Data URL: 

https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN

DATA_Cadastral_VTPARCELS_poly_standardized_parcels_SP_v1/FeatureServer/0 

• Several hex layers were created to display statewide parcel data: 

o ‘Parcel Count’ – Count of parcels per hex cell 

o ‘Parcels – Residential’: Count of parcels categorized as 'Mobile Home/la', 'Mobile 

Home/un', 'Residential-1', 'Residential-2', Seasonal-1', or 'Seasonal-2'as‘ for the 

‘Category (Real Estate Only)’ attribute field 

o Parcels – Commercial/Industrial: Count of parcels categorized as 'Commercial', 

'Commercial Apt', 'Industrial' for the ‘Category (Real Estate Only)’ attribute field 

o Parcels – Woodland: Count of parcels categorized as ‘Woodland’ for the 

‘Category (Real Estate Only)’ attribute field 

o Parcels – Utilities: Count of parcels categorized as 'Utilities Elec', 'Utilities Other' 

for the ‘Category (Real Estate Only)’ attribute field 

o Parcels – Farms: Count of parcels categorized as ‘Farms’ for the ‘Category (Real 

Estate Only)’ attribute field 

o Parcels – Other: Count of parcels categorized as 'Miscellaneous', 'Other' for the 

‘Category (Real Estate Only)’ attribute field 

• VT Data - E911 Site Locations 

• Source: VCGI 

• Source Data URL: 

https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN

DATA_Emergency_ESITE_point_SP_v1/FeatureServer/0 

• Hex layer for count of E911 Site Locations per hex was created 

• ‘SITETYPE’ attribute includes 136 categories. Groupings have been developed and 

consolidated into 8 categories and will be applied appropriately. 

• ArcGIS Business Analyst Business Locations 

• See the entry for ArcGIS Business Analyst Employment Data above 
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Destination Access 

• Microsoft Building Footprints 

• Source: Microsoft Open Data Commons Open Database License 

• Source Data page with download reference: 

https://github.com/Microsoft/USBuildingFootprints 

• E911 Building Footprints 

• Source: VCGI 

• Source Data URL: 

https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN

DATA_Emergency_FOOTPRINTS_poly_SP_v1/FeatureServer/0 

• Hex layer for count of E911 footprints per hex was created 

• SafeGraph POI Visitation Summary 

• CSV file provided by John Adams (VCGI) 

• Vintage: 2019 

• Summarized by 1) top level place category, 2) 2019 quarterly data 3) level 9 hex 

• Extrapolated to level 8 hex layers by VHB 

• Median weekly visit hex layers for each 

Transportation Network 

• VT Road Centerline 

• Source: VTrans 

• Source Data URL: 

https://maps.vtrans.vermont.gov/arcgis/rest/services/Master/General/FeatureServer/39 

• Summarized by total length per hex 

• OpenStreetMap Sidewalks 

• Source: OpenStreetMap (OSM) 

• Extraction performed in R 

• Summarized by total length per hex 

• Chittenden County Sidewalks & Paths 

• Source: CCRPC 

• Source Data URL: 

https://map.ccrpcvt.org/arcgis/rest/services/CCRPC/CloseTheGap/MapServer/1 

• Summarized by total length per hex 



 

 

Public Transit 

• VT Data - Public -Transit Stops from GTFS Data-Feeds 

• Source: VCGI 

• Data Source URL: 

https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN

DATA_Trans_PUBLICTRANS_point_stops_SP_v1/FeatureServer/0 

• Hex layer represents count of stops per hex 

• VT Data - Public -Transit Routes from GTFS Data-Feeds 

• Source: VCGI 

• Data Source URL: 

https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN

DATA_Trans_PUBLICTRANS_line_routes_SP_v1/FeatureServer/0 

• Hex layer includes attributes for count of unique routes and summary of total route 

length per hex 

Other Datasets 

• Designated Growth Center 

• Source: ANR 

• Source Data URL: 

https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS

erver/3 

• Display by presence/absence 

• Existing Wastewater Service Area 

• Source: ANR 

• Source Data URL: 

https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS

erver/11 

• Hex Display – Count of EWSAs per hex 

• Electric Charging Stations 

• Source: ANR 

• Source Data URL: 

https://anrmaps.vermont.gov/arcgis/rest/services/map_services/ACCD_OpenData/MapS

erver/22 

• Display: Count of EV charging stations per hex 
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• VT Data – Broadband Status 2021 

• Source: VCGI 

• Source Data URL: 

https://maps.vcgi.vermont.gov/arcgis/rest/services/PSD_services/OPENDATA_PSD_LA

YERS_SP_NOCACHE_v1/MapServer/48 

• Separate hex layers for each category in the ‘BB_Status’ attribute field displaying count 

per hex 

• Broadband Availability information with descriptions of categories: 

https://publicservice.vermont.gov/content/broadband-availability 

• Categories/layers: 

o Broadband Served 100/100 

o Broadband Served 100/20 

o Broadband Served 25/3 

o Broadband Served 4/1 

o Broadband Underserved 

• Waterbody Coverage 

• Source: VCGI 

• Source Data URL: 

https://services1.arcgis.com/BkFxaEFNwHqX3tAw/arcgis/rest/services/FS_VCGI_OPEN

DATA_Water_VHDCARTO_poly_SP_v1/FeatureServer/0 

• Metadata: 

https://maps.vcgi.vermont.gov/gisdata/metadata/WaterHydro_VHDCARTO.htm 

• Percent waterbody coverage was calculated for each hex 



 

 

APPENDIX C. SCENARIO RULESETS 

 

Scenario rulesets 

Rulesets developed for each growth scenario are provided in detail below. Each of these 

rulesets is accompanied by Python code that generates allocations given baseline distribution of 

population and employment and county-level growth control totals. 
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Ruleset 1: Dispersed growth 

Growth cells: all cells with non-protected land are eligible to receive future growth.  

Allocation parameters: 

1. Planning regulation density cap: the population density above which planning regulations 

are required. 

Ruleset for growing counties: 

1. Starting with the least dense cell in the county, calculate the amount of new population the 

cell can receive before exceeding the planning regulation density cap. Allocate this 

population to the cell and subtract from the remaining county population allocation. 

2. Move to the next least cell and repeat step 1. Continue until all new growth has been 

allocated or population has been allocated to all cells in the county. 

3. If population has been allocated to all cells in the county up to the planning regulation 

density cap and the county allocation has not been exhausted, split the remaining growth 

across all cells. 

4. Allocate employment using the same process as was used to allocate population, again 

using the planning regulation density cap to limit employment density in allocation cells. 

Ruleset for shrinking counties: 

1. Starting with the densest cell in the county, calculate the difference between the baseline 

population and the planning regulation density cap. Remove this population from the cell 

and subtract from the remaining county deallocation. 

2. Move to the next densest cell and repeat step 1. Continue until the county deallocation has 

been reached, or population has been removed from all cells in the county. 

3. If population has been removed from all cells in the county up to the planning regulation 

density cap and the county deallocation has not been reached, split the remaining 

deallocation across all cells. 

4. Deallocate employment using the same process as was used to deallocate population. 

  



 

 

Ruleset 2: Concentrated growth, concentrated jobs 

Growth cells: cells that have wastewater service in the baseline year (2019) are eligible to 

receive future growth.  

Allocation parameters: 

1. Maximum allowed density: the highest population density allowed in any allocation cell. 

2. Jobs-population mix: the ratio of jobs to population assumed when allocating employment. 

Ruleset for growing counties: 

1. Starting with the densest growth cell in the county, calculate the amount of new population 

the cell can receive before exceeding the maximum allowed density. Allocate this population 

to the cell and subtract from the remaining county population allocation. 

2. Move to the next densest growth cell and repeat step 1. Continue until all new growth has 

been allocated or population has been allocated to all cells in the county. 

3. If population has been allocated to all growth cells in the county up to the maximum allowed 

density and the county allocation has not been exhausted, split the remaining allocation 

across all growth cells. 

4. Allocate employment using the same process as was used to allocate population, again 

using the planning regulation density cap to limit employment density in allocation cells. The 

jobs-population mix parameter is used to determine the number of jobs allocated to a given 

cell. 

Ruleset for shrinking counties: 

1. Starting with the least dense non-growth cell in the county, remove all population from the 

cell and subtract from the remaining county deallocation. 

2. Move to the next least dense non-growth cell and repeat step 1. Continue until the county 

deallocation has been reached, or population has been removed from all non-growth cells in 

the county. 

3. If population has been removed from all non-growth cells in the county and the county 

deallocation has not been reached, split the remaining deallocation across all growth cells. 

4. Deallocate employment using the same process as was used to deallocate population, 

deallocating employment until the jobs-population mix parameter is reached for a cell. 
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Ruleset 3: Concentrated growth, dispersed jobs  

Growth cells: cells that have wastewater service in the baseline year (2019) are eligible to 

receive future growth.  

Allocation parameters: 

1. Maximum allowed density: the highest population density allowed in any allocation cell. 

2. Jobs-population-mix: the ratio of jobs to population assumed when allocating employment. 

Ruleset for growing counties: 

1. Starting with the growth cell with the lowest employment density in the county, calculate the 

amount of new population the cell can receive before exceeding the maximum allowed 

density. Allocate this population to the cell and subtract from the remaining county 

population allocation. 

2. Move to the next densest growth cell and repeat step 1. Continue until all new growth has 

been allocated or population has been allocated to all cells in the county. 

3. If population has been allocated to all growth cells in the county up to the maximum allowed 

density and the county allocation has not been exhausted, split the remaining allocation 

across all growth cells. 

4. Allocate employment using the same process as was used to allocate population, but only 

allocate employment to non-growth cells in the county. The jobs-population mix parameter is 

used to determine the number of jobs allocated to a given cell. 

Ruleset for shrinking counties: 

1. Starting with the least dense non-growth cell in the county, remove all population from the 

cell and subtract from the remaining county deallocation. 

2. Move to the next least dense non-growth cell and repeat step 1. Continue until the county 

deallocation has been reached, or population has been removed from all non-growth cells in 

the county. 

3. If population has been removed from all non-growth cells in the county and the county 

deallocation has not been reached, split the remaining deallocation across all growth cells. 

4. Deallocate employment using the same process as was used to deallocate population. 



 

 

Ruleset 4: Concentrated growth, balanced land use  

Growth cells: cells within ACCD designations (Tier 1), as well as cells immediately adjacent to 

ACCD designations (Tier 2) and cells neighboring tier 2 cells (Tier 3).  

Allocation parameters: 

1. Smart Growth Prototype Percentile: the percentile value of baseline cell VMT used to define 

“exemplar” smart growth neighborhoods within each county typology. 

2. Prototype Boost Percentage: a percentage “boost” applied to the built environment 

characteristics calculated for prototype smart growth neighborhoods (e.g., 25% more dense)  

Ruleset for growing counties: 

1. Starting with the lowest-VMT Tier 1 growth cell in the county, calculate the amount of new 

population the cell can receive before exceeding the reference population density (derived 

from the exemplar smart growth neighborhoods). Allocate this population to the cell and 

subtract from the remaining county population allocation. 

2. Move to the next lowest-VMT Tier 1 growth cells and repeat step 1. Continue until all new 

growth has been allocated or population has been allocated to all Tier 1 growth cells. 

3. If unallocated population growth remains after allocating to all Tier 1 growth cells, repeat the 

process for Tier 2 growth cells, and again for Tier 3 growth cells. 

4. If unallocated population growth remains after allocating to all Tier 1, 2, and 3 growth cells in 

the county, split the remaining allocation across all growth cells. 

5. Allocate employment using the same process as was used to allocate population. 

Ruleset for shrinking counties: 

1. Starting with the highest-VMT non-growth cell in the county, remove all population from the 

cell and subtract from the remaining county deallocation. 

2. Move to the next highest-VMT non-growth cell and repeat step 1. Continue until the county 

deallocation has been reached, or population has been removed from all non-growth cells in 

the county. 

3. If population has been removed from all non-growth cells in the county and the county 

deallocation has not been reached, split the remaining deallocation across all Tier 1, 2, and 

3 growth cells. 

4. Deallocate employment using the same process as was used to deallocate population. 
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Ruleset 5: Concentrated growth, unbalanced land use  

Growth cells: cells within ACCD designations (Tier 1), as well as cells immediately adjacent to 

ACCD designations (Tier 2) and cells neighboring tier 2 cells (Tier 3).  

Allocation Parameters: 

1. Smart Growth Prototype Percentile: the percentile value of baseline cell VMT used to define 

“exemplar” smart growth neighborhoods within each county typology. 

2. Prototype Boost Percentage: a percentage “boost” applied to the built environment 

characteristics calculated for prototype smart growth neighborhoods (e.g., 25% more dense)  

Ruleset for growing counties: 

1. Starting with the lowest-VMT Tier 1 growth cell in the county, calculate the amount of new 

population the cell can receive before exceeding the reference population density (derived 

from the exemplar smart growth neighborhoods). Allocate this population to the cell and 

subtract from the remaining county population allocation. 

2. Move to the next lowest-VMT Tier 1 growth cells and repeat step 1. Continue until all new 

growth has been allocated or population has been allocated to all Tier 1 growth cells. 

3. If unallocated population growth remains after allocating to all Tier 1 growth cells, repeat the 

process for Tier 2 growth cells, and again for Tier 3 growth cells. 

4. If unallocated population growth remains after allocating to all Tier 1, 2, and 3 growth cells in 

the county, split the remaining allocation across all growth cells. 

5. Allocate employment starting with the cell with the highest employment density, but skipping 

any Tier 1 cells (i.e., do not allocate any employment to Tier 1 cells). 

Ruleset for shrinking counties: 

1. Starting with the highest-VMT non-growth cell in the county, remove all population from the 

cell and subtract from the remaining county deallocation. 

2. Move to the next highest-VMT non-growth cell and repeat step 1. Continue until the county 

deallocation has been reached, or population has been removed from all non-growth cells in 

the county. 

3. If population has been removed from all non-growth cells in the county and the county 

deallocation has not been reached, split the remaining deallocation across all Tier 1, 2, and 

3 growth cells. 

4. Deallocate employment using the same process as was used to deallocate population. 
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RSG promotes sustainable business practices that minimize negative impacts on the environment.  

We print all proposals and reports on recycled paper that utilizes a minimum of 30% postconsumer waste.  

RSG also encourages recycling of printed materials (including this document) whenever practicable.  
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