#### Attachment A

Memorandum of Agreement Between Vermont Agency of Transportation and Vermont Agency of Natural Resources



State of Vermont Agency of Transportation National Life Building Drawer 33 Montpelier, VT 05633-5001

# VIIAIS Working to Get You There

OFFICE OF THE SECRETARY

Dawn Terrill, Secretary

Office: (802) 828-2657 Fax: (802) 828-3522

May 18, 2005

Honorable James H. Douglas, Governor State of Vermont Pavilion Office Building, 5<sup>th</sup> Floor 109 State Street Montpelier, VT 05609-0101

Re: EPA Targeted Watershed Grant Nomination
Lamoille Valley Rail-Trail Flood Plain Encroachment Mitigation

Dear Governor Douglas:

Please consider this to constitute an expression of support by the Vermont Agency of Transportation for the flood plain encroachment mitigation project along the former Lamoille Valley Railroad corridor which is currently being reviewed by your office for nomination to the U.S. Environmental Protection Agency Targeted Watershed Grant Program.

VTrans has established a collaborative relationship with the Vermont Agency of Natural Resources to achieve mutually beneficial goals associated with this project proposal.

This is a truly exciting and innovative project whereby watershed scale environmental enhancements in non-point source water quality protection and restoration can be integrated into and made a critical element of a significant public transportation infrastructure investment.

Thank you very much for your support of this project proposal.

ny nov

Sincerely

Segretary of Transportation

cc: Thomas W. Torti, Secretary of Natural Resources

DT/jam

www.aot.state.vt.us
Telecommunications Relay Service 1-800-253-0191

Vermont is an Equal Opportunity Employer

# MEMORANDUM OF AGREEMENT BETWEEN VERMONT AGENCY OF TRANSPORTATION AND

# VERMONT AGENCY OF NATURAL RESOURCES, REGARDING

# FLOOD PLAIN ENCROACHMENT MITIGATION ACTIVITIES ALONG

#### FORMER LAMOILLE VALLEY RAILROAD CORRIDOR

THIS MEMORANDUM OF AGREEMENT ("Agreement" or "MOA"), is entered into this 18 day of \_\_\_\_\_\_\_, 20 4, by and between the Vermont Agency of Transportation ("VTrans") and the Vermont Agency of Natural Resources ("ANR");

WHEREAS, VTrans administers the State-owned railroad corridor between St. Johnsbury and Swanton, formerly operated by the Lamoille Valley Railroad Company ("LVRC"); and

WHEREAS, in Sec. 16(b) of Act No. 141 of 2002, the General Assembly directed VTrans to preserve the existing infrastructure of the LVRC corridor; and

WHEREAS, in Sec. 16(d)-(e) of Act No. 141 of 2002, the General Assembly directed VTrans to enter into a long-term lease with the Vermont Association of Snow Travelers (VAST) for trail use of that portion of the LVRC corridor between milepost 1.6 in St. Johnsbury and milepost 94.81 in Swanton; and

WHEREAS, in Sec. 17 of Act No. 56 of 2003, the General Assembly authorized VTrans, subject to approval by the federal Surface Transportation Board, to salvage rails and ties from the entire length of the LVRC corridor; and

WHEREAS, in Lamoille Valley R.R. Co. – Abandonment and Discontinuance of Trackage Rights Exemption – In Caledonia, Washington, Orleans, Lamoille and Franklin Counties. VT, STB Docket No. AB-444 (Sub-No. 1X) (served Feb. 13, 2004), the federal Surface Transportation Board authorized railbanking and interim trail use of the LVRC corridor under the federal Trails Act, 16 U.S.C. § 1247(d); and

WHEREAS, ANR has been charged with mitigation of flood and erosion hazards, and with the protection and restoration of water quality in the Lake Champlain watershed by, among other means, the re-establishment of stream channel stability, mitigation of flood plain encroachments, and the reduction of sediment and phosphorus mobilization by way of the fluvial system to the lake;

NOW, THEREFORE, the parties agree as follows:

- 1. Acknowledgment of Railbanking. The parties acknowledge that use of the former LVRC right-of-way is subject to the State of Vermont's continuing to meet its responsibilities under 49 C.F.R. § 1152.29 (Prospective use of rights-of-way for interim trail use and rail banking) and therefore is subject to possible future reconstruction and reactivation of the right-of-way for rail service.
- 2. Objectives of Flood Plain Encroachment Mitigation Activities. VTrans and ANR concur in the following objectives:
- (a) Mitigating flood plain encroachments, where possible (see site evaluation criteria), along the Lamoille River and Black Creek caused by the LVRC railroad embankments;
- (b) Protecting and restoring the water quality within the Lake Champlain watershed through the enhanced capture and storage of nutrient-laden sediment within re-established flood plain areas;
- (c) Reducing the potential of catastrophic rail-trail maintenance costs due to flood and erosion;
- (d) Enhancing the likelihood of successful rail-trail conversion through the introduction of multi-objective outcomes;
- (e) Providing flood and erosion mitigation benefits to private property owners and public infrastructure within the Lamoille River and Black Creek watersheds;
  - (f) Accessing additional and diverse funding sources to assist in project implementation;
- (g) Bringing diverse stakeholders to the table and build broad based support for the rail-trail project; and
- (h) Enhancing associated, non-trail recreational values represented by the Lamoille River and Black Creek.
- 3. Principles Guiding Flood Plain Encroachment Activities. VTrans and ANR concur in the following principles guiding flood plain encroachment activities within the LVRC corridor:
- (a) All flood plain encroachment mitigation activities shall be consistent with federal laws and regulations governing rail banking and interim trail use, as well as state legislation applicable to the LVRC corridor;
- (b) All flood plain encroachment mitigation activities will consider the relative burden of structural modifications needed for possible reactivation of the right-of-way for rail service.

- (c) In the event of possible reactivation of the right-of-way for rail service, ANR will be responsible for functional replacement of rail infrastructure removed as part of ANR's flood plain encroachment mitigation activities.
- (d) When evaluating sites for flood plain encroachment mitigation activities, ANR shall be primarily responsible for liaison with VAST, local legislative bodies, adjoining landowners, and affected utilities. On request, VTrans will provide ANR with available valuation plans, leases, licenses, crossing inventories, and other property management information.
- (e) No undue property management costs shall accrue to VTrans and/or its lessees and licensees as a result of ANR's flood plain eneroachment mitigation activities.
- (f) ANR will be responsible for obtaining regulatory authorizations for trail structural modifications prior to implementation.
- (g) For construction activities which overlap into highway rights-of-way or divert drainage into highway rights-of-way, ANR will be responsible for obtaining 19 V.S.A. § 1111 permits from VTrans (for state highways) and from municipalities (for town highways).
- (h) All flood plain encroachment mitigation projects shall be consistent with the proposed trail uses.
- (i) Any costs associated with flood plain encroachment mitigation projects shall be funded by ANR from new grant monies.
- (j) An interagency Lamoille Valley Rail Trail Flood Plain Encroachment Mitigation Committee shall be formed, to be chaired by ANR and made up of stakeholder representatives. The committee shall exist for so long as flood plain encroachment mitigation opportunities and activities continue along the LVRC corridor.
- 4. Preliminary Flood Plain Site Evaluation Criteria. VTrans and ANR concur in the following preliminary flood plaint site evaluation criteria:
- (a) No mitigation sites will be selected that are located within the Federal Emergency Management Agency (FEMA) designated floodway.
  - (b) All sites located in existing washout areas will be given consideration.
  - (c) Mitigation will reduce threats to public safety.
  - (d) Mitigation will reduce threats to public infrastructure.
  - (e) Mitigation will reduce threats to private property.

- (f) Mitigation will provide for the greatest hydrologic attenuation, reducing erosion by creating a better balance between stream power and channel boundary conditions, and maximizing sediment capture and nutrient uptake.
  - (g) Mitigation will be consistent with the VAST's phased trail implementation plan.
- (h) Mitigation is supported by the legislative body of the municipality and by adjoining landowners.
- 5. Miscellaneous. VTrans and ANR will support and assist each other in the pursuit of funding resources, development of procedural and technical standards, site evaluation and selection, public process, and implementation of flood plain mitigation activities.

| AGENCY OF TRANSPORTATION    | AGENCY OF NATURAL RESOURCES    |  |  |  |
|-----------------------------|--------------------------------|--|--|--|
|                             | L                              |  |  |  |
| Dawn Terrill                | Thomas W. Torti                |  |  |  |
| Secretary of Transportation | Secretary of Natural Resources |  |  |  |
| APPROVED AS TO FORM:        | APPROVED AS TO FORM:           |  |  |  |
| DATED:                      | DATED: 5/18/05                 |  |  |  |
|                             | Sont C. Quin                   |  |  |  |
| ASSISTANT ATTORNEY GENERAL  | ANR GENERAL COUNSEL            |  |  |  |

g:\wptext\MOA - LVRC Corridor.doc 05-18-2005

# MEMORANDUM OF AGREEMENT BETWEEN VERMONT AGENCY OF TRANSPORTATION AND VERMONT AGENCY OF NATURAL RESOURCES, REGARDING FLOOD PLAIN ENCROACHMENT MITIGATION ACTIVITIES ALONG FORMER LAMOILLE VALLEY RAILROAD CORRIDOR

| THIS MEMORAND                | UM OF AGREEMENT ("Agreement" or "MOA"), is entered into |
|------------------------------|---------------------------------------------------------|
| this day of                  | , 20, by and between the Vermont Agency of              |
| Transportation ("VTrans") an | d the Vermont Agency of Natural Resources ("ANR");      |

WHEREAS, VTrans administers the State-owned railroad corridor between St. Johnsbury and Swanton, formerly operated by the Lamoille Valley Railroad Company ("LVRC"); and

WHEREAS, in Sec. 16(b) of Act No. 141 of 2002, the General Assembly directed VTrans to preserve the existing infrastructure of the LVRC corridor; and

WHEREAS, in Sec. 16(d)-(e) of Act No. 141 of 2002, the General Assembly directed VTrans to enter into a long-term lease with the Vermont Association of Snow Travelers (VAST) for trail use of that portion of the LVRC corridor between milepost 1.6 in St. Johnsbury and milepost 94.81 in Swanton; and

WHEREAS, in Sec. 17 of Act No. 56 of 2003, the General Assembly authorized VTrans, subject to approval by the federal Surface Transportation Board, to salvage rails and ties from the entire length of the LVRC corridor; and

WHEREAS, in Lamoille Valley R.R. Co. – Abandonment and Discontinuance of Trackage Rights Exemption – In Caledonia, Washington, Orleans, Lamoille and Franklin Counties. VT, STB Docket No. AB-444 (Sub-No. 1X) (served Feb. 13, 2004), the federal Surface Transportation Board authorized railbanking and interim trail use of the LVRC corridor under the federal Trails Act, 16 U.S.C. § 1247(d); and

WHEREAS, ANR has been charged with mitigation of flood and erosion hazards, and with the protection and restoration of water quality in the Lake Champlain watershed by, among other means, the re-establishment of stream channel stability, mitigation of flood plain encroachments, and the reduction of sediment and phosphorus mobilization by way of the fluvial system to the lake;

NOW, THEREFORE, the parties agree as follows:

- 1. Acknowledgment of Railbanking. The parties acknowledge that use of the former LVRC right-of-way is subject to the State of Vermont's continuing to meet its responsibilities under 49 C.F.R. § 1152.29 (Prospective use of rights-of-way for interim trail use and rail banking) and therefore is subject to possible future reconstruction and reactivation of the right-of-way for rail service.
- 2. Objectives of Flood Plain Encroachment Mitigation Activities. VTrans and ANR concur in the following objectives:
- (a) Mitigating flood plain encroachments, where possible (see site evaluation criteria), along the Lamoille River and Black Creek caused by the LVRC railroad embankments;
- (b) Protecting and restoring the water quality within the Lake Champlain watershed through the enhanced capture and storage of nutrient-laden sediment within re-established flood plain areas;
- (c) Reducing the potential of catastrophic rail-trail maintenance costs due to flood and erosion;
- (d) Enhancing the likelihood of successful rail-trail conversion through the introduction of multi-objective outcomes;
- (e) Providing flood and erosion mitigation benefits to private property owners and public infrastructure within the Lamoille River and Black Creek watersheds;
  - (f) Accessing additional and diverse funding sources to assist in project implementation;
- (g) Bringing diverse stakeholders to the table and build broad based support for the rail-trail project; and
- (h) Enhancing associated, non-trail recreational values represented by the Lamoille River and Black Creek.
- 3. Principles Guiding Flood Plain Encroachment Activities. VTrans and ANR concur in the following principles guiding flood plain encroachment activities within the LVRC corridor:
- (a) All flood plain encroachment mitigation activities shall be consistent with federal laws and regulations governing rail banking and interim trail use, as well as state legislation applicable to the LVRC corridor;
- (b) All flood plain encroachment mitigation activities will consider the relative burden of structural modifications needed for possible reactivation of the right-of-way for rail service.

- (c) In the event of possible reactivation of the right-of-way for rail service, ANR will be responsible for functional replacement of rail infrastructure removed as part of ANR's flood plain encroachment mitigation activities.
- (d) When evaluating sites for flood plain encroachment mitigation activities, ANR shall be primarily responsible for liaison with VAST, local legislative bodies, adjoining landowners, and affected utilities. On request, VTrans will provide ANR with available valuation plans, leases, licenses, crossing inventories, and other property management information.
- (e) No undue property management costs shall accrue to VTrans and/or its lessees and licensees as a result of ANR's flood plain encroachment mitigation activities.
- (f) ANR will be responsible for obtaining regulatory authorizations for trail structural modifications prior to implementation.
- (g) For construction activities which overlap into highway rights-of-way or divert drainage into highway rights-of-way, ANR will be responsible for obtaining 19 V.S.A. § 1111 permits from VTrans (for state highways) and from municipalities (for town highways).
- (h) All flood plain encroachment mitigation projects shall be consistent with the proposed trail uses.
- (i) Any costs associated with flood plain encroachment mitigation projects shall be funded by ANR from new grant monies.
- (j) An interagency Lamoille Valley Rail Trail Flood Plain Encroachment Mitigation Committee shall be formed, to be chaired by ANR and made up of stakeholder representatives. The committee shall exist for so long as flood plain encroachment mitigation opportunities and activities continue along the LVRC corridor.
- 4. Preliminary Flood Plain Site Evaluation Criteria. VTrans and ANR concur in the following preliminary flood plaint site evaluation criteria:
- (a) No mitigation sites will be selected that are located within the Federal Emergency Management Agency (FEMA) designated floodway.
  - (b) All sites located in existing washout areas will be given consideration.
  - (c) Mitigation will reduce threats to public safety.
  - (d) Mitigation will reduce threats to public infrastructure.
  - (e) Mitigation will reduce threats to private property.

- (f) Mitigation will provide for the greatest hydrologic attenuation, reducing erosion by creating a better balance between stream power and channel boundary conditions, and maximizing sediment capture and nutrient uptake.
  - (g) Mitigation will be consistent with the VAST's phased trail implementation plan.
- (h) Mitigation is supported by the legislative body of the municipality and by adjoining landowners.
- 5. Miscellaneous. VTrans and ANR will support and assist each other in the pursuit of funding resources, development of procedural and technical standards, site evaluation and selection, public process, and implementation of flood plain mitigation activities.

| STATE OF VERMONT AGENCY OF TRANSPORTATION                               | STATE OF VERMONT<br>AGENCY OF NATURAL RESOURCES   |
|-------------------------------------------------------------------------|---------------------------------------------------|
| Dawn Terrill Secretary of Transportation                                | Thomas W. Torti<br>Secretary of Natural Resources |
| APPROVED AS TO FORM:                                                    | APPROVED AS TO FORM:                              |
| DATED: 5-18-2005                                                        | DATED:                                            |
| ASSISTANT ATTORNEY CENERAL g:\wptext\MOA - LVRC Corridor.doc 05-18-2005 | ANR GENERAL COUNSEL                               |

# Attachment B

Hydrologic Analysis

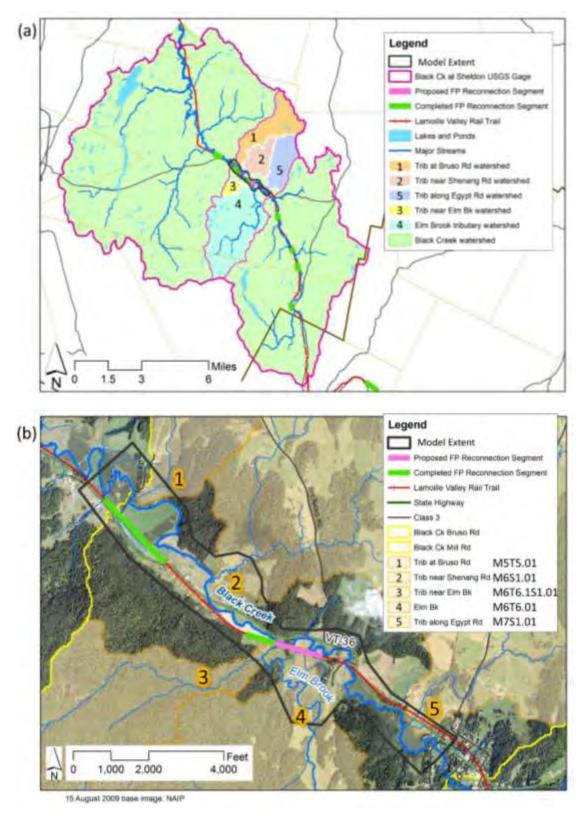



Figure B-1. Location of (a) hydraulic model domain within Black Creek watershed; and (b) major tributaries joining the Black Creek within model domain.

Table B-1. Summary of Basin Characteristics and Peak Flows for Study Area and Tributaries.

|                      | J             |             |             |             |             |            |            |            |           |            |
|----------------------|---------------|-------------|-------------|-------------|-------------|------------|------------|------------|-----------|------------|
|                      |               | Α           | В           | С           | D           | 1          | 2          | 3          | 4         | 5          |
|                      |               |             | Black Ck at |             |             |            |            |            |           |            |
|                      |               | Black Ck at | •           | Black Ck at | Black Ck at | Trib at    |            | Trib near  |           | Trib along |
|                      |               | Missiquoi   | at Sheldon  | Bruso Rd    | Mill Rd     | Bruso Rd   | Shenang Rd | Elm Bk     | Elm Brook | Egypt Rd   |
|                      |               |             |             |             |             |            |            |            |           |            |
| Latitude             |               | 44.89483    | 44.8806     | 44.80442    | 44.78375    | 44.80411   | 44.79819   | 44.79304   | 44.79309  | 44.78773   |
| Longitude            |               | -72.94381   | -72.94276   | -72.89328   | -72.86075   | -72.89281  | -72.88489  | -72.8791   | -72.87678 | -72.86495  |
| Date Streamstats Acc | essed         | 11/13/2018  | 11/11/2018  | 11/10/2018  | 11/10/2018  | 11/11/2018 | 11/11/2018 | 11/11/2018 | 11/2/2018 | 11/11/2018 |
| Basin Characte       | ristics       |             |             |             |             |            |            |            |           |            |
| Parameter Code       | Unit          |             |             |             |             |            |            |            |           |            |
| DRNAREA              | square miles  | 120         | 119         | 53.2        | 36.3        | 3.45       | 1.67       | 0.49       | 7.61      | 2.36       |
| LC06STOR             | percent       | 4.08        | 4.1         | 2.23        | 2.94        | 1.4        | 0          | 1.05       | 0.56      | 0.27       |
| PRECPRIS10           | inches        | 44          | 44          | 45.8        | 46          | 45.7       | 43.8       | 44         | 46.1      | 44.9       |
| CENTROIDX            | feet          | 467572.7    | 467589.9    | 472282.3    | 473268.6    | 471593.5   | 470723.5   | 468753.7   | 468811.8  | 472323.3   |
| CENTROIDY            | feet          | 254015.6    | 253928.5    | 250315      | 248373.1    | 258767.4   | 256503.6   | 254404.6   | 251478.6  | 256283.9   |
| EL1200               | percent       | 4.85        | 4.89        | 8.67        | 10.4        | 4.15       | 0          | 0.69       | 8.99      | 0.2        |
| LC11DEV              | percent       | 3.99        | 3.89        | 3.39        | 3.36        | 2.63       | 3.37       | 0          | 2.08      | 3.75       |
| LC11IMP              | percent       | 0.72        | 0.69        | 0.51        | 0.49        | 0.11       | 0.3        | 0          | 0.33      | 0.45       |
| OUTLETX              | feet          | 464945      | 465015      | 468885      | 471445      | 468925     | 469545     | 470005     | 470185    | 471115     |
| OUTLETY              | feet          | 266165      | 264585      | 256095      | 253795      | 256065     | 255405     | 254835     | 254835    | 254235     |
|                      |               |             |             |             |             |            |            |            |           |            |
| Peak-Flow Statis     | stics Flow Re | port        |             |             |             |            |            |            |           |            |
| 2 Year Peak Flood    | ft^3/s        | 2620        | 2590        | 1520        | 1030        | 140        | 86.6       | 23.8       | 325       | 115        |
| 5 Year Peak Flood    | ft^3/s        | 3930        | 3890        | 2320        | 1570        | 223        | 140        | 39         | 513       | 185        |
| 10 Year Peak Flood   | ft^3/s        | 4890        | 4850        | 2920        | 1990        | 288        | 182        | 51.3       | 660       | 240        |
| 25 Year Peak Flood   | ft^3/s        | 6290        | 6240        | 3800        | 2600        | 385        | 245        | 69.6       | 878       | 323        |
| 50 Year Peak Flood   | ft^3/s        | 7460        | 7400        | 4540        | 3110        | 469        | 301        | 85.7       | 1070      | 395        |
| 100 Year Peak Flood  | ft^3/s        | 8680        | 8610        | 5330        | 3660        | 561        | 362        | 104        | 1270      | 474        |
| 200 Year Peak Flood  | ft^3/s        | 10000       | 9950        | 6210        | 4260        | 663        | 431        | 124        | 1500      | 563        |
| 500 Year Peak Flood  | ft^3/s        | 12000       | 11900       | 7520        | 5160        | 815        | 535        | 154        | 1850      | 697        |

Table B-1. (continued) (Abbreviations)

| Parameter Code | Parameter Description                                                              | Unit         |
|----------------|------------------------------------------------------------------------------------|--------------|
| DRNAREA        | Area that drains to a point on a stream                                            | square miles |
| LC06STOR       | Percentage of water bodies and wetlands determined from the NLCD 2006              | percent      |
| PRECPRIS10     | Basin average mean annual precipitation for 1981 to 2010 from PRISM                | inches       |
| CENTROIDX      | Basin centroid horizontal (x) location in state plane coordinates                  | feet         |
| CENTROIDY      | Basin centroid vertical (y) location in state plane units                          | feet         |
| EL1200         | Percentage of basin at or above 1200 ft elevation                                  | percent      |
| LC11DEV        | Percentage of developed (urban) land from NLCD 2011 classes 21-24                  | percent      |
| LC11IMP        | Average percentage of impervious area determined from NLCD 2011 impervious dataset | percent      |
| OUTLETX        | Basin outlet horizontal (x) location in state plane coordinates                    | feet         |
| OUTLETY        | Basin outlet vertical (y) location in state plane coordinates                      | feet         |

Table B-2. Characteristics of USGS Streamflow Gauges used in Hydrologic Analysis

|                                            |        | Black Creek at           | Missisquoi R. at                | Lamoille R. at           |
|--------------------------------------------|--------|--------------------------|---------------------------------|--------------------------|
|                                            |        | Sheldon, VT <sup>6</sup> | East Berkshire, VT <sup>7</sup> | Johnson, VT <sup>7</sup> |
| USGS Streamflow Gauge                      |        | # 04293795               | # 04293500                      | # 04292000               |
| Period of Record                           |        | 2009-2011                | 1990-pres                       | 1910-pres                |
|                                            | Basir  | n Characterist           | ics                             |                          |
| Drainage Area                              | sq mi  | 119                      | 479                             | 310                      |
| Gauge Elevation                            | ft     | 340.4                    | 402.5                           | 506.7                    |
| Percent Storage <sup>1</sup>               | %      | 4.1                      | 1.01                            | 3.5                      |
| Mean Annual Precipitation <sup>2</sup>     | inches | 44                       | 50.8                            | 45.6                     |
| Basin elevation above 1200 ft <sup>3</sup> | %      | 4.89                     | 35.2                            | 63.6                     |
| Percent Forest <sup>8</sup>                | %      | NA                       | 45.0                            | 68                       |
| Percent Development <sup>4</sup>           | %      | 3.9                      | 2.1                             | 4.8                      |
| Percent Impervious <sup>5</sup>            | %      | 0.69                     | 3.6                             | 0.94                     |
|                                            | Peak   | k-Flow Statist           | ics                             |                          |
| 2 Year Peak Flood                          | cfs    | 2,590                    | 10,100                          | 7,270                    |
| 5 Year Peak Flood                          | cfs    | 3,890                    | 13,500                          | 9,640                    |
| 10 Year Peak Flood                         | cfs    | 4,850                    | 15,900                          | 11,300                   |
| 25 Year Peak Flood                         | cfs    | 6,240                    | 19,400                          | 13,400                   |
| 50 Year Peak Flood                         | cfs    | 7,400                    | 22,100                          | 15,100                   |
| 100 Year Peak Flood                        | cfs    | 8,610                    | 25,100                          | 16,700                   |
| 200 Year Peak Flood                        | cfs    | 9,950                    | 28,300                          | 18,500                   |
| 500 Year Peak Flood                        | cfs    | 11,900                   | 32,900                          | 20,900                   |

#### Notes:

- 1 Percentage of water bodies and wetlands determined from the NLCD 2006
- 2 Basin average mean annual precipitation for 1981 to 2010 from PRISM
- 3 Percentage of basin at or above 1200 ft elevation
- 4 Percentage of developed (urban) land from NLCD 2011 classes 21-24
- 5 Average percentage of impervious area determined from NLCD 2011 impervious dataset
- 6 Peak flows generated in Streamstats from regression equations of Olson (2014).
- 7 Peak flows estimated as presented in App 3 of Olson (2014).
- 8 StreamStats Data-Collection Stations Report accessed 12/28/2018 at:

https://streamstatsags.cr.usgs.gov/gagepages/html/04292000.htm https://streamstatsags.cr.usgs.gov/gagepages/html/04293500.htm

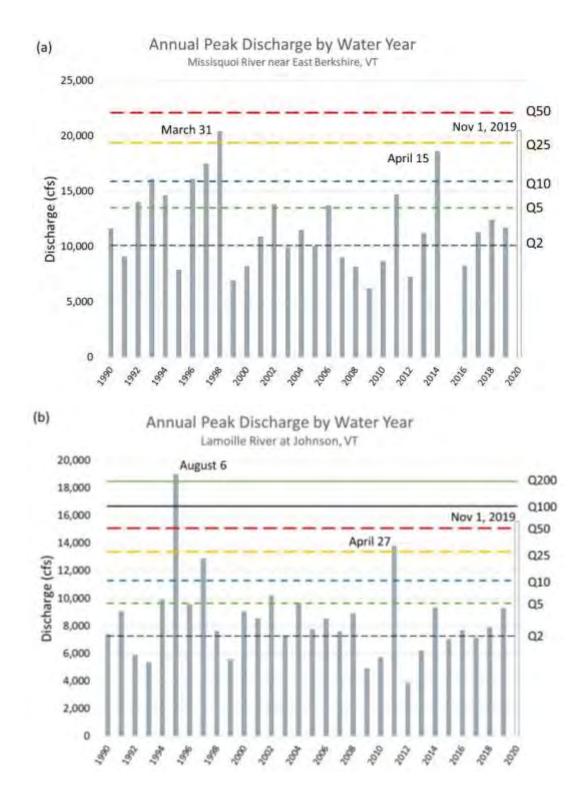



Figure B-2. Annual peak discharge recorded at USGS stream flow gauges on the (a) Missisquoi River at East Berkshire and (b) Lamoille River at Johnson. "Halloween storm" of November 1, 2019 is presented as maximum of provisional discharge recorded through 30 June 2020. Peak flow magnitudes, shown in colored dashed lines, are sourced from Appendix 3 of Olson (2014).

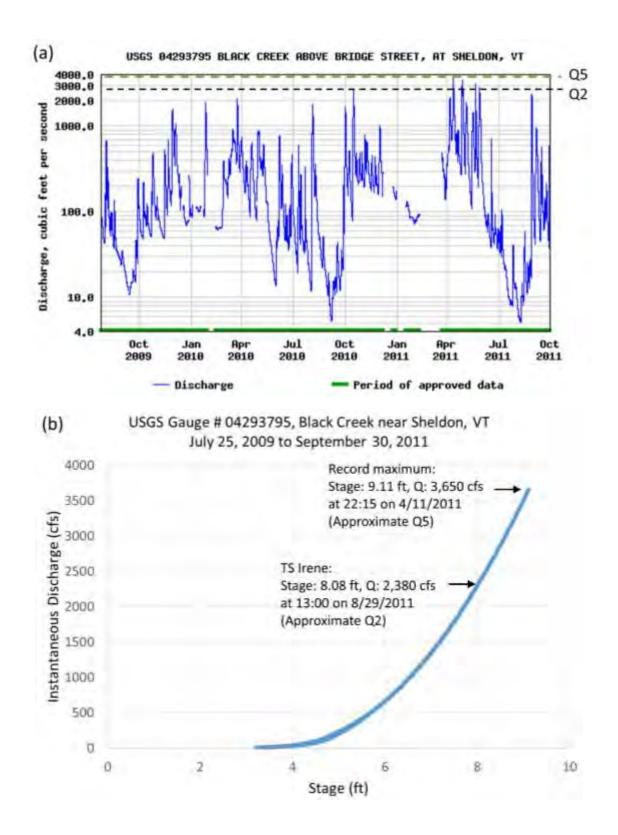
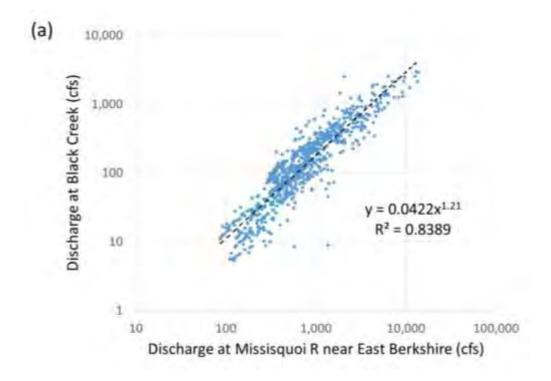




Figure B-3. USGS streamflow gauge on Black Creek at Sheldon (#04293795) operated from 25 July 2009 through 30 September 2011. The maximum discharge recorded had an estimated 5-year return interval, as depicted on: (a) instantaneous discharge record (b) stage-discharge relationship.



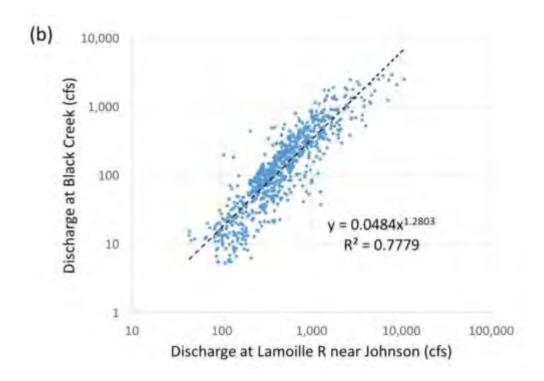



Figure B-4. Regression of daily mean discharge from USGS streamflow gauge on Black Creek at Sheldon (#04293795) on discharge at (a) Missisquoi River at East Berkshire and (b) Lamoille River near Johnson for the period from 25 July 2009 through 30 September 2011.

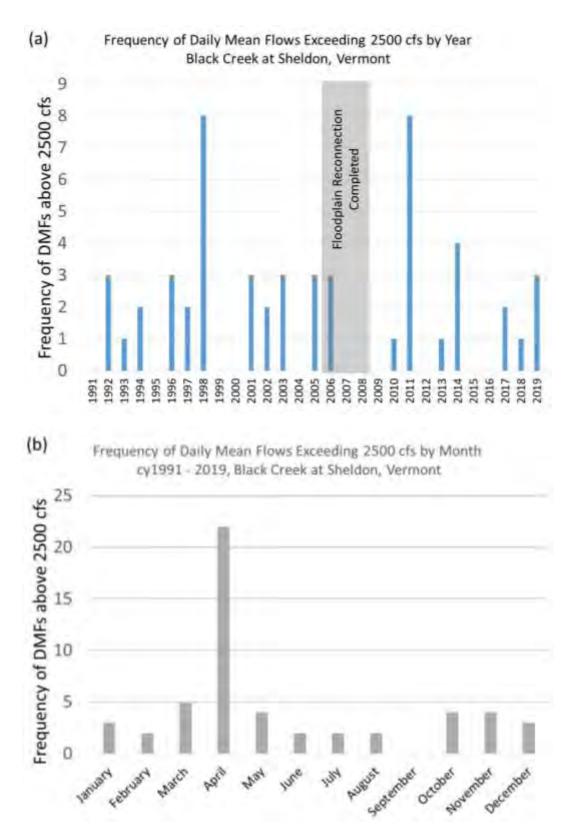


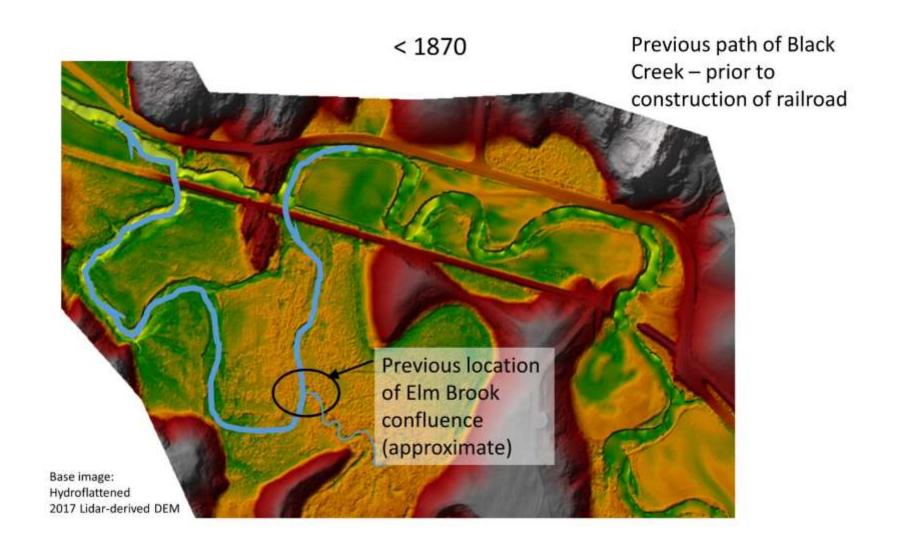

Figure B-5. Frequency of daily mean flow values above 2,500 cfs estimated for USGS streamflow gauge on Black Creek at Sheldon (#04293795) (a) by year (b) by month. Daily mean flow values estimated from a regression relationship between Black Creek gauge and Missisquoi River near East Berkshire gauge.

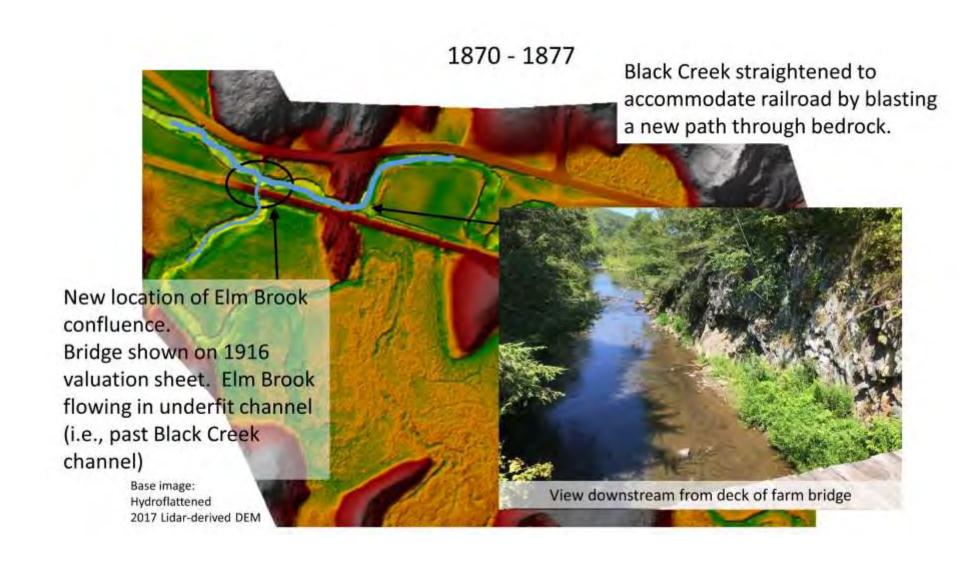
### Attachment C

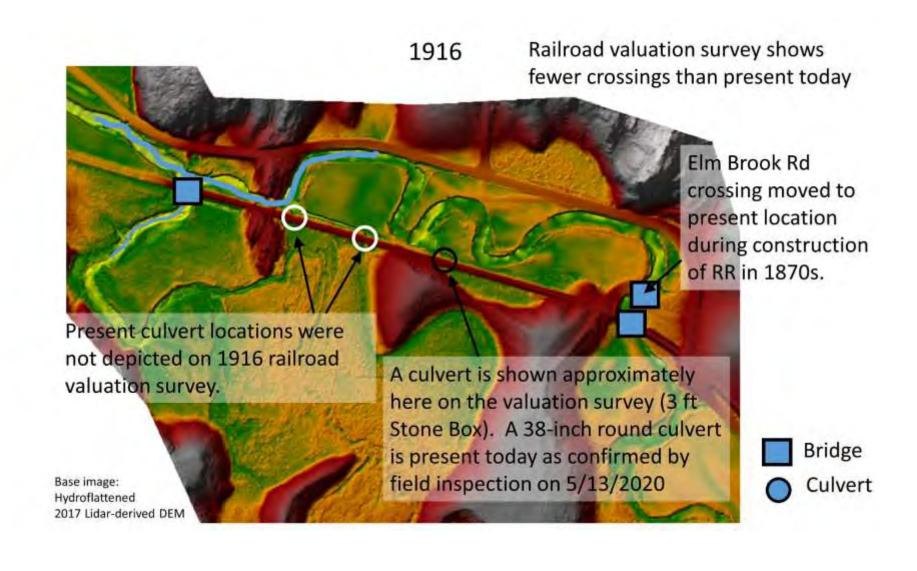
History of Rail Line and Channel/Floodplain Modifications near Fairfield 2b site, Fairfield, VT.

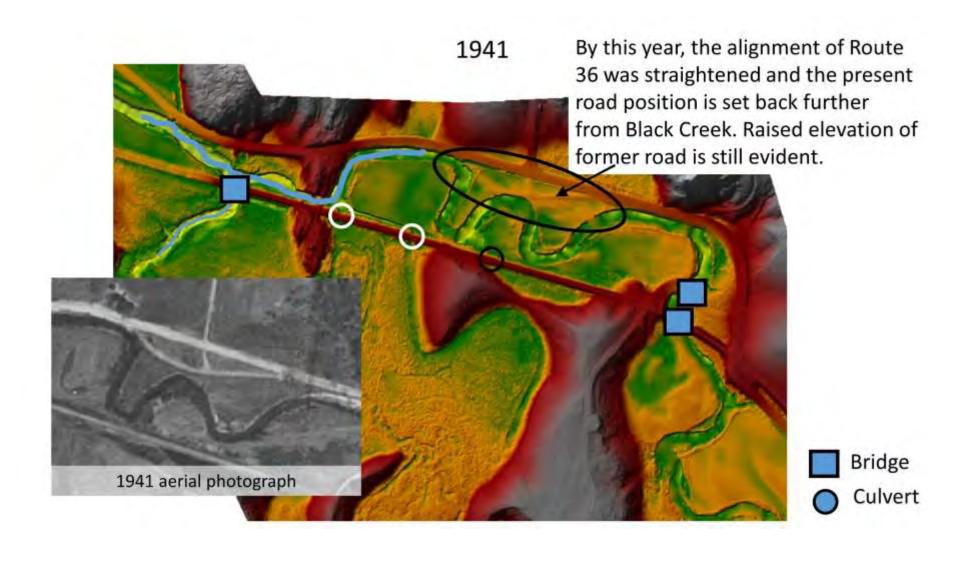
Table C-1. History of Rail line and Channel/Floodplain Modifications Along Black Creek near Fairfield 2b site, Fairfield, VT

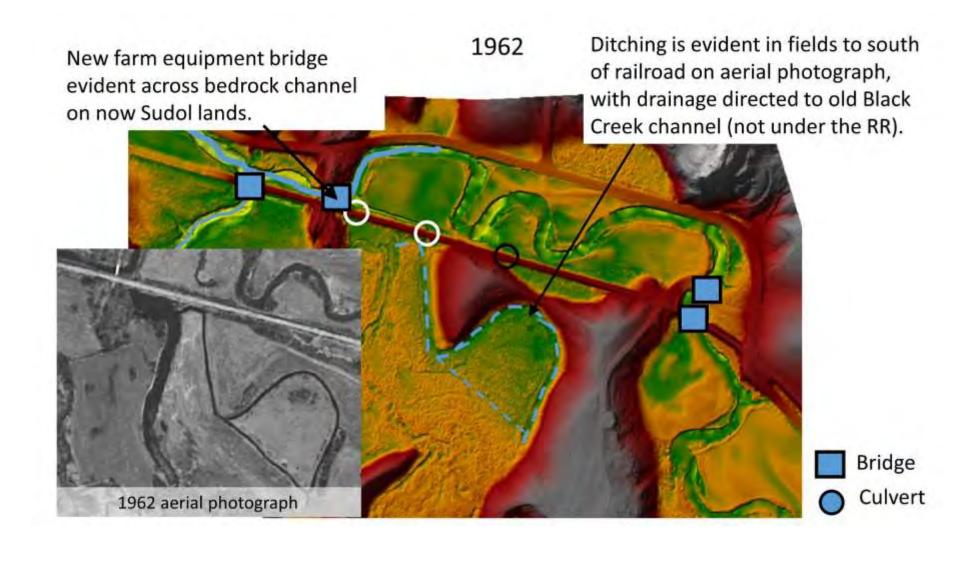
| Date        | Description                                                                                                                                                                                                                                                                                                                                                                                  | Source                                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |
| 1870 – 1877 | Construction of the Lamoille Valley Railroad began in 1870 and was completed in 1877; first train on 7/27/1877.                                                                                                                                                                                                                                                                              | Aldrich, 1891; Kendall,<br>1940                                                                                      |
|             | Railroad construction cut off at least two principal meander bends of the Black Creek through the study area.                                                                                                                                                                                                                                                                                | 1941 aerial photographs                                                                                              |
|             | Railroad in vicinity of Elm Brook confluence was completed by blasting a channel through bedrock to straighten the river and avoid building an additional RR bridge. The blasted rock was then used as foundation under the rail line east of the blasted section toward Elm Brook Rd.                                                                                                       | Rainville, 2019<br>(who recalled 1980s<br>conversation with Sterns<br>Jenkins, VTrans, who<br>provided this history) |
|             | Railroad bridge crossing constructed at former Black<br>Creek channel position now carrying discharge from Elm<br>Brook and a smaller tributary                                                                                                                                                                                                                                              | 1916 railroad valuation sheet (Source: VTrans)                                                                       |
|             | Railroad bridge crossing of Black Creek near Elm Brook Rd (steel girders on wooden pilings) constructed through former position of Elm Brook Rd crossing – road alignment moved and new crossing constructed just downstream.                                                                                                                                                                | 1916 railroad valuation sheet (Source: VTrans)                                                                       |
| 1880        | Name of RR changed to St. Johnsbury and Lake Champlain Railroad. Later: Boston & Lowell RR                                                                                                                                                                                                                                                                                                   | Aldrich, 1891                                                                                                        |
| 1891        | Name had been changed to Boston & Maine RR by this date                                                                                                                                                                                                                                                                                                                                      | Aldrich, 1891                                                                                                        |
| 1941        | By this date, a segment of the road now known as VT Route 36 was straightened near the junction of Shenang Road and is now more set back from the Black Creek. At present (2019), the alignment of this abandoned road segment is still elevated above the natural floodplain, but is in active hay production.  Ditching is evident in area of Elm Brook floodplain south of the rail line. | 1941 aerial photograph                                                                                               |
| 1962        | Between 1941 and 1962, a farm bridge is constructed across the Black Creek channel at lands now owned by Sudol in the vicinity of the bedrock gorge created by blasting in the 1870s.  Ditching is evident in area of Elm Brook floodplain south of the rail line.                                                                                                                           | 1941 aerial photograph<br>1962 aerial photograph                                                                     |
| 1980 - 1986 | Lee (farm owner previous to Mike Rainville) worked fields at Howe property for a landowner previous to Howe. Tim Brandon was hired to ditch along the base of the hill south of the RR tracks.                                                                                                                                                                                               | Rainville, 2019                                                                                                      |
| 1990s       | Rainville leased lands from owner previous to Howe (Mr. Selmolina from Texas). Chronic beaver activity would flood the fields.                                                                                                                                                                                                                                                               | Rainville, 2019                                                                                                      |

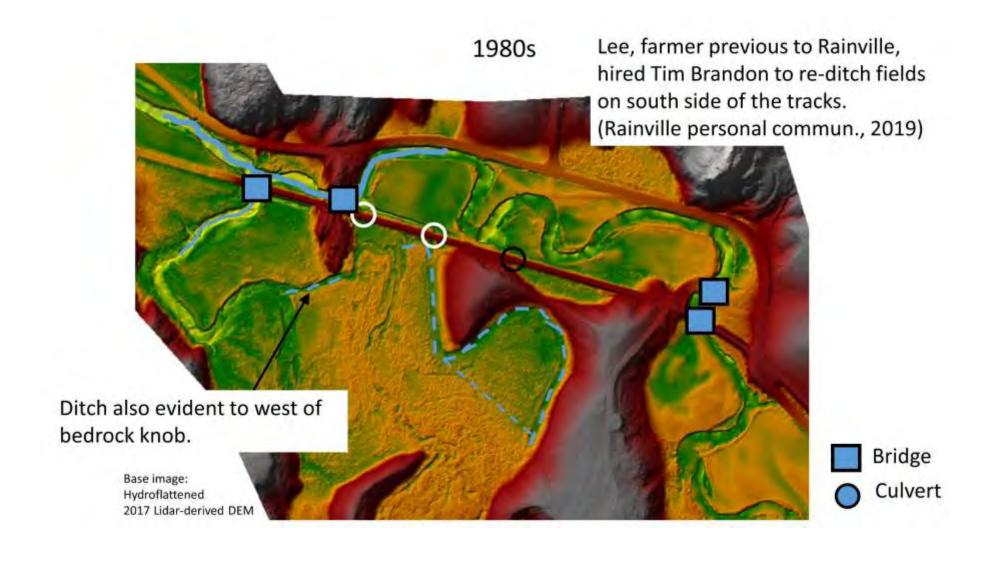

| Rainville decided to cease farming fields on south side of tracks and "let the beavers have it". By plugging culvert(s), the beavers impounded the south side to an elevation about 4 feet higher than fields on the north side of the rail line. Water was seeping through the rail bed (coarse blast rock) to impact fields on the north side of the rail line.                | Rainville, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Last train on the Lamoille Valley rail line, following substantial damages sustained in the floods of 1984, 1995, and 1997.                                                                                                                                                                                                                                                      | Schiff et al, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rainville ditched the field along the north side of the RR to keep the field dry. He coordinated this activity with Sterns Jenkins of the VT Dept of Transportation.                                                                                                                                                                                                             | Rainville, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| "the rail line was federally rail banked and the tracks and ties were removed."                                                                                                                                                                                                                                                                                                  | Schiff et al, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Segments "Fairfield 3-1" and "Fairfield 4-1" of the rail bed were lowered to the floodplain. These segments are located downstream of the Howe/ Sudol properties, spanning Bruso Road and Ryan Road, respectively.                                                                                                                                                               | Schiff et al, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Segment "Fairfield 2a" of the rail bed was lowered to the floodplain on lands of Sudol.                                                                                                                                                                                                                                                                                          | Schiff et al, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Between these years, two culvert crossings under the rail line between the Sudol bridge and Elm Brook Road were installed and/or replaced.  In the summer or fall of 2009, a previous pinched culvert was replaced with a larger-diameter culvert (Site J).  In the fall of 2010, culvert (Site I) was installed and ditch drainage along the northern edge of the rail line was | 2009 NAIP imagery, 2011 orthophotograph, Rainville, 2019 Brown, 2020 – historic photodocumentation Brown, 2020 – historic photodocumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                  | tracks and "let the beavers have it". By plugging culvert(s), the beavers impounded the south side to an elevation about 4 feet higher than fields on the north side of the rail line. Water was seeping through the rail bed (coarse blast rock) to impact fields on the north side of the rail line.  Last train on the Lamoille Valley rail line, following substantial damages sustained in the floods of 1984, 1995, and 1997.  Rainville ditched the field along the north side of the RR to keep the field dry. He coordinated this activity with Sterns Jenkins of the VT Dept of Transportation.  "the rail line was federally rail banked and the tracks and ties were removed."  Segments "Fairfield 3-1" and "Fairfield 4-1" of the rail bed were lowered to the floodplain. These segments are located downstream of the Howe/ Sudol properties, spanning Bruso Road and Ryan Road, respectively.  Segment "Fairfield 2a" of the rail bed was lowered to the floodplain on lands of Sudol.  Between these years, two culvert crossings under the rail line between the Sudol bridge and Elm Brook Road were installed and/or replaced.  In the summer or fall of 2009, a previous pinched culvert was replaced with a larger-diameter culvert (Site J).  In the fall of 2010, culvert (Site I) was installed and ditch |


#### **References:**


- Aldrich, Lewis Cass, Ed, 1891. History of Franklin and Grand Isle Counties, VT: with illustrations and biographical sketches of some of the prominent men and pioneers. Syracuse, NY: D. Mason & Co. Publishers.
- Beers, F. W., 1871. Atlas of Franklin and Grand Isle Counties, Vermont. NYC, NY: F. W. Beers & Co.
- Brown, Ken, 2020 (Feb 13). Personal communication and photographs. Vermont Association of Snow Travelers.
- Kendall, John S., 1940. History of the St. Johnsbury & Lake Champlain Railroad.
- Rainville, Mike, 2019 (July 24). Personal communication. Fairfield landowner and farmer who recalled conversations in the late 1980s with Sterns Jenkins, then Supervisor of rail issues with VT Dept of Transportation.
- Schiff, R., Clark, J. and Cahoon, B., 2008. "The Lamoille River and Black Creek Floodplain Restoration Project", conference paper and presentation to the 2008 AWRA Summer Specialty Conference Riparian Ecosystems and Buffers, Virginia Beach, VA.
- St. Johnsbury and Lake Champlain Railroad (Office of Valuation Engineer), 1916. Right-of-Way and Track Map: The St. Johnsbury and Lake Champlain R.R. Co.: Station 3922+80 to Station 3975+60.


## Historic Path of Black Creek in Vicinity of Howe Property



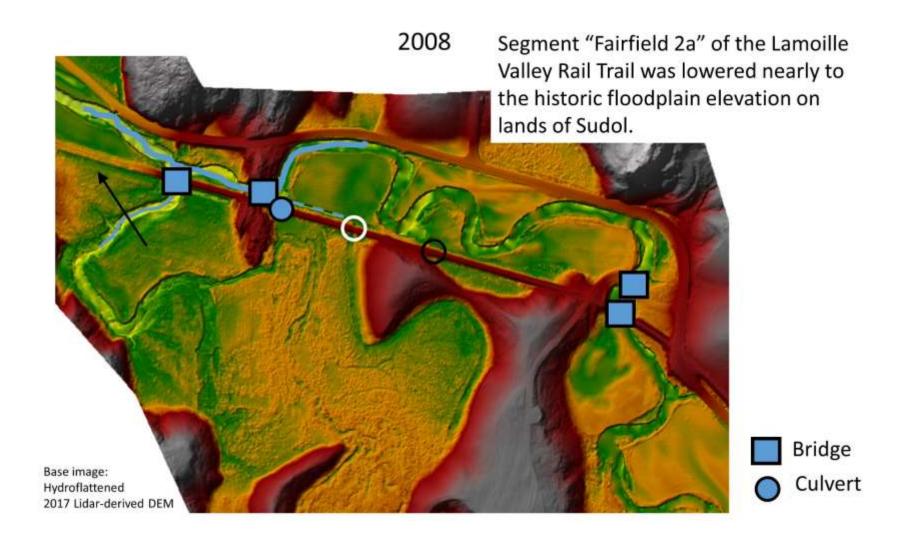












Train over railroad crossing near Elm Brook Road, 1981

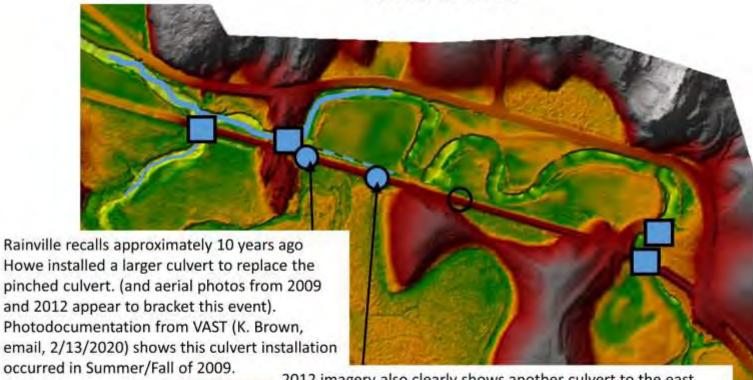
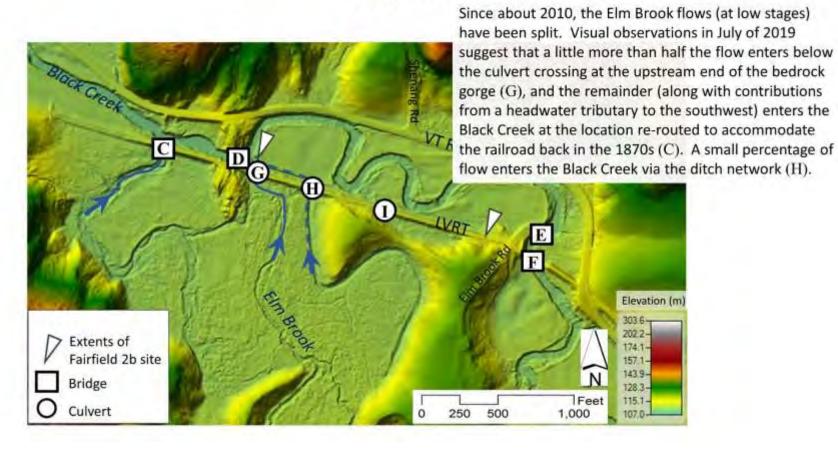



photo from <a href="http://nekrailroad.com/NEKOLD/Lamoille Valley.html">http://nekrailroad.com/NEKOLD/Lamoille Valley.html</a>






#### 2009 to 2012



Base image: Hydroflattened 2017 Lidar-derived DEM 2012 imagery also clearly shows another culvert to the east (as found in 2014-2015 surveys by NRCS and USFW). Photodocumentation from VAST (K. Brown, email, 2/13/2020) shows this culvert was installed in Fall of 2010.



### 2009 to 2012



# Appendix D

Screening Protocol for Rail Trail Reconnection Sites

#### Steps in Rail Trail Floodplain Reconnection Site Screening Protocol

(last updated: 7/20/2020)

#### **Overall Screening Sequence**



### Geomorphic Screen

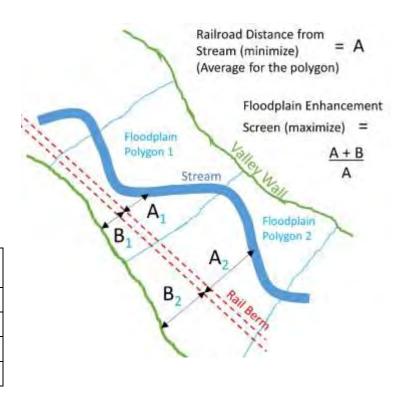
#### Valley Confinement

| Valley Confinement | Score |
|--------------------|-------|
| VC ≥ 4             | 1     |
| VC < 4             | 0     |

#### Valley Slope (%)

| Valley Slope       | Score |
|--------------------|-------|
| S < 0.5            | 1     |
| $0.5 \le IR < 1.0$ | 0.6   |
| $1 \le IR \le 2$   | 0.3   |
| S ≥ 2.0            | 0     |

#### Percent Wetland


| Assessment                         | Score |
|------------------------------------|-------|
| % Wetlands > Mean Wetland % in the | 1     |
| Watershed                          |       |
| Otherwise                          | 0     |

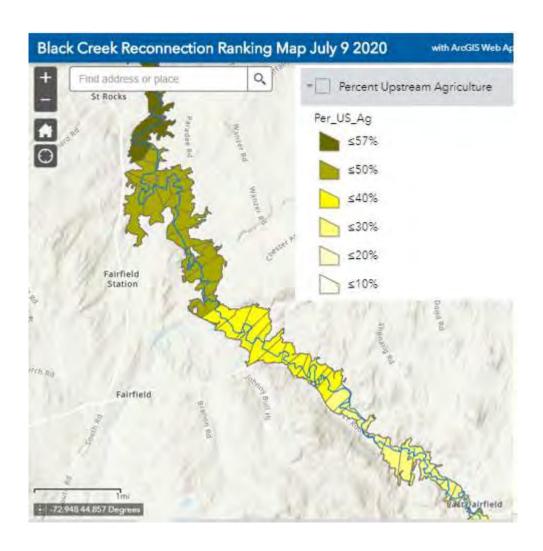
### Railroad proximity

| Distance        | Score |
|-----------------|-------|
| A < 20          | 1     |
| $20 \le A < 40$ | 0.6   |
| $20 \le A < 40$ | 0.3   |
| A ≥ 60          | 0     |

#### Floodplain enhancement screen

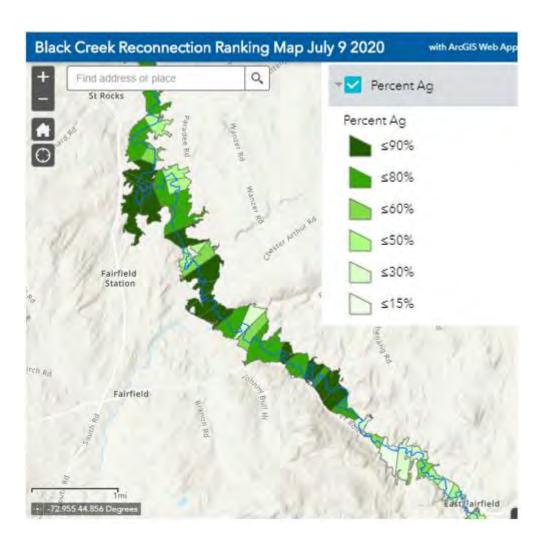
| Distance            | Score |
|---------------------|-------|
| (A+B)/A < 2         | 0     |
| $2 \le (A+B)/A < 4$ | 0.3   |
| $4 \le (A+B)/A < 6$ | 0.6   |
| $(A+B)/A \ge 6$     | 1     |




### **Vertical Connectivity**

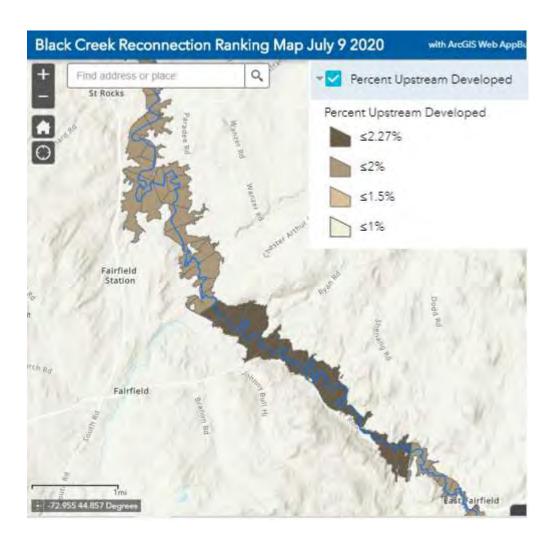
((500-year HAND Floodplain Area – 2-year HAND Floodplain Area) \* 100.

| Percent Increase   | Score |
|--------------------|-------|
| % < 150            | 1     |
| $150 \le \% < 300$ | 0.6   |
| 300 ≤ % < 600      | 0.3   |
| % ≥ 600            | 0     |


Cumulative Upstream Agricultural Land Uses (%) – in the cumulative floodplain polygons

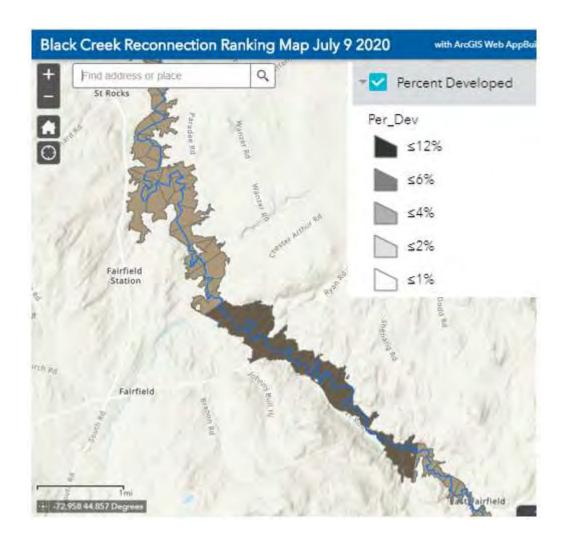
• This layer is viewed qualitatively, to infer possible benefits of floodplain reconnection to store sediments and nutrients from upstream sources.




Agricultural Land Uses (%) – in the individual floodplain polygon

• This layer is viewed qualitatively, to consider possible benefits or impacts of floodplain reconnection on agricultural land uses local to a candidate reconnection site.




Cumulative Upstream Developed Land Uses (%) – in the cumulative floodplain polygons

• This layer is viewed qualitatively, to infer possible benefits of floodplain reconnection to store sediments and nutrients from upstream developed sources.



Developed Land Uses (%) – in the individual floodplain polygon

• This layer is viewed qualitatively, to avoid possible impacts of floodplain reconnection on built infrastructure (including roads, as well as buildings, impervious surfaces).



# Attachment E Floodplain Sediment Sampling Protocol DRAFT

## **Equipment List**

| 30-meter fiberglass measuring tape                        |
|-----------------------------------------------------------|
| Pocket tape measure or ruler in centimeters / millimeters |
| Dog-tie-out anchor (cork-screw anchor) or metal stake (3) |
| Survey flagging                                           |
| Flat-spade shovel                                         |
| Flat trowel or pocket knife                               |
| Polyethylene 1-quart freezer bags                         |
| Permanent marker                                          |
| Camera / Smart phone                                      |
| GPS – recreational grade                                  |
| Clip board w/ data sheets                                 |

## Floodplain Sediment Sample Data Sheet

| Waypoint         |             | or Latitude  |            | Lon      | gitude           |         |
|------------------|-------------|--------------|------------|----------|------------------|---------|
| Date:            | Sample      | ers <u>:</u> |            | _        | Weather:         |         |
| Site ID:         |             | River: _     |            |          | Landowner:       |         |
| Site Address:    |             |              |            | To       | wn:              |         |
| Site Description | :           |              |            |          |                  |         |
| Check One:       | Meadow/Hay  | ☐ Crop       | ☐ Pasture  | ☐ Forest | □Urban/ Suburban | □Other: |
| Notes:           |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
| Cita Cleatabe    |             |              |            |          |                  |         |
| Site Sketch:     |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
| Picture Log      |             |              |            |          |                  |         |
| No.              | <u>View</u> |              | Descriptio | <u>n</u> |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |
|                  |             |              |            |          |                  |         |

#### SAMPLE ID - KEY

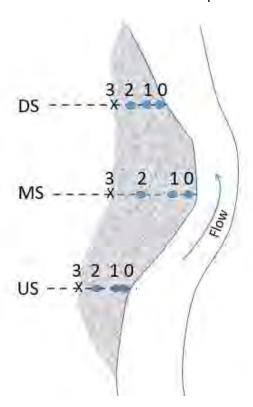
## Floodplain Sediment Sampling Method

WaterSt - Dog US-1 - 050619

Site Name – abbreviation for landowner or location

River Name – abbreviation for river

## Transect Position in Deposit –


| US | Upstream   |
|----|------------|
| MS | Midstream  |
| DS | Downstream |

## Sample number in Transect

| 0 | Proximal to Streambank    |
|---|---------------------------|
| 1 | One-third along transect  |
| 2 | Two-thirds along transect |

Sample Date – MM/DD/YY

#### Floodplain Sediment Sampling Method



## Transect Layout

Establish 3 transects perpendicular to the valley trace of the river at upstream (US), midstream (MS) and downstream (DS) positions within the sediment deposit.

At each transect, put a pin at the top of the river bank and lay out a tape measure along the transect.

Record the lateral extent of the deposits (total distance in meters from the top of the bank) (point number 3 in the illustration).

Measure deposit thickness and take a sediment sample:

- (0) Close to the top of channel bank (note the distance from the pin)
- (1) One-third of the total lateral distance
- (2) Two-thirds of the total lateral distance

## Sediment Sampling Log - Example

Date: 5/6/2019

Samplers: Jane Doe, Joe Smith

Site: Water Street Floodplain Reconnection Site, Northfield, VT

River: Dog River

|             | Distance | Thickness |                         | Sample |
|-------------|----------|-----------|-------------------------|--------|
| Transect ID | (m)      | (cm)      | Sample ID               | Time   |
| US-0        | 0.1      | 4.2       | WaterSt-Dog-US-0-050619 | 8:34   |
| US-1        | 1.4      | 3.0       | WaterSt-Dog-US-1-050619 | 8:45   |
| US-2        | 2.8      | 1.3       | WaterSt-Dog-US-2-050619 | 8:55   |
| US-3        | 4.2      | 0         | NS                      |        |
| MS-0        | 0.1      | 3.9       | WaterSt-Dog-MS-0-050619 | 9:10   |
| MS-1        | 1.8      | 2.8       | WaterSt-Dog-MS-1-050619 | 9:25   |
| MS-2        | 3.6      | 0.8       | WaterSt-Dog-MS-2-050619 | 9:35   |
| MS-3        | 5.4      | 0         | NS                      |        |
| DS-0        | 0.1      | 1.2       | WaterSt-Dog-DS-0-050619 | 9:40   |
| DS-1        | 0.9      | 0.7       | WaterSt-Dog-DS-1-050619 | 9:43   |
| DS-2        | 1.8      | Trace     | NS                      |        |
| DS-3        | 2.7      | 0         | NS                      |        |

#### Floodplain Sediment Sampling Method

Establish sampling transects as described in the Transect Layout. Using a GPS unit, record Latitude and Longitude at the 0 point of each transect. (If you do not have access to a GPS unit, leave a survey flag in this point so that someone with a GPS unit can return to the site to collect Latitude / Longitude). Take a picture of each transect from the transect terminus (point 3) with a view toward the river. Record the photo numbers on the photo log.

At each sample point, cut a 15 cm x 15 cm square in the floodplain deposits with the flat-spade shovel. Identify the contact between the fresh sediment deposits and the underlying organic layer or vegetation (e.g., leaf litter from the previous Fall; current year's weed growth). (Figure 1). Measure and record the thickness of the fresh floodplain deposits in centimeters.



Figure 1. Identify contact between fresh sediment deposit and underlying organic layer.

Collect soil from the square (Figure 2) and place it in a polyethylene bag. Squeeze the remaining air out of the bag and seal it. Mark the bag with Sample ID, sample date, and sampler name. Use the Sample Identification (ID) Key to generate a Sample ID. Fill out the data sheet for the sample station. Include any notes or additional photographs to describe the nature of the deposit and your degree of confidence in the markers that indicate that sediment was deposited in the most recent flooding event.



Figure 2. Fresh sediments removed from a 15 cm  $\times$  15 cm square down to the underlying organic layer (i.e., leaf litter from previous fall).

Include any additional site information that may be relevant, such as the date of the flood event that generated the deposit, its size or intensity, the degree of floodplain inundation. Include any photos that you might have from the inundation event itself.

## Sediment Sampling Log

| Date:       |              |                   |           |             |
|-------------|--------------|-------------------|-----------|-------------|
| Samplers:   |              |                   |           |             |
| Site:       |              |                   |           |             |
| River:      |              |                   |           |             |
|             | 1            | T                 |           |             |
| Transect ID | Distance (m) | Thickness<br>(cm) | Sample ID | Sample Time |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |
|             |              |                   |           |             |

## Appendix F

Bridge and Culvert Data

Table F-1. Bridge and Culvert Structures in Study Area Reaches

M07

M07

M06

M05B

Ε

D

Bridge

Bridge

Bridge

Bridge

Black Creek

Black Creek

Black Creek

Black Creek

|     | Structure                                                                                                                                                           |             | Reach/  |              |       | Year        |            | Structure | Structu | re Structure | Structure |                  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|--------------|-------|-------------|------------|-----------|---------|--------------|-----------|------------------|
| ID  | Form                                                                                                                                                                | Stream      | Segment | Road         | Owner | Constructed | Material   | Length    | Widt    | th Type      | Label     | Structure Number |
| F   | Bridge                                                                                                                                                              | Black Creek | M07     | Railroad     |       |             | Iron       |           |         |              |           | N/A              |
| Ε   | Bridge                                                                                                                                                              | Black Creek | M07     | Elm Brook Rd | 03    | 1919        | Concrete   | 35        | 13      | .7 TL        | B46       | 100605004606051  |
| D   | Bridge                                                                                                                                                              | Black Creek | M07     | farm bridge  | priv  |             | Timber     |           |         |              |           | N/A              |
| В   | Bridge                                                                                                                                                              | Black Creek | M06     | VT Route 36  | 01    | 1983        | Concrete   | 115       | 32      | .5 SL        | В9        | 200298000906052  |
| Α   | Bridge                                                                                                                                                              | Black Creek | M05B    | Bruso Rd     | 03    | 1978        | Concrete   | 40        | 14      | .9 TL        | B44       | 100605004406051  |
| ىمك | Source: VTrans Bridge Inventor, System and Structures database in the V/TANR Stream Geomorphic Assessment DMS  Structure Reach/ Year Channel Span Width Clearance % |             |         |              |       |             |            |           |         |              |           |                  |
| ID  | Form                                                                                                                                                                | Stream      | Segment | Road         | Owner | Constructed | Width (ft) | (ft)      | (ft)    | (ft)         | Bankfull  | SGA ID Number    |
| F   | Bridge                                                                                                                                                              | Black Creek | M07     | Railroad     |       |             | 45.0       | 120.0     | 10.1    | 9.0          | 266.7%    | 99000000106052   |

1919

1983

1978

45.0

45.0

55.0

32.0

24.0

39.0

120.0

30.0

19.2

10.0

35.2

15.6

6.0

12.0

13.0

2.5

53.3%

86.7%

93.8%

218.2%

100605006106051

700000000006053

200298000106052

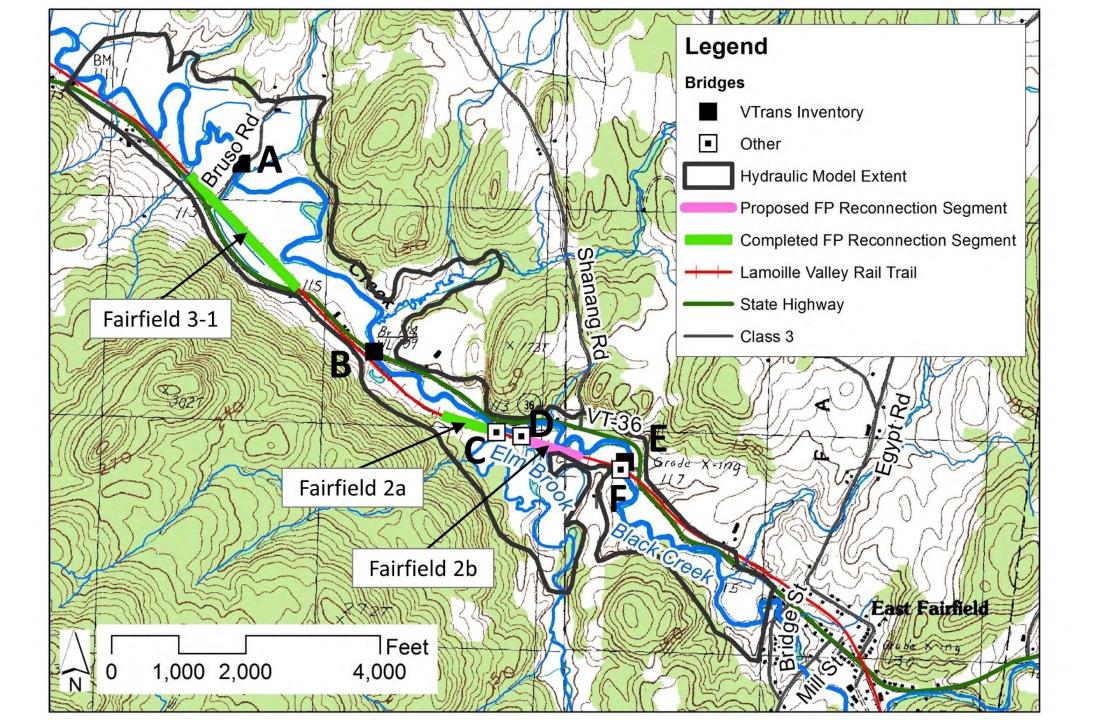
100605005706051

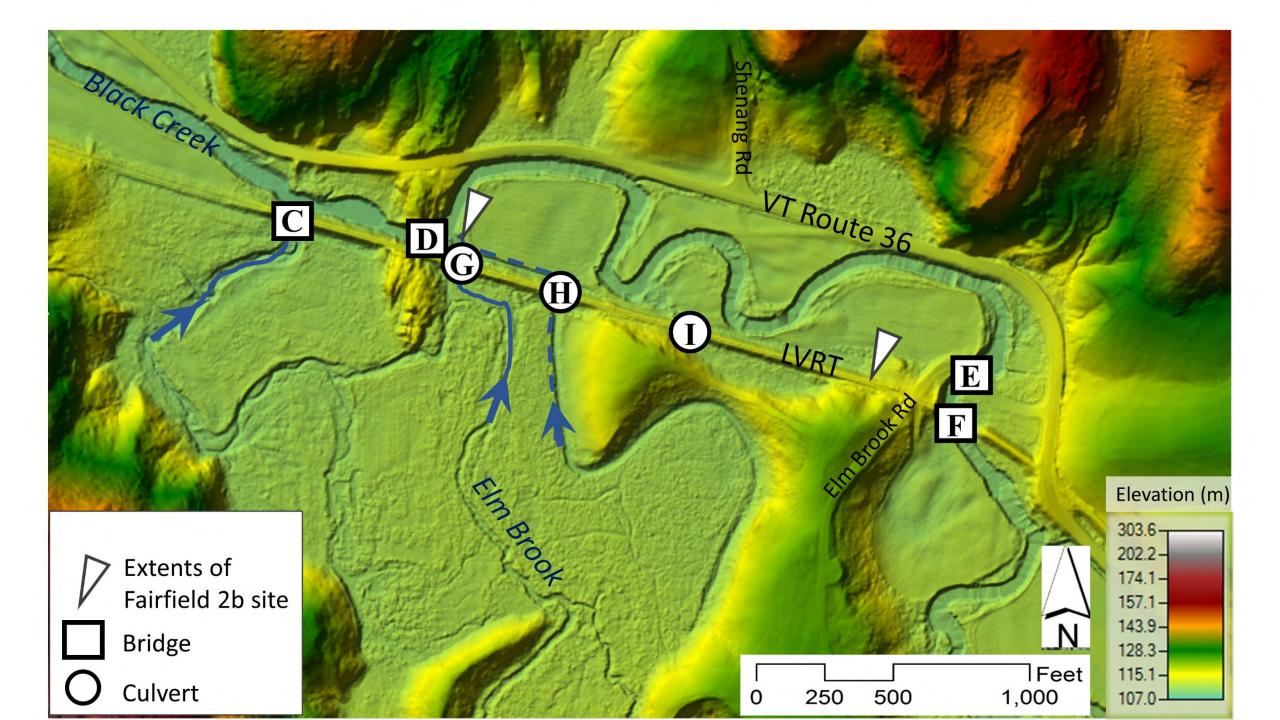
Source: VTrans Bridge Inventory System, and Structures database in the VTANR Stream Geomorphic Assessment DMS accessed 12/30/2018 at: https://anrweb.vt.gov/DEC/SGA/Default.aspx

03

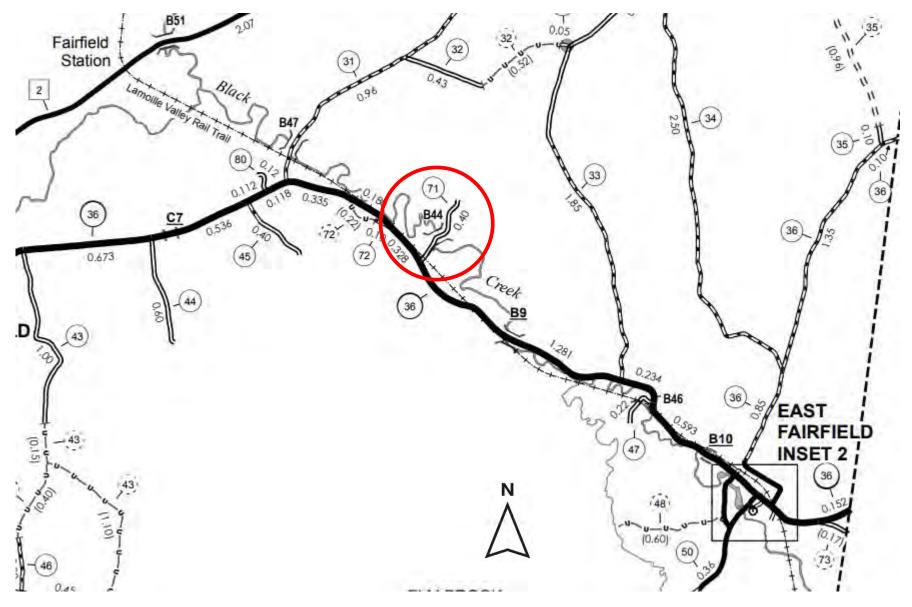
priv

01


03


Elm Brook Rd

farm bridge


VT Route 36

Bruso Rd





B44





View to northeast from VT Route 36 down Bruso Rd, bridge at arrow, 12/22/2018



View to southwest to bridge outlet, from Bruso Rd, 12/22/2018

During ~Q5 flood

Bridge inlet
During ~Q5 flood
12/22/2018





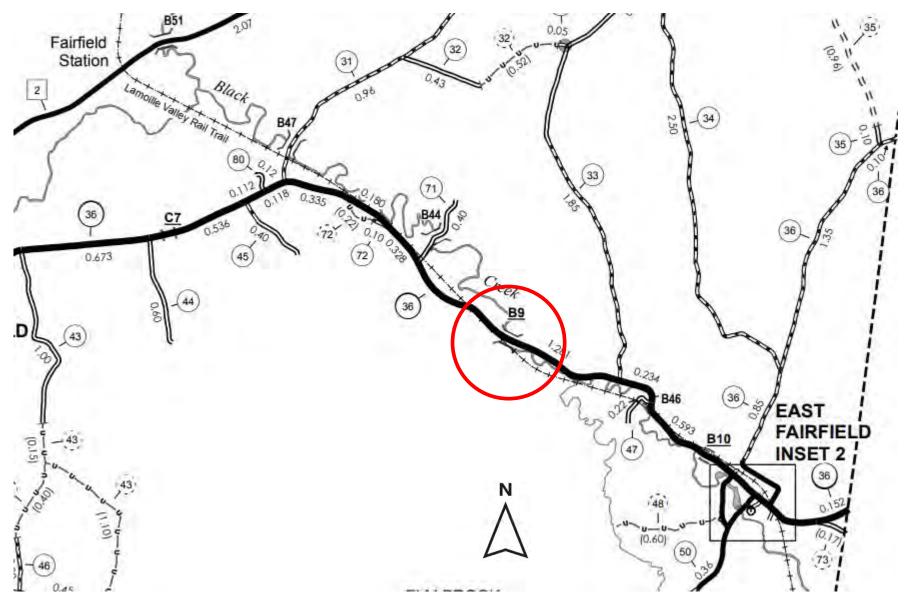


View upstream from bridge during ~Q5 flood, 12/22/2018

View upstream from bridge during baseflow conditions, 8/1/2019








View downstream from bridge

During ~Q5 flood, 12/22/2018

During baseflow conditions, 8/1/2019

B9



# B – VT Route 36 Bridge

B9



# C – Lamoille Valley Rail Trail bridge over Elm Brook tributary

View to west from bridge deck

Lowered rail segment, Fairfield 2a, in distance.

July 24, 2020




# C – Lamoille Valley Rail Trail bridge over Elm Brook tributary

View upstream in Elm Brook from bridge deck.

July 24, 2020



Constructed between 1941 and 1962 based on review of historic aerial photographs.



Farm bridge, view downstream to bridge inlet, 28 June 2019





View to south (toward rail trail) over bridge deck, 7/24/2019



View to north (from rail trail) over bridge deck, 7/24/2019. Note collapsed decking in foreground.

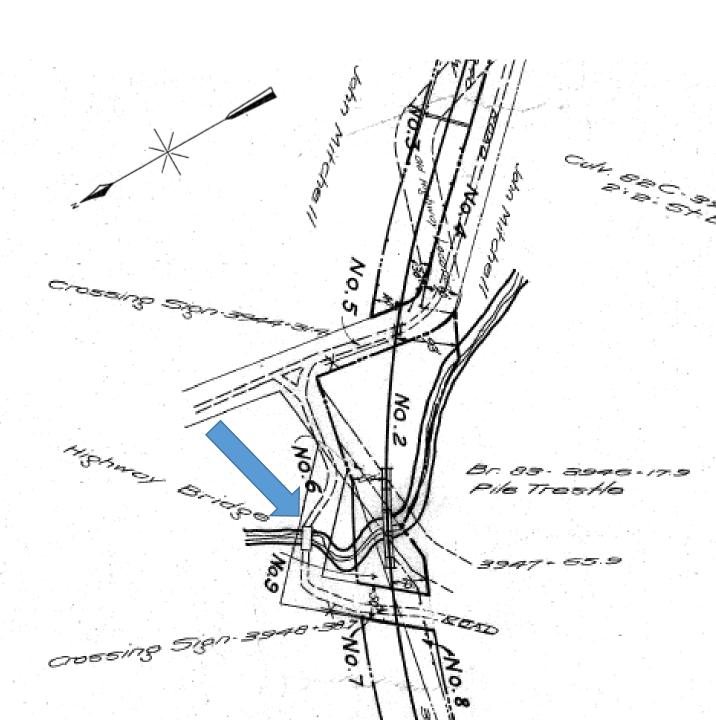


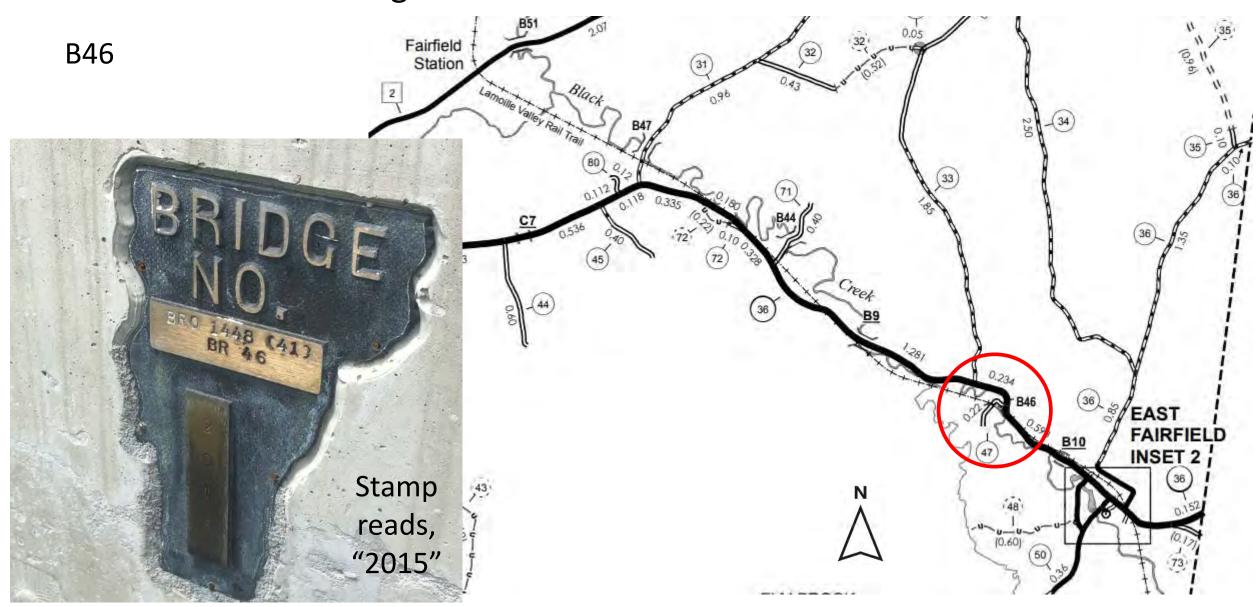
View upstream from bridge deck, 7/24/2019



View downstream from bridge deck, 7/24/2019, through blasted bedrock channel

Elm Brook Road crossing moved to present location during construction of railroad in 1870s. (1916 railroad valuation sheet)


RIGHT-OF-WAY AND TRACK MAP
THE ST. JOHNSBURY AND LAKE CHAMPLAIN R.R.CO.
Operated by
THE ST. JOHNSBURY AND LAKE CHAMPLAIN R.R.CO.


STATION 3922-80 TO STATION 3975+60

SCALE : I-IK = IOD-FT.

JUNE 30 MIS

Office of Valuation Engineer: Boston, Mass.





http://vtransmap01.aot.state.vt.us/Maps/TownMapSeries/FRANKLIN Co/FAIRFIELD/FAIRFIELD MILEAGE 2016.pdf



View to bridge outlet from Jct of Elm Brook Rd and VT Route 36, 12/22/2018

During a ~Q5 flood event.

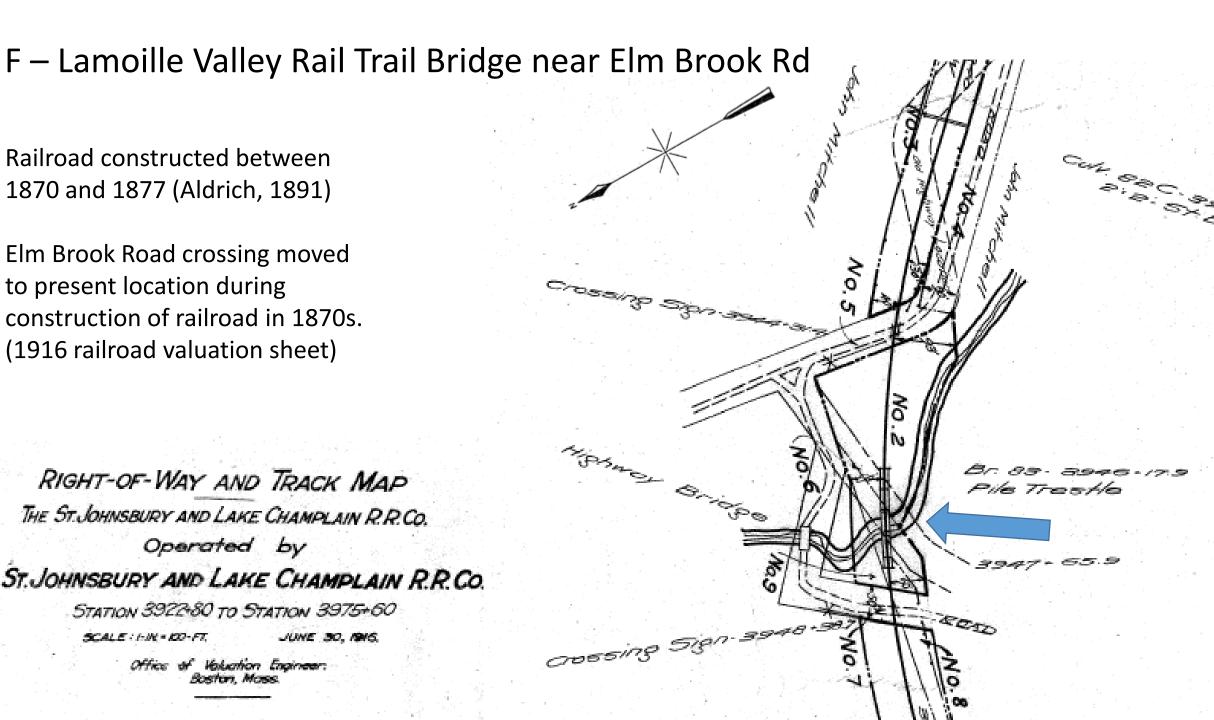


During a ~Q25-Q50 flood event, 11/1/2019 Video from Susan Howe



6/19/2019 View downstream (north) to Bridge inlet




6/19/2019 View downstream (north) from bridge deck Railroad constructed between 1870 and 1877 (Aldrich, 1891)

Elm Brook Road crossing moved to present location during construction of railroad in 1870s. (1916 railroad valuation sheet)

RIGHT-OF-WAY AND TRACK MAP THE ST. JOHNSBURY AND LAKE CHAMPLAIN R.R.CO. Operated by THE ST. JOHNSBURY AND LAKE CHAMPLAIN R.R.CO.

STATION 3922+80 TO STATION 3975+60

SCALE : I-IN = KD7-FT.



Last train on the Lamoille Valley rail line occurred in 1997, following substantial damages sustained in the floods of 1984, 1995, and 1997.

In 2005, "...the rail line was federally rail banked and the tracks and ties were removed." (Schiff et al., 2008)




Source: <a href="http://nekrailroad.com/NEKOLD/Lamoille Valley.html">http://nekrailroad.com/NEKOLD/Lamoille Valley.html</a>

View to northeast.



4 April 2019, view to east of bridge decking





View downstream to bridge inlet, 12/22/2018

During a ~Q5 flood event.



View upstream to bridge outlet from Elm Brook Rd, 12/22/2018

View to east down LVRT from Elm Brook Rd, 12/22/2018

View upstream to bridge outlet, bedrock exposed in the channel.

6/19/2019



View upstream to bridge outlet, wooden pile trestle in disrepair

6/19/2019



View upstream to bridge outlet, remnants of wooden pile trestle in mid-channel

6/19/2019



### From UVM Survey dated 19 June 2019:

Diameter: 1.044 m (3.43 ft, nominal 42")

Length: 12.6 m (41.3 ft)

Slope: 0.0339 m/m

(Slopes downward toward the north)

Installed: (Upsized) between 2009 and 2012, based on review of aerial images, and as reported in interview with Mike Rainville (7/24/19).

Replaced former smaller culvert in Summer/Fall of **2009** based on photodocumentation by VAST (K. Brown, email, 2/13/2020)



View to south (upstream) from rail trail 19 June 2019; former path of Black Creek prior to 1870.

View to north (downstream) from rail trail; confluence with Black Creek in distance.

Wide scour pool downstream of perched culvert outlet.

19 June 2019



Site of former, smallerdiameter, pinched culvert.

Per Ken Brown, 2/13/20 email: This "picture shows condition for the culvert nearest Elm Brook" in 2007

Photo caption: "1187- unidentified culvert, may be 36 inch cmp, sta 3961+50, blocked with debris from rains. Serious, needs cleaning"

View from south side of rail line in Elm Brook floodplain



Per Ken Brown, 2/13/20 email:
"In the summer/fall of 2009 the landowner(?) replaced that culvert so it would actually flow. Photos "IMG\_0020 and 0023" are from spring 2010."



From UVM Survey dated 19 June 2019:

Diameter: 0.81 m (2.65 ft, nom. 34")

Length: 12.5 m (41 ft) Slope: -0.00011 m/m

(Slopes very slightly downward to

south; essentially level)


Installed: **Fall 2010** based on photodocumentation by VAST.



View to south (upstream) from rail trail 19 June 2019

Per Ken Brown, 2/13/20 email: "in fall of 2010 the [eastern] culvert and the ditch went in".

View to southeast along south side of rail trail



Per Ken Brown, 2/13/20 email: "in fall of 2010 the [eastern] culvert and the ditch went in".

View to southeast from north side of rail trail



Per Ken Brown, 2/13/20 email: "in fall of 2010 the [eastern] culvert and the ditch went in".

Historic data from Rainville interview suggests the ditch along the north side of the rail line was constructed in 1998, therefore perhaps this work in 2010 involved improving a pre-existing ditch.

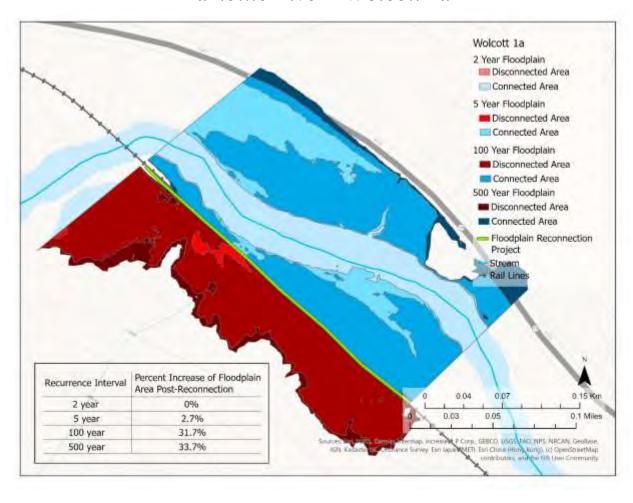
View to north from rail trail,

VT Route 36 in distance

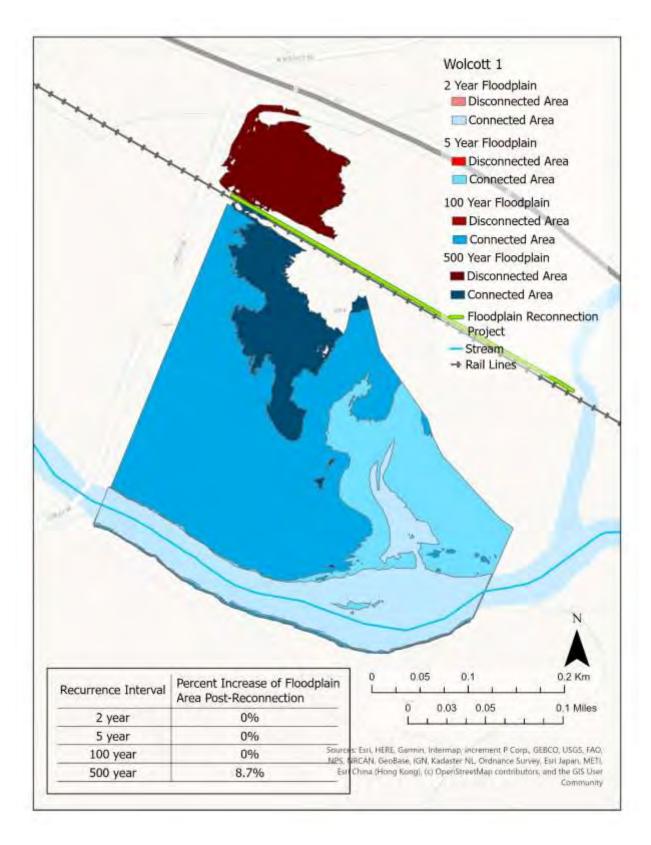


Fall 2010 Photo from Ken Brown, VAST – "Outlet 3"

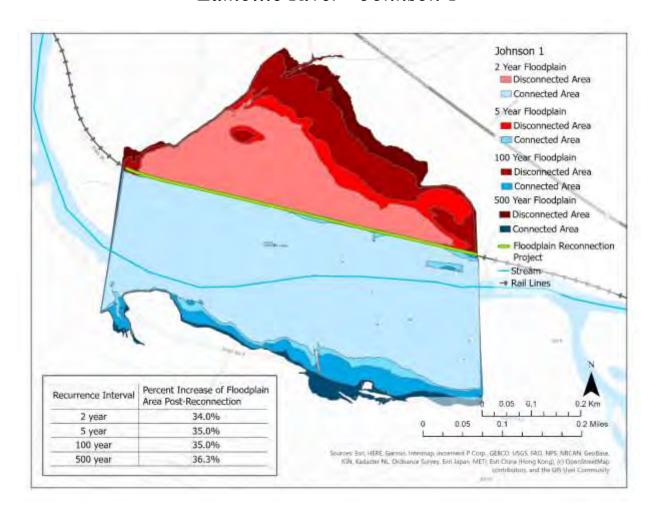
### I – Cross Culvert under LVRT at Fairfield 2b-2 site


View to southeast from base of rail trail embankment to culvert inlet draining small isolated floodplain pocket blocked by segment 2 of the Fairfield 2b proposed rail line modification site. Inlet partially blocked by beaver-chewed small woody debris, 13 May 2020.

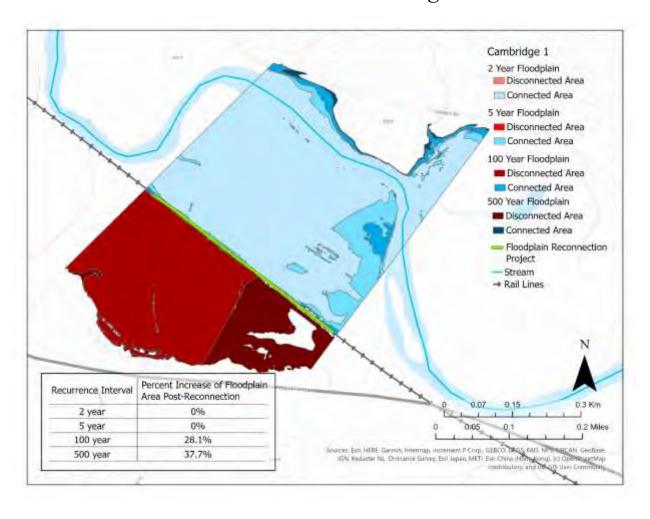



### Appendix G

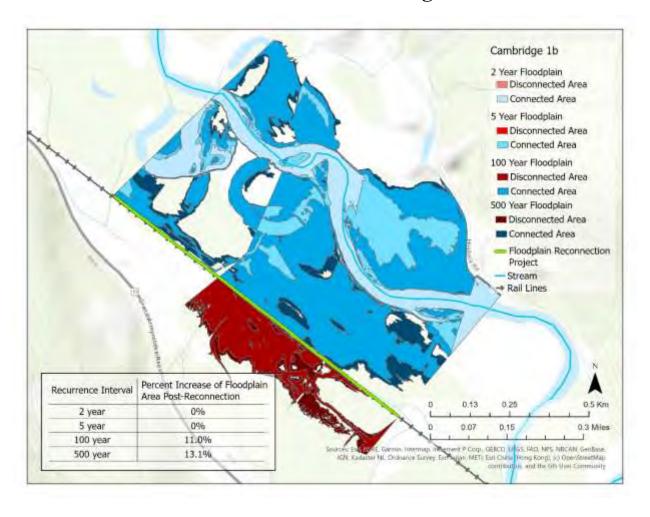
# Modeled increase in floodplain area at historic reconnection sites


### Lamoille River - Wolcott 1a

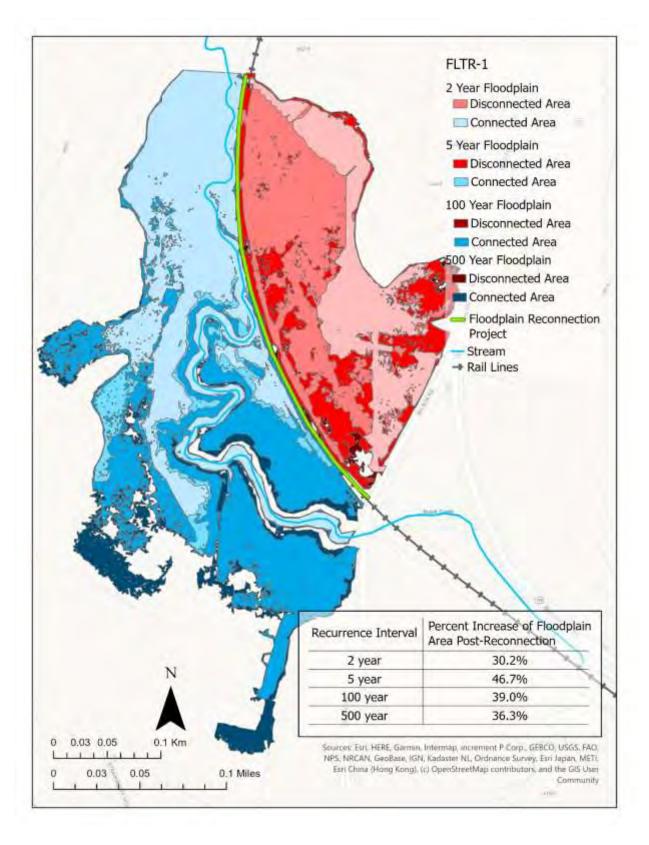



#### Lamoille River - Wolcott 1

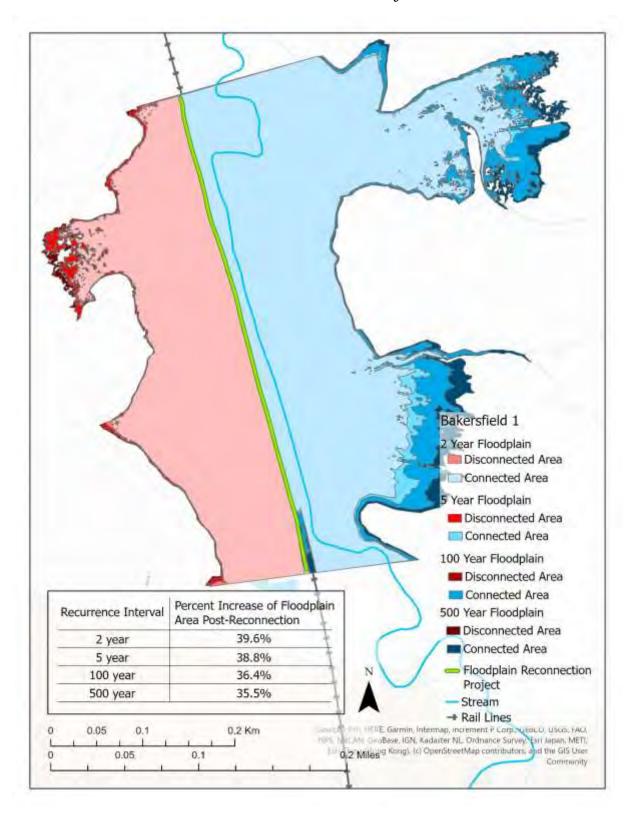



### Lamoille River - Johnson 1

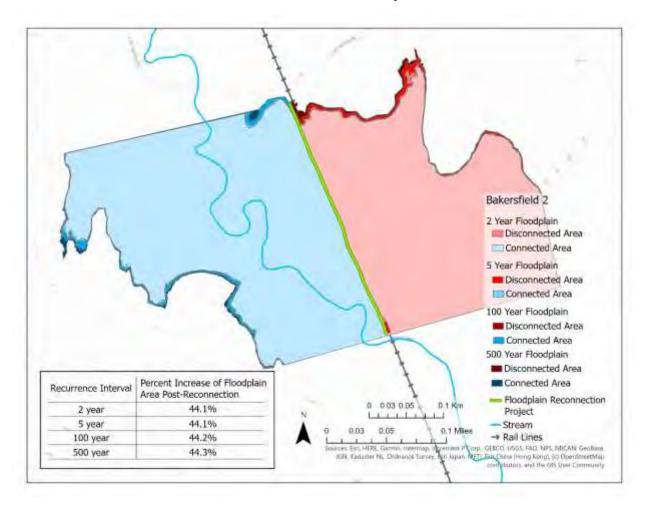



### Lamoille River - Cambridge 1

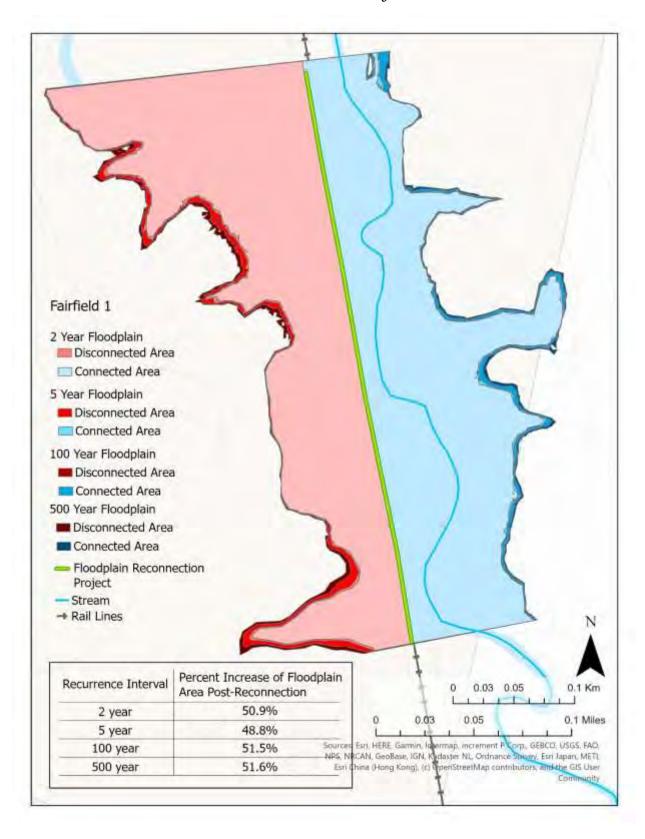



## Lamoille River - Cambridge 1b

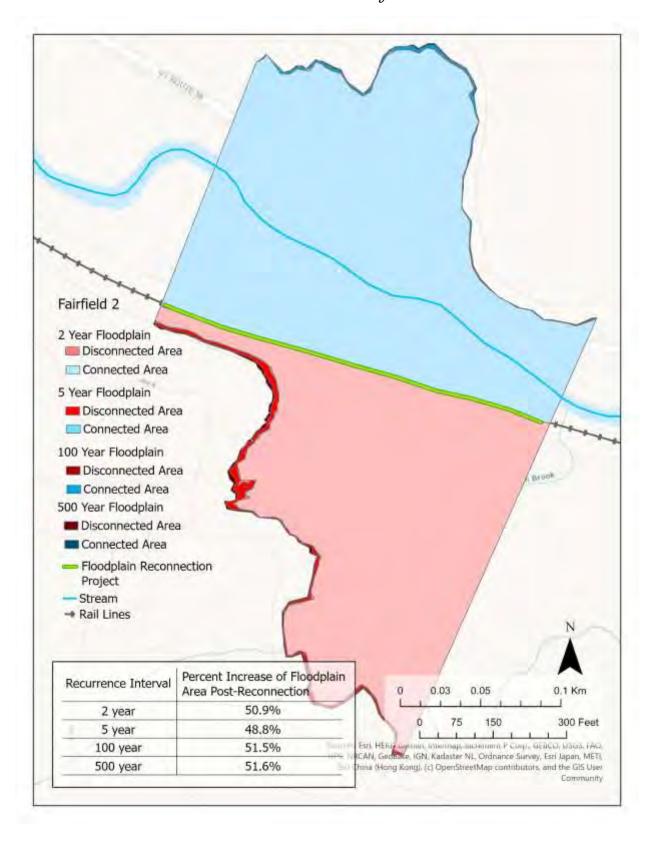



### Black Creek – Fletcher 1

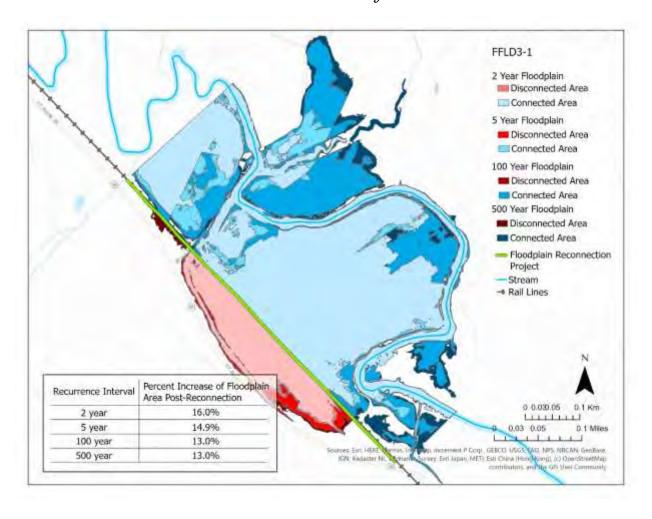



### Black Creek – Bakersfield 1

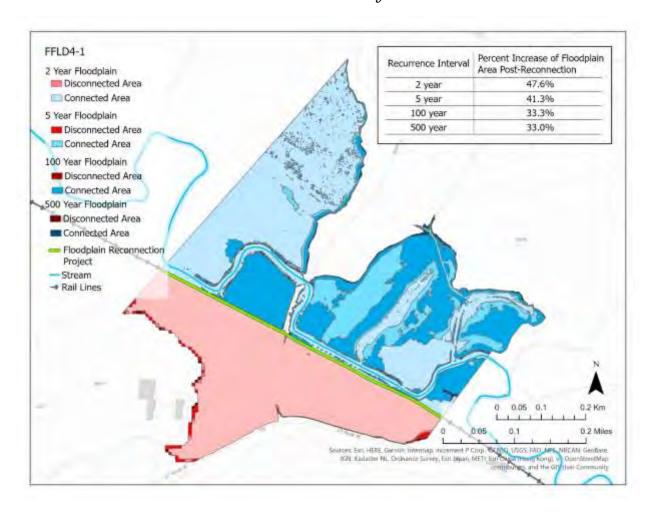



### Black Creek – Bakersfield 2




### Black Creek – Fairfield 1




### Black Creek - Fairfield 2a



## Black Creek – Fairfield 3-1



### Black Creek – Fairfield 4-1

