Evaluation of SPT Hammer Energy Variability

Study Location: Windsor, VT

Report Date: January 10, 2010

Sponsoring Agency:

Materials and Research Section Mr. Christopher C. Benda, P.E. One National Life Drive

> Montpelier, VT 05633-5001 802-828-2561

EA Number: RSCH012-703 Contract Number 0984735

Authors:

Shawn P. Kelley, Ph.D. and John E. Lens, P.E.

54 Main Street, P.O. Box 699, Windsor, Vermont 05089 (T) 802.674.2033, (F) 802.674.5943 Geo**Design** Project Number: 750-05.7 "The information contained in this report was compiled for the use of the Vermont Agency of Transportation. Conclusions and recommendations contained herein are based upon the research data obtained and the expertise of the researchers, and are not necessarily to be construed as Agency policy. This report does not constitute a standard, specification, or regulation. The Vermont Agency of Transportation assumes no liability for its contents or the use thereof."

1. Report No. 2. Government Accession No.		3. Recipient's Catalog No.		
2010-3				
4. Title and Subtitl	le	5. Report Date		
Evaluation o	f SPT Hammer Energy Variability	January 2010 6. Performing Organization Code		
7. Author(s)		8. Performing Organization Report No.		
S	hawn P. Kelley, Ph.D. John E. Lens, P.E.			
9. Performing Org	anization Name and Address	10. Work Unit No.		
	eo Design Incorporated Main Street, P.O. Box 699,			
W	indsor, Vermont 05089	11. Contract or Grant No.		
12. Sponsoring Agency Name and Address Vermont Agency of Transportation Materials and Research Section Chris C. Benda, P.E. Project Manager National Life Building Montpelier, VT 05633-5001		13. Type of Report and Period Covered Final Report (2008-2009) 14. Sponsoring Agency Code		
Mo	ntpelier, VT 05633-5001			

15. Supplementary Notes

16. Abstract

This report presents an evaluation of the Standard Penetration Test (SPT) hammer energy delivered to the SPT sampler during the performance of ASTM D1586, "Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils."

Delivered kinetic energy was measured from SPT hammers from VTrans and companies that do work for the State of Vermont. The variability of the measurements was assessed and a summary of the energy transfer ratios are provided. This report also supplies some guidance on recommended frequency of SPT hammer energy measurement on VTrans equipment.

Nine different SPT hammer configurations were tested in this study. Variables included hammer type, drill rod type, drill rig type, operator, drilling method, and soil gradation. This study attempted to isolate these variables in order to quantify the contribution of each variable on the measured SPT hammer energy. A number of variables (e.g., rod type, soil gradation, groundwater condition) became evident as potential causes, but isolation of any one variable was difficult to do.

	17. Key Words		18. Distribution Statement		
Standard Penetration Test,					
Hammer Energy					
	Energy Transfer Ratios				
Ī	19. Security Classif. (of this report) 20. S		Security Classif. (of this page)	21. No. pages	22. Price
				289	

TABLE OF CONTENTS

TABL	E OF CON	TENTS	I
LIST	OF FIGURI	ES	IV
LIST	OF TABLE	S	VI
LIST	OF SYMBO	OLS	VII
1	INTRODU	UCTION	1
	1.1	Objective	2
	1.2	Literature Review	
	1.3	Organization of Report	
	1.5	Organization of Report	
2	SPT TEST	Γ EQUIPMENT	3
	2.1	Drill Rigs	4
	2.2	Drill Rods	
	2.3	Spilt-Spoon Sampler	
	2.4	Drilling Method	
	2.4	4.1 Hollow Stem Auger	
	2.4	4.2 Flush Mounted Casing	
	2.5	SPT Hammer	
	2.5	5.1 Safety Hammer	
		5.2 Down-Hole Safety Hammer	
	2.5	• • • • • • • • • • • • • • • • • • •	
	2.6	Energy Measurement System	
	2.6	5.1 Instrumented Rods	
		5.2 SPT Analyzer	
3	SDT HAM	MER ENERGY MEASUREMENT PROCEDURE	17
3	SI I IIAW	IMER ENERGT MEASUREMENT TROCEDURE	1/
	3.1	General Operation	17
	3.2	Sensor Connections	
	3.3	Data Collection	18
	3.4	Data Review	19
	3.5	Energy Measurement Methods	
	3.5		
		5.2 Force-Velocity Method	

		3.5.3 Force-Squared Method	22
4	LITER	ATURE REVIEW	24
	4.1	Overview	24
	4.2	SPT Hammer Energy Literature Values	
	4.3	SPT Hammer Energy and Influence from Soil Types	
5	TEST S	SITE DESCRIPTION	28
	5.1	Location	28
	5.2	Geology	29
	5.3	Subsurface Description	
		5.3.1 General	30
		5.3.2 Upper Silty Fine Sand	30
		5.3.3 Fine to Medium Sand and Gravel	30
		5.3.4 Silt and Sand	31
		5.3.5 Lower Silty Fine Sand	31
		5.3.6 Groundwater	31
6	PRESE	NTATION OF RESULTS	32
	6.1	Data Quality Assessment	32
	6.2	SPT Hammer Energy Transfer Ratios	
	6.3	SPT Hammer Energy Adjustment Factor	
	6.4	SPT N ₆₀ Values	
7	DISCU	SSION OF RESULTS	37
	7.1	Data Quality Assessment	37
	7.2	SPT Hammer Energy Transfer Ratios	
		7.2.1 Data Distribution	38
		7.2.2 Rod comparison	38
		7.2.3 Hammer Comparison	39
	7.3	SPT Hammer Energy Adjustment Factor	39
	7.4	SPT N ₆₀ Values	39
	7.5	Comparison to ETR Literature Values	40
	7.6	Calibration Interval	41
8	CONC	LUSIONS AND RECOMMENDATIONS	42
	8.1	SPT Hammer Energy Transfer Ratio	42
	8.2	SPT Hammer Energy Adjustment Factor	
	8.3	Calibration Interval	
	8.4	Future Work	44

9	ACKNOWLEDGEMENTS	45
10	REFERENCES	46
11	APPENDICES	50
	APPENDIX 1 – SITE LOCATIONA	1
	APPENDIX 2 – CROSS SECTIONS A	5
	APPENDIX 3 – BORING LOGS A	9
	APPENDIX 4 – GRAIN-SIZE ANALYSES (BY BORING)	10
	APPENDIX 5 – GRAIN-SIZE ANALYSES (BY SOIL LAYER)	11
	APPENDIX 6 – EXAMPLE OF SPT ANALYZER FIELD DATA (FORCE –	
	VELOCITY PLOTS)	12
	APPENDIX 7 – SPT HAMMER ENERGY SUMMARY SHEETS A-	15
	APPENDIX 8 – PDI PLOT OUTPUT DATA AND PLOTS A-	16
	APPENDIX 9 – NORMAL DISTRIBUTION PLOTS OF ETR (%) VALUES A-	
	APPENDIX 10 – SPT N VALUE AND N ₆₀ VALUE PLOTS A-	18
	APPENDIX 11 – SPT HAMMER ENERGY LITERATURE VALUES A-	21
	APPENDIX 12 – SPT INSTRUMENTED ROD CALIBRATION SHEETS A-	22

LIST OF FIGURES

<u>Figure</u> <u>Page</u>	<u>)</u>
Figure 1 VTrans CME 55 used on Boreholes GD-1 and GD-3	
Figure 2 VTrans CME 45C Skid Rig on Trailer used on Boreholes GD-2 and GD-4 5	
Figure 3 VTrans CME45C on Track Rig used for Boreholes GD-7 and GD-8	
Figure 4 TransTech CME 75 on Track Rig used for Boreholes GD-5 and GD-6	
Figure 5 SDI Simco Drill Rig used for Borehole GD-9	
Figure 6 Drill Rigs using HSA and Washed Bore Drilling Techniques	
Figure 7 Photograph of Safety Hammer with Driller "Throwing the Rope" at GD-4 10	
Figure 8 Photograph of Down-Hole Safety Hammer (leaning on right hand side of rig) 11	
Figure 9 Placing Automatic Hammer on top of Drill String	
Figure 10 AWJ instrumented Drill Rod	
Figure 11 NWJ Instrumented Drill Rod with Driller Holding Wires During Driving 14	
Figure 12 Photograph of the SPT Analyzer Data Acquisition Box	
Figure 13 Depictions of the Potential and Kinetic Energies during the SPT Procedure (from Kovacs et al. 1983)	
Figure 14 Photo of the Test Site at Borehole GD-8	
Figure 15 Photo of Test Site while Drilling Boreholes GD-8 and GD-9	
Figure 16 Site Location	
Figure 17 Miller Construction, Inc. Site Plan	
Figure 18 Exploration Location Plan. A-4	
Figure 19 Subsurface Profile A-A'	

Evaluation of SPT Hammer Energy Variability	
Windsor, VT	
Geo Design Project No. 750-05.7	
January 10, 2010	

Figure 20	Subsurface Profile B-B'	
Figure 21	Subsurface Profile C-C'	A-8

LIST OF TABLES

<u>Table</u> <u>Page</u>
Table 1 List of SPT Hammer Energy Variations used in this Study
Table 2 Dimensions of Common Taper-Thread Drill Rods
Table 3 List of Average ETR and C _E published in the Reviewed Literature
Table 4 Summary Table of Average SPT Hammer Energy Transfer Ratios from Literature
Table 5 List of Measured SPT Hammer Efficiencies from this Study
Table 6 List of Measured SPT Hammer Correction Factors from this Study
Table 7 Recommended ETR Values for the Tested SPT Hammer Configurations
Table 8 Recommended Adjustment Factors for the SPT Hammer Configurations Tested 43

LIST OF SYMBOLS

<u>Symbol</u> <u>Definition</u>

A cross sectional area of the steel

BPM the operating rate of the SPT hammer in blows per minute

C_E adjustment factor by which the N-value should be multiplied in order to

obtain N_{60} (ETR/60)

E elastic modulus of the steel

 $\begin{array}{ll} E_i & & Energy \ in \ Drill \ Rod \\ E_v & & Kinetic \ Energy \\ EA/c & rod \ impedance \end{array}$

EF2 the energy transmitted to the drill rod from the hammer during the impact

event determined by the F2 method

EFV (EMX) the energy transmitted to the drill rod from the hammer during the impact

event determined by the F-V method

ETR (EFV/PE) ratio of the measured energy transferred to the drill rods to the theoretical

potential energy

F force at time

FMX the force delivered by the SPT hammer

H Hammer fall height

K₁ Correction factor for the distance between the anvil and the measurement

device (F² method)

 K_2 Correction factor for short rods of less than 30 ft (F^2 method)

K_c Correction factor for the ratio of the actual to the theoretical time at which

the force at the rod top becomes equal to zero (F^2 method)

L length between the location of transducers on the instrumented rod and the

bottom of the penetrometer

N-value the number of hammer blows required to advance the sampler from 6 in.

to 18 in. driven during the SPT test

 N_{60} the N-value adjusted to a hammer efficiency of 60 percent (N-value x C_E) PE (ER) the theoretical potential energy of the hammer positioned at the specified

height above the impact surface (350 ft-lbs per the ASTM standard)

V velocity at time

c speed of wave propagation in steel (16,810 feet/sec)

g acceleration due to gravity

m hammer mass

t time

v theoretical free fall velocity w weight of SPT hammer

2L/c the time required for the stress wave (traveling at a known wave speed, c,

in steel) to travel from the measurement location to the bottom of the

penetrometer and return to the measurement location

1 INTRODUCTION

This report presents an evaluation of the Standard Penetration Test (SPT) hammer energy delivered to the SPT sampler during the performance of ASTM D1586. The technical literature has shown that variations in test equipment used to perform ASTM D1586 leads to different values of kinetic energy delivered to the SPT sampler (although the potential energy of 350 ft-lbs is standardized by ASTM). In turn, this difference in energy delivered to the sampler can affect the measured penetration resistance in the soil (i.e., the N-value). This variation in N-value (defined as the cumulative hammer blow counts needed to penetrate the sampler through the second and third 6-inch increment while performing ASTM D1586) may lead to conservative engineering designs (when the hammer system used is highly efficient) or non-conservative engineering designs (when the hammer system has high frictional losses) when appropriate energy correction factors are not applied to the field measured N-values.

Many engineering relationships from SPT N-values to soil design parameters such as relative density, angle of internal friction, shear strength, soil liquefaction potential, and bearing pressure of shallow foundations are found in the literature (USACE 1988, ASTM D4633-05). Therefore, accurately measuring the N-value and correcting this value with the appropriate energy correction factor is extremely important in engineering design. Factors affecting the applied energy include the mechanism of the drill rig, the fall height of the hammer, the efficiency of the energy transfer at the impact from hammer to anvil, the drill rod, the length and type of drill rod, and for safety and donut hammers, the number of turns of the rope around the cathead, the age of the rope, and the operator (USACE 1988). As stated in ASTM D1586-08 under the Precision and Bias section, the use of faulty equipment, such as extremely massive or damaged anvil, a rusty cathead, a low speed cathead, an old, oily rope, or a massive of poorly lubricated rope sheaves can significantly contribute to differences in N-values obtained between operator-drill rig systems. Knowing the applied energy to the sampler and correcting for this delivered energy would help to account for some of these factors.

ASTM D1586-08 also states in the Precision and Bias section that variations in N-values of 100% or more have been observed when using different Standard Penetration Test apparatus and drillers for adjacent boreholes in the same soil formation. When the same apparatus and driller are used, N-values in the same soil can be reproduced with a coefficient of variation of about 10%. Having knowledge of the applied energy by the SPT hammer to the sampler would allow for better comparisons between drill rigs and provide better precision to measured N-values.

Included in this report are comparisons of nine different SPT test configurations using standard SPT hammers, drill rods, and drill rigs configurations. Data were measured from five different drill rigs using seven different SPT Hammers (Safety Hammers and Automatic Hammers). The drill rigs used included three VTrans drill rigs and two private company drill rigs. Each drill rig was equipped with different SPT hammers and drill rods and this equipment was used to create a total of nine different SPT hammer configurations. These configurations were used to compare the different applied SPT Hammer energies to the SPT sampler.

1.1 Objective

The objective of this report is to provide measured energy values of SPT hammers from VTrans equipment as well as measured energy values of SPT hammers from drilling companies that do work for the State of Vermont. The variability of the measurements will be assessed and a summary of the energy transfer ratios will be given. This report also provides some guidance on recommended frequency of SPT hammer energy measurement on VTrans equipment.

1.2 Literature Review

A review of the SPT hammer energy research literature was completed for this study and a summary is presented in this report. As stated in the literature, SPT hammer energies vary depending on the SPT hammer type used to conduct ASTM 1586. As stated in the test standard, the SPT hammer must be 140 pounds and the hammer must free fall for a distance of 30 inches on to the drill string providing an energy of 350 ft-lbs. The method of raising and free falling the SPT hammer varies per hammer type and manufacturer. This difference results in different SPT hammer energy efficiencies because of frictional losses within each hammer system.

As hammer technology has progressed over the years (i.e., initially pin-weight and donut hammers were used in the 1950s then safety hammers became popular in the 1960s to 1980s, and now automatic hammers are common), so has the efficiency in SPT hammer systems. As stated in Akbas and Kulhawy (2008), hammer energy ratios have increased from 40% efficiency in the 1950s to 90% efficiency in the 1990s. Finno (1989) demonstrated in a uniform sand deposit that the N-values from one SPT hammer type (rope and cathead with safety hammer) were 2 to 3 times higher than those of a second SPT hammer of a different type (automatic hammer). This observation provides factual information that even though the SPT is a standardized test, the diversity of equipment allowed to perform SPT can have a significant influence on the resulting SPT N-value.

1.3 Organization of Report

This report is divided into eleven chapters including an appendix chapter. Chapter 1 is an introductory chapter; Chapter 2 presents the test equipment used to perform the field test evaluation of this project. Chapter 3 presents the SPT hammer energy measurement procedure and Chapter 4 is a literature review. Chapter 5 presents information about the test site used to perform this study. Chapter 6 and 7 provides the presentation and discussion of results, respectively. Chapter 8 presents the conclusions of the project and Chapter 9 acknowledges the entities involved in this project. Chapter 10 lists the references used in this report and Chapter 11 includes the appendices for the report.

2 SPT TEST EQUIPMENT

The equipment used to conduct the SPT and to measure the applied energy is described herein. There were seven different hammers employed in this study using five different drill rigs resulting in nine different SPT hammer configurations. All configurations were employed using standard drilling techniques. Table 1 presents a list of all of the variations tested for this study.

The hammer energy measurement equipment used in this study was developed by Pile Dynamics, Inc. (PDI). It is designed to measure energy delivered to the SPT sampler by a SPT hammer using standard drill rod connections.

Table 1 List of SPT Hammer Energy Variations used in this Study.

Boring ID	Date	Ham- mer Type	Ham- mer drop system	Drill Rig (year of manufacture)	Vehicle #	Comp- any	Hammer Operator	Drill Rods	Drilling Technique
GD-1	9/23/08	CME Auto- matic	Auto- matic	CME 55 – Track (2007)	356675	VTrans	Glenn Porter	AWJ	4 inch HW Casing, spin and wash with roller bit ahead of casing to advance
GD-2	9/23/08	CME Auto- matic	Auto- matic	CME 45C Skid-rig on trailer (1996)	277564	VTrans	Howard Garrow	AWJ	3 1/4" HSA with auger plug – no water
GD-3	9/24/08	CME Auto- matic	Auto- matic	CME 55 – Track (2007)	356675	VTrans	Glenn Porter	NWJ	4 inch HW Casing, spin and wash with roller bit ahead of casing to advance
GD-4	9/24/08	Safety	Rope and Cathea d	CME 45C Skid-rig on trailer (1996)	277564	VTrans	Howard Garrow	AWJ	3 1/4" HSA with auger plug – no water
GD-5	9/25/08	CME Auto- matic	Auto- matic	CME 75 – Track (1988)	200587	Trans- Tech	John Leonhardt	AWJ	4 1/4" HSA with auger plug – no water
GD-6	9/25/08	Safety	Rope and Cathea d	CME 75 – Track (1988)	200587	Trans- Tech	John Leonhardt	AWJ	3 1/4" HSA with auger plug – no water
GD-7	9/26/08	CME Auto- matic	Autom atic	CME 45C Track (2001)	306614	VTrans	Glenn Porter	AWJ	3 1/4" HSA with auger plug – no water
GD-8	9/26/08	CME Auto- matic	Autom atic	CME 45C Track (2001)	306614	VTrans	Glenn Porter	NWJ	3 1/4" HSA with auger plug – no water

Table 1 (continued) List of SPT Hammer Energy Variations used in this Study.

Boring ID	Date	Ham- mer Type	Ham- mer drop system	Drill Rig (year of manufacture)	Vehic le #	Comp- any	Hammer Operator	Drill Rods	Drilling Technique
GD-9	9/29/08	Down- hole Safety Hamme r	Mobile Safe-T Driver	Simco 2800 (1997)	n/a	SDI	Chris Aldrich	AWJ	4 1/4" HSA with auger plug – no water

2.1 Drill Rigs

This study used 5 different drill rigs from 3 different agencies/companies as summarized in Table 1. VTrans rigs used in this study were a CME 55 on a track rig, CME 45C on a skid rig, and a CME 45C on a track rig. TransTech Drilling Services (TransTech) from Schenectady, NY used a CME 75 on a track rig. Specialty Drilling and Investigation (SDI) from Burlington, VT used a Simco 2800 HS HT on a truck. The following figures present the photos of each drill rig used in this study.

Figure 1 VTrans CME 55 used on Boreholes GD-1 and GD-3.

Figure 2 VTrans CME 45C Skid Rig on Trailer used on Boreholes GD-2 and GD-4.

Figure 3 VTrans CME45C on Track Rig used for Boreholes GD-7 and GD-8.

Figure 4 TransTech CME 75 on Track Rig used for Boreholes GD-5 and GD-6.

Figure 5 SDI Simco Drill Rig used for Borehole GD-9.

2.2 Drill Rods

This study used two different types of drill rods, AWJ and NWJ rods. The AWJ rods are 1 3/4 inch diameter with a 1/4 inch rod wall thickness. The NWJ rods are 2 5/8 inch diameter with a 3/16 inch rod wall thickness. The "J" designation indicates that the drill rods have a tapered thread. Table 2 presents dimensions of these two types of drill rods.

Table 2 Dimensions of Common Taper-Thread Drill Rods

SIZE OF DRILL ROD	AWJ	NWJ
Outside Diameter	1 3/4"	2 5/8"
Inside Diameter	1 1/4"	2 1/4"
Bore of Coupling	5/8"	1 3/8"
No. Threads Per Inch	5	4
Weight	4.2 lbs/ft	5.8 lbs/ft

2.3 Spilt-Spoon Sampler

The split-spoon samplers used in this study were standard 2-inch split spoons. Each split-spoon had drive shoes that were not worn (i.e., shoe tips were not sharpened, blunt, or rounded off). Plastic split-spoon catchers were used for this study and any that were observed to be worn (i.e., plastic teeth bent over or broken off) were replaced with new catchers. All SPTs in this study were performed without split spoon liners.

2.4 Drilling Method

Two drilling methods were used in this study and are described herein. There methods meet the intent of the ASTM D1586 SPT procedure.

Figure 6 Drill Rigs using HSA and Washed Bore Drilling Techniques.

2.4.1 Hollow Stem Auger

This study used two different types of hollow stem augers (HSA). 3 ¼ inch and 4 ¼ inch (inside diameter) HSA were used to drill 7 boreholes. Water was not used when drilling with the HSA for this study (i.e., boreholes were drilled in the dry). The CME 45C on a skid rig (see Figure 6) and the CME 45C on a track rig by VTrans used 3 ¼ inch HSA. The CME 75 on a track rig by TransTech drilled two boreholes with one borehole using 3 ¼ inch and the other using 4 ¼ inch HSA. The Simco 2800 HS HT by SDI used 4 ¼ inch HSA. All boreholes used a HSA pilot plug attached to the drill rods during augering to prevent soil from going up into augers.

2.4.2 Flush Mounted Casing

Two boreholes were drilled using HW drill casing (4 inch ID). The CME 55 on a track rig by VTrans used the 4-inch casing and water was used to flush out the cuttings from the inside of the casing (see Figure 6). The water was pumped down the center of the casing and came to the surface along the outside annular space around the casing. An attempt to keep the water at the top of the casing was made during SPT sampling. A tricone roller bit with water was used to clean out casing prior to sampling.

2.5 SPT Hammer

This study employed three standard hammer energy systems in order to measure the variations of hammer energy delivered to the sampler.

2.5.1 Safety Hammer

The safety hammers used in this study were manufactured by Mobile Drilling Company, Inc. (Mobile) and Central Mine Equipment Company (CME). The VTrans rigs used the Mobile safety hammers and TransTech used the CME safety hammer.

The CME 45C on a skid rig by VTrans used a rope and cathead to raise and lower the safety hammer onto the drill string. The rope used by VTrans was fairly new and the cathead was reportedly not used often.

The CME 75 on a track rig by TranTech used a rope and cathead to raise and lower the safety hammer onto the drill string. The rope used by TransTech was worn and the cathead was freshly painted upon arrival. The driller scraped off fresh paint on the cathead surface prior to starting boring.

As can be seen in Figure 7, the drill rig operator followed the recommended number of rope turns (2 ½) around the cathead as described in Figure 1 of ASTM D1586-08. The 30 inch drop height was observed during the operation of this hammer.

Figure 7 Photograph of Safety Hammer with Driller "Throwing the Rope" at GD-4.

2.5.2 Down-Hole Safety Hammer

A down-hole safety hammer was used by SDI. The hammer was raised and lowered by a Mobile Safe-T-Driver (see Figure 8). This system uses a wire-line attached to a "frictionless" hydraulic winch which raises and lowers the down-hole safety hammer on to the drill string. The 30 inch drop height mark was observed during the operation of this hammer.

Figure 8 Photograph of Down-Hole Safety Hammer (leaning on right hand side of rig).

2.5.3 Automatic Hammer

The automatic hammers used in this study were manufactured by CME. The CME 55 on a track rig, CME 45C on a skid rig, and the CME 45C on a track rig by VTrans used automatic hammers manufactured by CME. Each rig had its own designated automatic hammer. The CME 75 on a

track rig by TransTech used an automatic hammer. All automatic hammers used in this study had sight tubes on the side of the hammer casing to assure hammer drop height. The bottom of the hammer was observed in the sight tube during performance of these hammers.

Figure 9 Placing Automatic Hammer on top of Drill String.

2.6 Energy Measurement System

The SPT procedure as defined by ASTM D1586 employs a SPT hammer, drill rods, and a split-spoon sampler. The installation of the sampler into the ground is governed by stress wave propagation. One-dimensional wave mechanics can be used to analyze the delivered stress wave through the steel drill rods from the SPT hammer to the sampler. This analysis in turn can be used to evaluate the energy transfer from the hammer system to the sampler. ASTM D1586

requires that the SPT hammer weigh 140 pounds and the hammer must be dropped from a height of 30 inches above the drill string but the standard does not specify the delivery system (i.e., how the hammer is raised and lowered on the drill string). Since there is no specification, many delivery systems have been developed over the years and in turn the amount of energy applied to the sampler has historically varied.

To calculate the applied hammer energy, the force delivered to the drill rods and acceleration of the drill rods during each hammer blow are measured using an instrumented drill rod and data acquisition system. The data are collected and analyzed to provide an applied energy value to the sampler. This study used an energy measurement system design and manufactured by PDI and it is called the SPT Analyzer.

2.6.1 Instrumented Rods

Sensor systems to measure both force and velocity are attached to a 2 foot long instrumented drill rod. Figure 10 and Figure 11 present the two styles of instrumented drill rods used in this study, an AWJ rod and a NWJ rod, respectively.

Figure 10 AWJ instrumented Drill Rod.

Figure 11 NWJ Instrumented Drill Rod with Driller Holding Wires During Driving.

Evaluation of SPT Hammer Energy Variability Windsor, VT Geo**Design** Project No. 750-05.7 January 10, 2010

In order to measure force, the SPT Analyzer requires the measurement of strain, which is converted to force using the cross sectional area of the rod and the elastic modulus of the steel. Foil strain gages (350 ohm) are glued directly on to the instrumented rod in a full Wheatstone bridge configuration and a short cable with a quick connect is attached. There are two opposing force transducers on each instrumented rod so that an average force measurement is recorded. This is to account for the potential of the instrumented rod bending during driving (Pile Dynamics, Inc. 1999). The calibration sheets for the force transducer are presented in Appendix 12.

The measurement of acceleration is directly measured by an attached accelerometer. The accelerometer (piezoresistive) is attached to a rigid aluminum block which is bolted on to the instrumented rod. The accelerometer has a quick connect plug to attach the instrumentation cable to the SPT Analyzer. The calibration sheet for the accelerometer is presented in Appendix 12.

The measured acceleration is integrated to velocity. Both the force and velocity measurements are required for the calculation of energy transferred to the drill rod from the SPT hammer during each hammer impact.

2.6.2 SPT Analyzer

The SPT Analyzer signal conditioning and processing unit records strain and acceleration during each hammer blow, converts the strain and acceleration to force and velocity, records and displays the velocity and force waveforms, records the number of hammer blows, records the frequency of hammer blows, and calculates the energy values using both the F² and FV methods.

A short cable connects the instrumented rod to the data acquisition system. The signal conditioner includes an analog to digital (A/D) converter and microprocessors with an on-board 12-volt DC battery for remote operation. A power supply connected to 120 AC may also be used for power.

The unit has an LCD touch-screen used to enter the rod area and length, description of each test hole, name of operator, and operator comments. The user can also initiate data recording with the touch-screen by pressing the record button on the screen. The data is recorded after each hammer blow when the hand-held unit is in record mode. For each hammer blow, the unit records force, velocity, number of hammer blows, and time between hammer blows. The user interface allows for data control and review during and after testing (Pile Dynamics, Inc. 1999).

Figure 12 Photograph of the SPT Analyzer Data Acquisition Box.

3 SPT HAMMER ENERGY MEASUREMENT PROCEDURE

The procedure used to measure SPT hammer energy is described herein. The SPT analyzer is used to collect and process the data measured by the instrumented rod. This section also discusses some of the theory behind the current ASTM D4633-05 energy measurements (i.e., the F-V (EFV) method) and discusses some of the historical aspects of the F² (EF2) method used to calculate energy.

The original ASTM D4633-86 Energy Measurement for Dynamic Penetrometers was first adopted by ASTM in 1986 but was then withdrawn in 1995. 10 years passed before the standard was re-instated on November 2005 as ASTM D4633-05 (Krusinski 2007). The old standard considered the normal proportionality between force and velocity and therefore only required measurement of force. The hammer energy was then obtained from the integral of the force squared (divided by rod impedance). This EF2 method also required the use of correction factors, K₁, K₂, and K_c. Common errors that were not properly corrected using this method were non-uniform rod sections and loose rod connections. It was also determined in the old standard that the correction factor for short rod connections was incorrect as stated ASTM D4633-05.

For the EF2 method to be valid, the first tension wave reflection time needed to be equal to the theoretical 2L/c time. A modification to the standard to accommodate this requirement was that the time ratio (defined as the actual first tension return time divided by the theoretical time, 2L/c) had to be within 90% to 120%. If this was not observed, then EF2 method could not be used. To avoid the complexity and possible errors using the EF2 method (since it is highly unlikely that true one-directional wave propagation exists in any dynamic penetrometer system, Pile Dynamics, Inc. 2004), the Force-Velocity (EFV) method was created and is now the recommended method in ASTM D4633-05 standard.

The EFV method is the only fundamentally correct method of measuring energy content. It integrates force and velocity over the complete wave event to measure the total energy content of the event. Correction factors are not necessary for the EFV method.

3.1 General Operation

The procedure to measure the SPT hammer energy involves threading an instrumented rod on to the drill string and measuring the strain and acceleration in the drill string while performing ASTM D1586. Measuring the SPT hammer energy does not detract from the SPT procedure or the measured N-values.

The instrumented rod is attached at the top of the drill string and tightened. The hammer anvil is then attached to the drill string, maintaining the required distance between the top of the transducers and the hammer striking surface per the ASTM standard D4633-05. The sensors are connected to the SPT Analyzer and just prior to hammer operation, the SPT analyzer is activated. The hammer is operated in a normal manner while the analyzer is recording, processing, and

Evaluation of SPT Hammer Energy Variability Windsor, VT Geo**Design** Project No. 750-05.7 January 10, 2010

displaying data on the readout unit. The number of hammer blows is recorded by the data acquisition system as well. The sampler penetration into the ground is recorded by the user by pressing a hand-held remote connected to the analyzer. After sampler penetration is complete, the instrumented rod is then disconnected, the soil sample is brought to the surface, and the borehole is then advanced to the next sampling depth. The process is repeated for each sampling interval that SPT energy measurements are desired.

In this study, all equipment was operated by the drill rig operators in the manner typically used on a daily basis by the operators. The SPT automatic hammers were not pre-lubricated, the sheaves and cathead for the rope and cathead operation were not pre-greased for this study. It is assumed that all rigs were lubricated and greased on their typical schedule of standard maintenance per the manufacturer's recommendations.

3.2 Sensor Connections

After the sensors are connected to the SPT Analyzer via quick connect plugs, the connection is verified by the data acquisition system. The SPT Analyzer is capable of sensing the status of each sensor and the operator must assure that all sensors are functional prior to starting the test.

During the drive, the sensor cables are supported and carefully observed to assure no damage to the cables occurs during driving (see Figure 11 showing the driller holding the communication cables). After each drive, the sensor main cable is disconnected from the instrumented rod and the instrumented rod is threaded off of the drill string. The rods are removed from the ground, the sampler brought to the surface, the borehole advanced to the next sampling depth to repeat the process.

3.3 Data Collection

Prior to beginning the test, the user must enter the appropriate data into the unit. These data include, sample depth interval, rod area and length, project information, and calibration factors for the force transducers and accelerometer. After entering all project information and sampling interval information, the SPT Analyzer is initialized to collect new data. A record button on the touch-screen of the data acquisition system is pressed to initialize the unit. This initiates the hand-held unit to record each hammer blow when the hammer strikes the anvil. The data acquisition system records the data from each blow by monitoring a user designated sensor, typically one of the force transducers is selected. Once force is sensed by the data acquisition system, data are recorded at 20 kHz for a period of 100 milliseconds.

A remote control button attached to the data acquisition system is pressed during the test as the sampler penetrates into the ground in order to advance the recorded depth interval on the touch-screen. The analog data from the gauges are digitized at 20 kHz. These data are continuously displayed on the touch-screen as the force wave (from the strain gauges) and the velocity wave (from the integral of the acceleration measurement). The trace of the velocity wave is scaled

such that it is proportional to the force wave. This allows the user to see if the force and velocity traces are reasonable during testing as will be discussed in Section 3.4.

3.4 Data Review

During the test, the operator checks the quality of the data. Data checks include good wave matching for both force transducers (only one accelerometer was used in this study, therefore the accelerometer data could not be matched). The force and velocity measurements should be proportional to the rod impedance (EA/c, where E = Modulus of Elasticity for steel, A = cross sectional area of the steel, and c = speed of wave propagation in steel) during the first 2L/c time, where L is defined as the length of rod below the measurement point and c as defined above, after the initial hammer impact and through out driving. After 2L/c time goes by, the force and velocity wave traces should diverge from each other and then both the force and velocity records should go to near zero at the end of each record. Successive force and velocity records should be generally similar as well.

After field testing was complete, the data were downloaded to a computer from the PCMCIA data storage card that is on-board in the data acquisition system. These data are reviewed and evaluated using PDA-W® software developed by PDI for proper response from the transducers. If any wave traces did not behave appropriately (per the previously described behavior), the computed energy was not included in the summary tables. Example responses plots from PDA-W® are presented in Appendix 6. PDI plot® software is used after the data have been interpreted in PDA-W® in order to present the data in graphical form. A summary table of measured hammer energies is presented in Appendix 7. The output files from PDI plot® are presented in Appendix 8.

3.5 Energy Measurement Methods

The SPT analyzer measures the maximum transferred energy applied to the sampler from the hammer system. If no friction losses occur in the hammer systems, the theoretical amount of delivered energy available to the sampler is equal to the potential energy of the hammer system (350 ft-lbs), as first discussed in Section 1. It has been shown in the literature that every hammer system has some frictional losses and the SPT analyzer is able to measure this delivered energy.

There are two methods used to calculate the maximum transferred energy to the sampler from the SPT hammer through the drill rods. The first method is described in ASTM D4633-05 as the Force-Velocity method. This method integrates the product of the force and velocity record over time for each hammer blow. This method is also referred to as the EFV method (and referred to as the EMX method per the PDA-W[®] manual by PDI). The second method was described in ASTM D4633-86 as the Force Squared method (F²). This method uses the theoretical proportionality of force and velocity to substitute force divided by rod impedance for the velocity. The energy is calculated by integrating the force squared over time and multiplying the result by the inverse of the rod impedance.

3.5.1 Potential and Kinetic Energies

The potential energy (PE) delivered to the sampler by the SPT hammer is calculated by multiplying the fall height of the hammer by the weight of the hammer. Using the quantities listed in ASTM D1586-08, the potential energy by the SPT hammer is equal to 350 ft-lbs.

The derivation of the potential energy comes from the definition of the theoretical free fall energy, i.e., kinetic energy of the system and inserting the value for the theoretical free fall velocity of the hammer as described by the following equation;

$$E_{v} = \frac{1}{2} \cdot mv^2 \tag{1}$$

where $E_v = \text{kinetic energy}$

 $m = mass of hammer = \frac{w}{g}$

where; w = weight of hammer

g = acceleration due to gravity

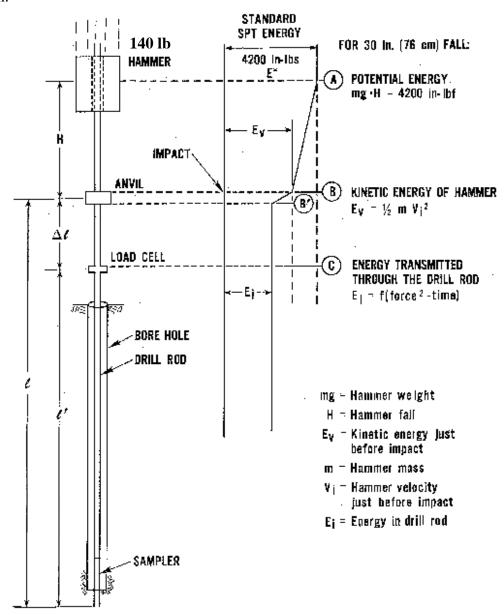
 $v = theoretical free fall velocity = \sqrt{2gH}$

Inserting the definition of v and m into Equation (1) yields a result of potential energy being equal to hammer weight multiplied by fall height (350 ft-lbs).

Figure 13 presents an illustration from Kovacs et al. (1983) in which the location of the energies applied to the drill string is depicted. Point A is the location of the potential energy before the 140 lb SPT hammer is dropped 30 inches on to the drill string anvil. If a frictionless system was possible, the kinetic energy delivered to the drill string would be equal to the potential energy but because friction exists, Point B represents the reduction of the potential energy. A further reduction of energy passing through the anvil occurs at Point B'.

The resulting kinetic energy, E_v , produces a compression stress wave in the drill rods and is measured by the instrumented rod as stress wave energy, E_i also referred to the maximum transferred energy (Point C in Figure 13). The E_i value is calculated using one of two methods by the SPT Analyzer. EFV method uses the measured force and velocity applied to the instrumented rod and the EF2 method using the square of the measured force to calculate E_i .

The Energy Transfer Ratio (ETR) is defined at the measured maximum transferred energy divided by the potential energy of the SPT hammer system as presented in Equation 2.


$$ETR = \frac{EFV}{PE}$$
 (2)

This equation is then used to calculate the "standard energy ratio" adjustment factor as defined by Equation 3.

$$C_E = \frac{ETR}{60} \tag{3}$$

This C_E value is multiplied by all field measured N-values to calculate N_{60} . N_{60} values are used in engineering property correlations for site evaluations as discussed in Section 1.

It should be noted that there are other correction factors that can be applied to field measured N-values (e.g., overburden, rod correction, anvil correction, borehole diameter, etc.) but presentation of those values is beyond the scope of work for this project. The reader is referred to Skempton (1986) and Aggour and Radding (2001) for a summary of correction factors found in the literature as well as ASTM D 6066-96 (2004) for a discussion on the overburden correction.

Figure 13 Depictions of the Potential and Kinetic Energies during the SPT Procedure (from Kovacs et al. 1983).

3.5.2 Force-Velocity Method

The force-velocity method is determined by:

$$EFV = \int F(t) \cdot V(t) dt \tag{4}$$

where: EFV = the energy transmitted to the drill rod from the hammer during the impact event determined by the F-V method,

F =force at time, t V =velocity at time, t.

The integration begins at impact by the SPT hammer and ends at the time at which energy transferred to the rod reaches a maximum value (i.e., the integration over the entire force and velocity record). This method requires the measurement of force and velocity which are obtained by the strain measurements from the force transducers and the acceleration measurements from the acceleration factors are necessary using this method as it is theoretically correct. It also applies to any drill rod (loose connections or differing cross-sectional area).

3.5.3 Force-Squared Method

The force-squared method was used early on because at the time of development there was not a good method to measure acceleration for steel to steel impacts. Researchers took advantage of wave propagation theory for waves traveling in one (downward) direction. The theory states:

$$V(t) = \frac{F(t)}{EA/c} \tag{5}$$

where: EA/c = rod impedance,

E = elastic modulus of the steel.

A = cross sectional area of the steel,

c = speed of wave propagation in steel (16,810 feet/sec).

Substituting Equation (5) in to Equation (4) leads to

$$E(t) = \frac{c}{FA} \int [F(t)]^2 dt = EF2$$
 (6)

where: EF2 = the energy transmitted to the drill rod from the hammer during the impact event determined by the F^2 method

This method integrates the energy content of the first compression pulse traveling down the drill rods, and as such, only measures part of the energy delivered to the sampler. Several correction factors (K_1 , K_2 , and K_c) are recommended in the old standard. It was determined over time that these correction factors were inherently wrong (ASTM D4633-05) and it is recommended that this method not be used. Another issue was that there were many causes of the first wave not

Evaluation of SPT Hammer Energy Variability Windsor, VT Geo**Design** Project No. 750-05.7 January 10, 2010

making it down to the sampler due to differences in cross-sectional area; loose rods, etc. therefore further justifying not using this method.

4 LITERATURE REVIEW

4.1 Overview

As part of this project, a number of papers, reports, and articles found in the research literature were reviewed to find previously published values of SPT hammer energies and to evaluate SPT hammer energy testing frequency employed by other agencies.

4.2 SPT Hammer Energy Literature Values

The following table presents a summary of the research literature that was reviewed as part of this study. The superscripts (as defined in the legend at the bottom of the table) in Table 3 depict the energy method used by the referred authors. Appendix 11 presents all data from each reference reviewed for this study. Table 4 presents a summary of the data presented in Table 3. As can be seen, the average energy transfer ratio between EFV and EF2 is within 10% of each other and that is a typical comparison between the two energy calculation methods (ASTM 2005). The majority of the data reviewed in the literature for this study were from other State DOTs.

Table 3 List of Average ETR and C_E published in the Reviewed Literature.

Test Agency	Hammer Type	AVG ETR (%)	AVG C _E Using EFV energy	Source	
Caltrans	Automatic	80.4 ¹	1.34	0 1: 110:11	
	Safety	55.6 ¹	0.93	Caltrans "Drill Rig Hammer Evaluation", File 59-910683, 12/7/2005 & August 2008	
Oregon DOT Recommended SPT energy Correction Factors, Theoretical	Automatic	76.4 ⁴	1.27	"SPT Energy Measurements with the Pile Driving	
	Safety	67 4	1.12	Analyzer" PowerPoint	
	Safe-T-Driver	48 4	0.80	Presentation, Laura Krusinski, P.E., Maine DOT	

Table 1 (continued) List of Average ETR and C_E presented in the Literature.

Test Agency	Hammer Type	AVG ETR (%)		AVG C _E Using EFV energy	Source
	Automatic	81.	4 ¹	1.36	"Research Report, SPT
	Safety Pin	70.2 ¹		1.17	Correction", M. Sherif
Maryland DOT	Sprauge and Henwood Donut	63.5 ¹		1.06	Aggour and Rose Radding, Department of Civil and Environmental Engineering, University of Maryland, September 2001
Compiled "In Situ Testing	Automatic	89.8 ³		1.50	
Techniques in	Safety	64	.1 ³	1.07	
Geotechnical Engineering" Alan J. Lutenegger, UMASS - Amherst	Donut	55.2 ³		0.92	Multiple sources
Compiled "Summary of SPT energy	Automatic	87.5 ²	77.7 ¹	1.30	
measurement experience"	Safety	61.0 ²	64.6 ¹	1.08	
Jeffrey A. Farrar, U.S. Department of Interior, Bureau of Reclamation (1998)	Safe-T-Driver	37.5 ²	38.0 ¹	0.63	Multiple sources
Department of	Automatic	61.2 ²	63.2 ¹	1.05	
Civil & Environmental Engineering,	Safety	56.4 ²	58.6 ¹	0.98	Energy Ratio Measurements
Korea Advanced Institute of	Donut	37.8 ²	39.7 ¹	0.66	Energy Ratio Measurements of SPT equipment", Dong- Soo Kim et al. (2004)
Science and Technology, Daejon, Korea	Donut - hydraulic	51.9 ²	59.1 ¹	0.98	

Table 1 (continued) List of Average ETR and C_E presented in the Literature.

Test Agency	Hammer Type	AVG ETR (%)		AVG C _E Using EFV energy	Source
	Pinweight	72 ³		1.20	Typical SPT Energy by country, "Case History of SPT Energy ratio for automatic hammer in northeastern U.S. practice", S.O. Akbas & F.H. Kulhawy
Multiple Testing Agencies	Safety - pulley	85 ³		1.42	
	Safety - rope and cathead	85 ³		1.42	
	Donut-rope and cathead	64.5 ³		1.08	
	Donut - pulley	51.6 ³		0.86	
	Automatic	76.1 ¹		1.27	SPT Energy Measurements with the PDA, Darin Sjoblom et al.
Utah DOT	Safety	66.6 ¹		1.11	
	Safe-T-Driver	49.8 ¹		0.83	
	Rope and Cathead (Safety?)	74.8 ¹		1.25	
U.S. Department of Interior Bureau of Reclamation, 1999	Automatic	87.8 ²	79.2 ¹	1.32	Multiple sources
Maine DOT	CME Automatic	771		1.28	"SPT Energy Measurements with the Pile Driving Analyzer" PowerPoint Presentation, Laura Krusinski, P.E., Maine DOT

Legend				
FV	1			
F ²	2			
Unspecified	3			
Energy Method				
Theoretical	4			

Table 4 Summary Table of Average SPT Hammer Energy Transfer Ratios from Literature.

Hammer Type	OVERALL AVERAGE F ²	OVERALL AVERAGE F-V	UNSPECIFIED ENERGY METHOD
Automatic	78.8	76.4	83.1
Safety	58.7	65.0	72.0
Donut-rope and cathead	37.8	51.6	59.8
Donut - hydraulic	51.9	59.1	51.6
Safe-T-Driver	37.5	43.9	48.0
Pinweight	n/a	n/a	72
Safety-pulley	n/a	n/a	85

4.3 SPT Hammer Energy and Influence from Soil Types

Bosscher and Showers (1987) present data that suggests soil type influences the measured SPT hammer energy. Bosscher and Showers (1987) focuses on numerical modeling and the paper concludes that hard soils produce more energy than soft soils given the same hammer blow. But Hall (1982) states that in order to use wave compression theory (and therefore the energy measurement method described herein), it is inherently implied that the first compression wave is independent of soil type. Further study is needed to evaluate if soil type directly influences the measured SPT hammer energy.

5 TEST SITE DESCRIPTION

The test site used for this research project is presented herein. The site was chosen for its expected relatively uniform soil profile nature, anticipated range of in situ SPT N-values matching the recommended ASTM range of N-values for the SPT hammer evaluation, and the readily available location.

VTrans sent out a drill rig crew to "pre-investigate" the proposed research site. Two locations were chosen during this "pre-investigation" phase and the second location was selected by VTrans for its measured N-values and soil stratigraphy.

5.1 Location

The research site is located in Windsor, VT on the property of Miller Construction as seen in the figures presented in Appendix 1. A grassy field on the construction company's land was utilized to perform nine soil borings set in a grid pattern. The site is on a flat terrace adjacent to the Connecticut River at approximate ground elevation of 335 feet. The Connecticut River is at approximate 292 feet elevation along the test site. The coordinates of the test site are 43°25'39" North and 72°23'49" West.

Figure 6, Figure 14, and Figure 15 present general photos of the test site while collecting the research data.

Figure 14 Photo of the Test Site at Borehole GD-8.

Figure 15 Photo of Test Site while Drilling Boreholes GD-8 and GD-9.

As presented in Appendix 1, Figure 16 presents the site location on the Mt. Ascutney quadrangle, which orients the site along the south eastern portion of the Miller Construction property; Figure 17 and Figure 18 present a plan view of the Miller Construction Inc. site and a zoomed-in plan view of the soil boring locations, respectively. Appendix 2 presents Figure 19, Figure 20, and Figure 21 that depicts the subsurface profiles A-A´, B-B´, and C-C´, respectively, at the site.

5.2 Geology

Glacial surficial geology of the test site is a Fluvial Sand deposit as described by Doll (1970). By definition, fluvial deposits are created by river deposition. This deposit is associated with the draining of Glacial Lake Hitchcock approximately 12,000 to 14,000 years ago (Little 2004). The draining of the lake allowed the Connecticut River to flow and create multiple flood plains and river terraces along its banks. The test site is on one of these described river terraces.

5.3 Subsurface Description

5.3.1 General

Four subsurface stratigraphy layers were encountered at the test site down to 50 feet below grade. Silty fine Sand approximately 10 feet thick is underlain by fine to medium Sand and Gravel that is approximately 15 feet thick. A 20-foot thick Sand and Silt layer underlies the Sand and Gravel layer and a lower silty fine Sand layer underlies the Sand and Silt layer. This layer was penetrated about 5 to 8 feet and the assumed underlying bedrock was not encountered. Appendix 2 presents three cross sections showing the stratigraphy across the site.

Encountered soil resistance values (N-values) for this deposit were within the recommended resistance values (5 to 50 blows per foot (bpf)) per ASTM D4633-05 as stated in Note 1 under <u>Significance and Use</u> in the standard. The boring logs are presented in Appendix 3. The depth ranges tested in this study were also within the ASTM acceptable limits (greater than 30 feet) as stated in Note 6 under Procedure in this standard.

5.3.2 Upper Silty Fine Sand

This stratum begins at the ground surface and extends to about 10 feet below grade. The average N_{60} value in this layer was 9 bpf with a range between 4 and 20 bpf. The layer is considered loose using this average N_{60} -value. The average percent recovery for 24 inches of penetration was 74%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on five soil samples in this layer. The average percentage of sand was between 60% and 80% and the average percentage of material less than No. 200 sieve was approximately 20% to 40%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was brown to tannish brown and the soil was moist. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.3 Fine to Medium Sand and Gravel

This stratum begins about 10 feet below grade and extends down to about 25 to 30 feet below grade. The average N_{60} value in this layer was 21 bpf with a range between 6 and 47 bpf. The layer is considered medium dense using this average N_{60} -value. The average percent recovery for 24 inches of penetration was 70%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on ten soil samples in this layer. The average percentage of gravel was between 10% and 20%, the average percentage of sand was between 70% and 85%, and the average percentage of material less than No. 200 sieve was approximately 5% to 10%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was tan to brown and the soil was moist. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.4 Silt and Sand

This stratum begins about 25 to 30 feet below grade and extends down to about 45 feet below grade. The average N₆₀ value in this layer was 17 bpf with a range between 4 and 38 bpf. The layer is considered medium dense using this average N₆₀-value. The average percent recovery for 24 inches of penetration was 81%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on fifteen soil samples in this layer. The average percentage of gravel was between 2% and 5%, the average percentage of sand was between 20% and 70%, and the average percentage of material less than No. 200 sieve was approximately 30% to 70%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was grayish brown and the soil became wet around 40 feet below grade. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.5 Lower Silty Fine Sand

This stratum begins about 45 feet below grade and the bottom of the layer was not encountered in this evaluation. The average N_{60} value in this layer was 23 bpf with a range between 8 and 33 bpf. The layer is considered medium dense using this average N_{60} -value. The average percent recovery for 24 inches of penetration was 85%. Appendix 3 presents a graph depicting recovery versus depth for all GD-borings. Grain-size analyses were performed on nine soil samples in this layer. The average percentage of gravel was between 0% and 2%, the average percentage of sand was between 70% and 85%, and the average percentage of material less than No. 200 sieve was approximately 10% to 20%. Appendix 4 presents two graphs depicting percent gravel and percent fines versus depth for all GD-borings. The color of this layer was grayish brown and the soil became wet around 40 feet below grade. Appendices 4 and 5 present the grain-size analysis for select samples within this layer.

5.3.6 Groundwater

Groundwater was encountered in an open borehole (GD-1) that was left open for 5 days at 44 feet below grade (El 291 feet). The borehole, GD-1, was initially drilled to 50 feet and subsequently collapsed to 45 feet below grade after the 4-inch casing was removed. All other groundwater observations were inferred by wet soil samples from the SPT split spoons. These soil sample depths were between 45 feet and 50 feet below grade.

The observed groundwater elevation in GD-1 corresponds to the average river elevation as observed on location topography maps.

6 PRESENTATION OF RESULTS

There were a total of 9 SPT hammer configurations tested using a total of 5 different drill rigs (3 State of Vermont rigs and 2 private contractor rigs), 7 different hammers, 2 different types of drill rods, 2 different drilling techniques, and 2 sizes of hollow stem augers. Each borehole consisted of similar equipment for the entire sounding (e.g., drill rod type from the anvil section to sampler was the same rod type) and each drill string was adjusted for verticality during the testing, when necessary.

A total of 9 boreholes were drilled in order to perform the 9 different SPT hammer configurations. One additional boring (B1-B) was drilled by VTrans during the "pre-investigation" phase to evaluate the research site. The boring logs presented in Appendix 3 provide sampling interval, sample recovery, field measured N-values, and visual soil descriptions. All borings were drilled to 50 feet below grade and sampled using a 5-foot sampling interval except for borings GD-3, and GD-6. These two borings were only sampled to 34 feet and 27 feet, respectively, due to time constraints during drilling.

At the beginning of each day, the drill rig operator performed a preparatory sequence of blows prior to energy measurement per the procedure outlined in ASTM D4633-05. These consisted of at least one SPT sample obtained in the upper 5 feet of the profile prior to SPT hammer energy measurement. Most boreholes had multiple preparatory sequences prior to the first energy measurement (i.e., continuous sampling to 10 feet below grade).

The weather for each testing day was partly cloudy with no precipitation except for September 26, 2008. Rain was observed on September 26, 2008. The automatic hammer on the CME45C track rig was the only hammer used that day.

Table 1 presents the configurations used in this study.

6.1 Data Quality Assessment

Appendix 6 presents sample data from the field. Presented are force and velocity traces during individual hammer blows from borings GD-2 and GD-5. As shown, the force and velocity plots have similar shapes up to a time equal to 2L/c and then the force and velocity plots diverge from each other. This divergence continues until both force and velocity go to zero. The shape and characteristic of these wave traces are indications that the field data for these hammer blows are a good data set. Also, the bottom figure shows the velocity measurements from the two transducers on the instrumented rod and as can be seen, the two strain gages matched (another indication of good data). As previously stated, only one accelerometer was used for this study therefore no comparison of accelerometer data is possible.

6.2 SPT Hammer Energy Transfer Ratios

The energy transfer ratio is the measured hammer energy delivered to the drill string divided by the potential energy of the system (as defined in Section 3.5.1). Once the entire hammer blow record for each depth interval was reviewed, the bad recorded data sets were removed from the group. This process was repeated for all nine boreholes. Only data having reasonable wave traces (as described above) were included in the summary tables. Appendix 7 presents a summary table with the test results from the SPT hammer energy measurements. The table headings in order from the left to right on the table include hammer type, drill rig, drill rig serial number, drill rod, type of drilling, owner, driller, SPT energy measurement operator, location of test with date and time, boring ID, sample depth, energy delivered using EFV and EF2 methods, potential energy, energy transfer ratio, force, hammer blow rate, recorded hammer blows, analyzed hammer blows, N-value, adjustment factor, N₆₀ value, average ETR and C_E, depth to water, and soil type for each test.

The average, standard deviation, minimum, and maximum values for SPT energy measurements (EFV and EF2), ETR, FMX, and BPM were calculated. These parameters were determined for each sampling interval, as well as analyzed over the entire borehole. The entire data set, including some graphs with measured SPT energy parameters plotted versus depth, are presented in Appendix 8. Energy Transfer Ratio frequency plots (showing the normal distribution of the ETR data) is presented in Appendix 9.

ETR and C_E were calculated for the each borehole using the energy from the EFV method. The data were averaged and reported using every hammer blow for both; the entire sounding and data obtained below 30 feet deep (as suggested by the ASTM D4633-05). Table 5 presents the ETR minimum, maximum, average, standard deviation, and average from data greater than 30 feet deep and standard deviation from data greater than 30 feet deep. As presented in the table, the automatic hammers had the largest ETR values (between 80 and 90%) and the wire-line safe-t-driver resulted in the lowest ETR value (51%). The average ETR greater than 30 feet using the EF2 method is also presented. As seen in Table 5 the ETR using the EF2 method are significantly higher.

Table 5 List of Measured SPT Hammer Efficiencies from this Study. (VTrans rigs are highlighted)

			entire borehole) feet deep	
Boring ID	Hammer Type	MIN (%)	MAX (%)	AVG (%)	Std Dev (%)	# of hammer blows analyzed	AVG (%)	Std Dev (%)	# of hammer blows analyzed	AVG EF2 (%)
GD-1	CME Automatic	63.6	94.5	85	4.9	215	87.5	1.3	136	112.9
GD-2	CME Automatic	60.6	86.4	77.4	5	211	79.6	1.4	129	105.4

Table 5 (cont) List of Measured SPT Hammer Efficiencies from this Study. (VTrans rigs are highlighted)

		entire borehole >30 feet deep) feet deep			
Boring ID	Hammer Type	MIN (%)	MAX (%)	AVG (%)	Std Dev (%)	# of hammer blows analyzed	AVG (%)	Std Dev (%)	# of hammer blows analyzed	AVG EF2 (%)
GD-3	CME Automatic	64.4	94.9	87.4	5.4	205	90.5	1.7	85	110.7
GD-4	Safety	40	82.4	66.3	7.7	289	69.2	5.6	179	84.1
GD-5	CME Automatic	60.9	95.4	84	5.3	173	85.6	1.5	120	115.1
GD-6	Safety	34.3	94.6	60.3	10.9	143	n/a	n/a	n/a	69.3
GD-7	CME Automatic	65.6	92.4	80.6	3.9	240	80.2	1.8	129	103.1
GD-8	CME Automatic	58.4	93.3	81.1	5.8	176	84.2	2.3	66	100.9
GD-9	Mobile Safety Driver	32	62.9	48.1	5.7	354	51.0	4.8	124	63.6

6.3 SPT Hammer Energy Adjustment Factor

The SPT Hammer Energy Adjustment Factor, C_E, is defined as the ETR divided by 60% energy where 60% energy is also referred to as the standard energy. ETR was presented in Section 3.5.1.

As discussed in Section 6.2, a table in Appendix 7 presents a summary of field measurements made during the SPT hammer energy testing. The minimum, maximum, average, and average greater than 30 feet deep adjustment factor, C_E , are summarized in Table 6. The data in Table 6 were calculated using the EFV energy. Appendix 8 presents the entire field data set measured for this study and plots a number of parameters versus depth for each borehole.

The adjustment factor, C_E , is the factor used to multiply with the field measured N-values to calculate the N_{60} -value (the standard energy applied to the sampler which equals 60% of the potential energy). This "standard" energy is accepted by several authors and publications. This "standard" energy is also recommended by Aggour (2001) to allow reproducible and consistent blow counts among different drill companies at the same site.

The automatic hammers had the highest measured C_E values (1.3 to 1.5) in this study and the wire-line safe-t-driver resulted in the lowest measured C_E value (0.9) in this study.

Table 6 List of Measured SPT Hammer Correction Factors from this Study.

(VTrans rigs are highlighted)

		(Adjustment Factor, C _E						
Boring ID	Hammer Type	ımmer Type Date MIN MAX		AVG entire borehole	AVG >30'				
GD-1	CME Automatic	9/23/2008	1.10	1.60	1.40	1.46			
GD-2	CME Automatic	9/23/2008	1.00	1.40	1.30	1.33			
GD-3	CME Automatic	9/24/2008	1.10	1.60	1.50	1.51			
GD-4	Safety	9/24/2008	0.70	1.40	1.10	1.15			
GD-5	CME Automatic	9/25/2008	1.00	1.60	1.40	1.43			
GD-6	Safety	9/25/2008	0.60	1.60	1.00	-			
GD-7	CME Automatic	9/26/2008	1.10	1.50	1.30	1.34			
GD-8	CME Automatic	9/26/2008	1.00	1.60	1.40	1.40			
GD-9	Mobile Safety Driver	9/29/2008	0.50	1.00	0.80	0.85			

6.4 SPT N_{60} Values

SPT N_{60} values are defined as the field N-values multiplied by the C_E . Appendix 10 presents the SPT N-values and SPT N_{60} values for all 9 boreholes. The first graph presents all of the N-values together (field measured and corrected). The second graph presents the field measured SPT N-values for each borehole. The third graph presents only the corrected N_{60} values which

were calculated using the average adjustment factor from each borehole (i.e., SPT hammer configuration).

The next nine graphs present the SPT N-value, SPT N_{60} -value, and the SPT $N_{60 \text{ indiv}}$ -value for each borehole. SPT $N_{60 \text{ indiv}}$ -value data were calculated by using the average adjustment factor for each sample interval and not the average for the entire borehole. These graphs were created to evaluate the magnitude of the energy correction for each SPT hammer configuration.

7 DISCUSSION OF RESULTS

The following sections provide a discussion of the data presented in the report. Comparisons of the different configurations are made as well as comparisons to literature values.

The boreholes were placed in a roughly 25-foot grid spacing on a flat site in a relatively uniformly layered sand deposit. As discussed in Section 5.3 and presented in Appendix 2, the site consists of a silty fine sand underlain by a fine to medium sand and gravel layer, underlain by a sand/silt, underlain by a silty fine sand.

The four different sand layers have varying values of silt and gravel content as seen in Appendix 4 and 5. Appendix 4 presents the grain-size data for each borehole and Appendix 5 presents the grain-size for each soil layer. As shown in the appendices, the sieve data analyses indicate that the upper and lower silty fine sand strata and the sand/silt layer are poorly graded. The sand and gravel layer is uniformly graded. The recoveries from each split spoon sample varied from 33% to 100% with the average recovery per soil layer equaling 74%, 70%, 81%, and 85% as presented in the graph shown in Appendix 3. There does not appear to be a trend with recovery versus depth.

As shown in Appendix 2, the four different sand layers have relatively uniform layer thicknesses between borings.

These soil characteristics made this site a good candidate for this SPT hammer energy study, while there are some natural variations in the composition within each layer.

7.1 Data Quality Assessment

Prior to starting any SPT hammer energy measurement, the transducers and the SPT analyzer box were checked for data quality using the manufacturers recommended procedure. As presented in Section 6.1, the force and velocity traces were reviewed prior to summarizing the hammer energy data that is presented in Appendix 7.

As can be seen in the Appendix 6a example plots, both velocity and force traces have similar shapes and when these values returned to zero after the initial hammer impact, at a time equal to 2L/c, the traces diverged from one another indicating that the data is of good quality. The force and velocity records returned to zero at the end of the record and successive force and velocity records were similar, all indicating good data.

Individual pairs of force signals versus time were very similar, providing an additional comparison for good quality data. There was only one accelerometer used in this study and no comparison was made for acceleration.

Any small time shifts between the force and velocity were corrected by shifting one signal versus the other up to 0.1 milliseconds. Any data set requiring larger time shifts was eliminated from the overall average because large time shifts indicate deficiencies in the measurement system.

7.2 SPT Hammer Energy Transfer Ratios

Energy measurements of good quality data (as described in Section 7.1) for at least five sample depths per borehole were recorded while using the SPT system in as nearly a routine manner as practical for all borings, as suggested by ASTM D4366-05. Most of the boreholes were drilled to 50 feet below grade using a 5-foot sample interval and the measured energy results were averaged for each borehole (per ASTM D4633-05 standard).

7.2.1 Data Distribution

As shown in Table 5, the standard deviation of the ETR data for the entire data set averages around 6%. When the data were analyzed by only using the data obtained below 30 feet from the ground surface (per the ASTM standard), the standard deviation average if around 2.5%. Appendix 9 presents the ETR (%) data as a function of occurrence and as can be seen. The plotted data follows typical normal distribution plots with each graph having the bell curve shape.

7.2.2 Rod comparison

Boreholes GD-1 and GD-3 used the same drilling equipment (CME 55 Track Rig with Auto hammer) and drilling technique (wash bore using HW casing) except that AWJ rods were used for GD-1 and the heavier NWJ rods were used for GD-3. As seen in Table 5, the NWJ rods provided a slightly higher ETR value (~3% higher).

Similarly, boreholes GD-7 and GD-8 used the same drilling equipment (CME 45C track rig with Auto hammer) and drilling technique (3 ¼ inch HSA) except that AWJ rods were used for GD-7 and NWJ rods were used for GD-8. As seen in Table 5, the NWJ rods provided a slightly higher ETR value (~4% higher).

NWJ rods are larger than AWJ rods and appear to give a higher efficiency due to the larger mass and cross-sectional area of the rod. Intuitively, this observation makes sense since the larger rod would have a larger moment of inertia thus preventing the larger drill rods from bending more than the smaller drill rods therefore allowing more of the energy to be transferred down to the sampler.

7.2.3 Hammer Comparison

Boreholes GD-2 and GD-4 used the same drill rig (CME 45C on skid rig) and drilling technique (3 ¼-inch HSA), but GD-2 used an auto hammer and GD-4 used a safety hammer. The automatic hammer had an ETR value of 79.6% and the safety hammer had an ETR value of 69.2% as presented in Table 5. These observations are consistent with expected values.

Boreholes GD-5 and GD-6 used the same drill rig (CME 75 track) and similar drilling technique (3 ¼-inch and 4 ¼-inch HSA) but GD-5 used an auto hammer (with 4 ¼-inch HSA) and GD-6 used a safety hammer (with 3 ¼-inch HSA). The automatic hammer had an ETR value of 85.6% and the safety hammer had an ETR value of 60.3% as presented in Table 5. These observations are consistent with expected values.

The Mobile Safe-T-Driver using a down-hole hammer (that was kept above grade for each sample interval) had an ETR value of 51%. This was the lowest value measured in this study. An issue with measuring the hammer energy of the down-hole hammer was that the hammer had to be hoisted high up above the top of the drill string because of the hammer length (in order to have the instrumented rod stay above the ground surface). This created a large amount of rod wobble during the driving, perhaps causing lower efficiencies since there was a large amount of unsupported rod length during the test. As stated in ASTM 4633-05, down-hole hammers should not be tested and perhaps rod wobble is the reason for this recommendation.

7.3 SPT Hammer Energy Adjustment Factor

The C_E values are the ETR values divided by a constant (60% energy) and as such the comparisons made in Section 7.2 apply to these data as well except that the ratios are inversely proportional to the ETR values.

A value of 1 for C_E, by definition, means that the measured energy was 60% and therefore no correction has to be made to these data.

7.4 SPT N_{60} Values

As can be seen in the first graph presented in Appendix 10a, the uncorrected and corrected N-values have a high amount of variability, ranging from 3 to 52 bpf and 4 to 47 bpf for the uncorrected and corrected N-values, respectively. The second and third graphs present the N_{60} -values and the N-values, respectively on single graphs. As can be seen on these graphs, the plots do not compress on to a single N_{60} plot, which would be expected when correcting field measured N-values within the same soil deposit when different drill rigs with different hammers were employed. This large amount of variation may be caused by the grain-size distribution of each soil layer within this native sand deposit. Appendix 4 presents the percent fines and the percent gravel versus depth for the samples that were analyzed. No trend in these data is evident when comparing the percent fines and percent gravel to N_{60} values although only 21 grain size

analyses were performed out of 102 samples, leaving 81 soil samples not analyzed. The literature reviewed for this project is not concise regarding SPT hammer energy measurements and soil type, therefore no conclusion can be made without further obtaining more grain size data.

The graphs in Appendix 10b present the N-values measured for each borehole on individual graphs, comparing the uncorrected N-value (field measured), the corrected N_{60} –value using the average C_E for that borehole, and the corrected N_{60} –value using the individually measured C_E for the corresponding depth interval. As shown on these graphs, correcting to N_{60} –values using the average C_E or using the C_E measured at that soil depth does not drastically change the plotted N-values (i.e., the individually measured C_E values are not that different than the overall average for each borehole).

7.5 Comparison to ETR Literature Values

Table 7 shows the five boreholes that used the Automatic hammer had an average energy transfer of 84.6% using the EFV method and 108.0% using the EF2 method. The automatic hammer average ETR in the literature using the EFV method was found to be 76.4% (a difference of 8%) and using the EF2 method was found to be 78.8% (a difference of 29%).

Table 7 shows the two boreholes that used the Safety hammer had an average energy of 64.8% using the EFV method and 76.7% using the EF2 method. The safety hammer average ETR in the literature using the EFV method was found to be 65% (a difference of $-\frac{1}{4}\%$) and using the EF2 method was found to be 58.7% (a difference of 18%).

Table 7 presents the one borehole that used the down-hole hammer had an average energy of 51% using the EFV method and 63.6% using the EF2 method. The down-hole hammer average ETR in the literature using the EFV method was found to be 43.9% (a difference of 7%) and using the EF2 method was found to be 37.5% (a difference of 26%).

As previously stated in Section 3.5.3, the EF2 method is inherently incorrect and typically is +/-10% to 15% of the EFV method (ASTM D4633-05) which more accurately estimates the actual measured energy to the sampler since a force transducer and an accelerometer are used. This study found the EF2 method to be 15% to 20% higher than the EFV method.

There is a good comparison between this study ETR values using the EFV method to the ETR literature values using the EFV method. The ETR values using the EF2 method do not compare as well, most likely due to reasons previously stated in Section 3.5.3.

7.6 Calibration Interval

Per the ASTM D4633-05, the recommended calibration interval is at a regular time interval (at least yearly), or based on frequency of use as specified in the owner's quality assurance plan, or based on the client's quality assurance requirements. For frequently used hammers, the required calibration interval may be shorter and for infrequently used hammers, it is advisable to calibrate on first use. For rope and cathead systems, calibration is also related to operator changes.

As stated in ASTM D1586-08 under the Precision and Bias section, the use of faulty equipment, such as extremely massive or damaged anvil, a rusty cathead, a low speed cathead, an old, oily rope, or massive or poorly lubricated rope sheaves can significantly contribute to differences in N-values obtained between operator-drill rig systems. The conditions occur over time and will influence the hammer efficiency and in turn affect the measured N-values with these systems.

UDOT, per Sjoblom et al., (2005) states that the Department has had a SPT hammer calibration interval of about 4 years. They observed that the efficiency of the SPT hammers typically went down about 5% with time. They recommend periodic calibration of their hammers and also suggest that keeping hammers well maintained is always good practice.

MaineDOT, per Krusinski (2007) states that the Department has established a policy to calibrate their rigs on an annual basis. They also require all contracted automatic and spooling winches on State Projects to be calibrated annually.

MinnesotaDOT and OregonDOT both have found that calibrating SPT hammers provides value in their engineering designs as it provides standardization to all reported N-values (all converted to N_{60}) and it was estimated that the cost of calibrating was more than offset by the reduction in conservatism when using more efficient hammers (Krusinski 2007).

8 CONCLUSIONS AND RECOMMENDATIONS

Nine different SPT hammer configurations were tested in this study. Variables included hammer type, drill rods, rig type, soil type and condition, operator, and drilling method. This study attempted to isolate these variables in order to quantify the contribution of each variable on the measured SPT hammer energy.

8.1 SPT Hammer Energy Transfer Ratio

Table 7 presents the recommended energy transfer ratio for the tested SPT hammer configurations. The automatic hammer on the CME 55 – Track rig (VTrans) had the highest efficiency, 90.5% and the Mobile Safety Driver on the Simco 2800 (SDI) had the lowest efficiency, 51%. The safety hammer on the CME 45C skid-rig trailer (VTrans) had an efficiency of 69.2% and the safety hammer on the CME 75 track rig (TransTech) had an efficiency of 60.3%. The other automatic hammers averaged about 83%. All measured hammer energies compared well with literature values. It is recommended that VTrans use the ETR values presented in Table 7 for their respective drill rigs and equipment configurations. It is also recommended that this value be listed on all boring logs with the date of last calibration and recommended date of recalibration. The field N-values (as recorded in the field) should be on the boring logs and the corrected N_{60} values using the respective ETR value should be listed adjacent to the field value.

The table uses a ^ symbol to indicate the standard equipment used by these drill rigs. These are the typical efficiencies of the hammers operating in the field by these drill rigs.

Table 7 Recommended ETR Values for the Tested SPT Hammer Configurations.

SPT Test Date	Hammer Type	Drill Rig	Drill Rod	ETR (%)
9/23/2008	CME Automatic	CME 55 - Track	AWJ	87.5^
9/23/2008	CME Automatic	CME 45C Skid-rig on trailer	AWJ	79.6^
9/24/2008	CME Automatic	CME 55 - Track	NWJ	90.5
9/24/2008	Safety	CME 45C Skid-rig on trailer	AWJ	69.2
9/25/2008	CME Automatic	CME 75 - Track	AWJ	85.6^
9/25/2008	Safety	CME 75 - Track	AWJ	60.3*
9/26/2008	CME Automatic	CME 45C Track	AWJ	80.2^

Table 7 (continue	ed) R	Recommended ETR	Values f	for the	Tested SP	T Hamm	er Configurations
-------------------	-------	-----------------	----------	---------	-----------	--------	-------------------

SPT Test Date	Hammer Type	Drill Rig	Drill Rod	ETR (%)
9/26/2008	CME Automatic	CME 45C Track	NWJ	84.2
9/26/2008	Mobile Safety Driver	Simco 2800	AWJ	51.0^

^{*} value calculated from measurements above the recommended 30-foot depth ^ standard equipment used on drill rig on typical projects

8.2 SPT Hammer Energy Adjustment Factor

The recommended adjustment factors for the tested SPT hammer configurations are presented in Table 8. The automatic hammer on the CME 55 – Track rig had the highest adjustment factor, 1.51 and the Mobile Safety Driver on the Simco 2800 had the lowest adjustment factor, 0.85 The safety hammer on the CME 45C skid-rig trailer had an adjustment factor of 1.15. The other automatic hammers averaged about 1.4. All measured adjustment factors compared well with literature values. VTrans should use the C_E values presented in Table 8 for their respective drill rigs and equipment configurations. It is recommended that this value be listed on all boring logs with the date of last calibration and recommended date of recalibration. The field N-values (as recorded in the field) should be on the boring logs and the corrected N_{60} values using the respective C_E value should be listed adjacent to the field value.

The table uses a $^{\circ}$ symbol to indicate the standard equipment used by these drill rigs. These values should be used to correct field N-values to N_{60} -values when N_{60} -values are needed for correlation to engineering properties using N_{60} -value correlations or liquefaction design (per ASTM D6066-96).

Table 8 Recommended Adjustment Factors for the SPT Hammer Configurations Tested.

SPT Test Date	Hammer Type	Drill Rig	Drill Rod	C _E
9/23/2008	CME Automatic CME 55 - Track		AWJ	1.46^
9/23/2008	CME Automatic	CME 45C Skid-rig on trailer	AWJ	1.33^
9/24/2008	CME Automatic	CME 55 - Track	NWJ	1.51
9/24/2008	Safety	CME 45C Skid-rig on trailer	AWJ	1.15
9/25/2008	CME Automatic	CME 75 - Track	AWJ	1.43^
9/25/2008	Safety	CME 75 - Track	AWJ	1.00*

Table 8 (continued) Recommended Adjustment Factors for the SPT Hammer Configurations Tested.

SPT Test Date	Hammer Type Drill Rig		Drill Rod	C _E
9/26/2008	CME Automatic	CME 45C Track	AWJ	1.34^
9/26/2008	CME Automatic CME 45C Track		NWJ	1.40
9/26/2008	Mobile Safety Driver	Simco 2800	AWJ	0.85^

^{*} value calculated from measurements above the recommended 30-foot depth ^ standard equipment used on drill rig on typical projects

8.3 Calibration Interval

We recommended that the SPT hammers be recalibrated in one year (as recommended in ASTM 4633-05) and then the new SPT hammer energies compared to September 2008 data. If less than 5% change is noted on average, we recommend extending the next calibration date out two years (following the general procedure established by UDOT). Prior to recalibrating, the hammers should be put on a regularly scheduled service/maintenance plan per the manufacturers recommendations.

8.4 Future Work

An attempt was made to determine some of the major causes of measured differences in hammer efficiency (other than hammer type). A number of variables (e.g., rod type, soil type, groundwater condition) became evident as potential causes, but isolation of any one variable was not possible. To further this study, we recommend that additional boreholes be drilled in the same study area and variables investigated in this report be isolated in the additional test borings. These additional borings would provide further data to assist in determining the variable contribution to hammer energy efficiency. This study data could help explain why the corrected SPT N₆₀ did not converge on a band of data versus depth in the study site (see Appendix 10). This additional work will significantly contribute to the current research literature as isolation of soil type on SPT hammer energy measurement has not been well documented. The question of the need to adjust the ETR value because of grain size can be evaluated with this additional research.

The completion of the grain-size analyses on the remaining 81 soil samples is also recommended to determine if percent fines, percent gravel, or percent sand have an affect on the measured energies. This will assist in the evaluation of soil type affect on SPT hammer energy measurement.

9 ACKNOWLEDGEMENTS

The author would like to acknowledge all involved in this research project. First the author acknowledges VTrans for the funding for this project and having the insight to recognize the importance of these measurements for geotechnical engineering design work. VTrans also provided three drill rigs to be tested and the personnel to run those rigs over multiple days. This work provided the bulk of the data presented in this report.

The author acknowledges two drilling companies that donated their time, personnel, and equipment for this study. TransTech Drilling Services from Schenectady, NY and Specialty Drilling and Investigation from South Burlington, VT both donated one day of drilling services for this project. The time and effort from these companies is greatly appreciated.

The author acknowledges Professor Alan J. Lutenegger from the University of Massachusetts at Amherst for his expertise in in situ testing, for reviewing drafts of this report, and for providing the testing equipment used in this study.

The author acknowledges Miller Construction Company for allowing us to perform the study on their property in Windsor, VT. The subsurface conditions were ideal for this study and the author is extremely grateful to Miller Construction for the access to their site.

The author acknowledges Geosciences Testing and Research, Inc. (GTR) for their work in reducing and presenting the SPT Analyzer data collected in this study. The data presented in Appendices 6 and 8 were from the PDA-W[®] software used to interpret the field data and PDI plot[®] software used to present the data in graphical form.

10 REFERENCES

Abou-matar, H., and Goble, G.G. (1997). "SPT Dynamic Analysis and Measurements." J. Geotech. Geoenviron. Eng., ASCE, 123(10), 921-928.

Aggour, M.S., and Radding, W.R. (2001). "Standard Penetration Test (SPT) Correction." Maryland Department of Transportation, Maryland.

Akbas, S.O., and Kulhawy, F.H. (2008). "Case History of SPT Energy Ration for an Automatic Hammer in Northeastern U.S. Practice." *Geotechnical and Geophysical Site Characterization,* Taylor and Francis Group, London.

American Society for Testing and Materials (ASTM) (2008). 2008 Annual Book of ASTM Standards, Volume 04.08 Soil and Rock (I): D420-D5876, West Conshohocken, Pennsylvania.

Bosscher, P., and Showers, D. (1987). "Effect of Soil Type on Standard Penetration Test Input Energy." *J. Geotech. Eng.*, ASCE, 113(4), 385-389.

Butler, J.J., Caliendo, J.A., and Goble, G.G. (1998). "Comparison of SPT Energy Measurement Methods." *Proc., Int. Conf. on Site Characterization, ISC '98, A.A.* Balkema, Rotterdam, The Netherlands, 901-906.

Caltrans. (2005-2008). "Drill Rig Hammer Evaluation." *Foundation Testing Branch*, State of California Department of Transportation, California.

Daniel, C., and Howie, J. (2005). "Effect of hammer shape on energy transfer measurement in the Standard Penetration Test." *Soils and Foundations,* Japanese Geotechnical Society, Tainan, Taiwan, 45(5), 121-128.

Diedrich Drill Incorporated. (2004). "Diedrich Automatic Hammer Operation Instructions." LaPorte, IN.

Diedrich Drill Incorporated. (1996). "Diedrich Automatic SPT Hammer System." LaPorte, IN.

Doll, C.G., Stewart, D.P., and MacClintock, P. (1970). "Surficial Geologic Map of Vermont." *Vermont Department of Water Resources*, Map, scale 1:250000.

Drumright, E.E., Pfingsten, C.W., and Lukas, R.G. (1996). "Influence of Hammer Type on SPT Results." *J. Geotech. Eng.*, ASCE, 122(7), 598-599.

Farrar, J.A. (1998). "Summary of Standard Penetration Test (SPT) Energy Measurement Experiment." *Proc., Int. Conf. on Site Characterization, ISC '98, A.A. Balkema, Rotterdam, The Netherlands, 919-926.*

Farrar, J.A., and Chitwood, D. (1999). "CME Automatic Hammer Operations Bulletin." *Earth Sciences and Research Laboratory*, U.S. Department of the Interior Bureau of Reclamation, Denver, CO.

Finno, R.J. (1989). "Subsurface Conditions and Pile Installation Data, Predicted and Observed Behavior of Piles." *Results of a Pile Prediction Symposium*, ASCE Geotechnical Special Publication, No. 23, 1-74.

Frost, D.J. (1992). "Evaluation of the Repeatability and Efficiency of Energy Delivered with a Diedrich Automatic SPT Hammer System." Diedrich Drill Incorporated, LaPorte, IN.

Goble, G.G., and Abou-matar, H. (1992). "Determination of Wave Equation Soil Constants from the Standard Penetration Test." *Proc. 4th Int. Conf. on the Application of Stress-Wave Theory to Piles*, A.A. Balkema, Rotterdam, The Netherlands, 99-103.

Hall, J.R. (1982). "Drill Rod Energy as a Basis For Correlation for SPT Data." *Proc. of the 2nd Symp. On Penetration Testing.*, A.A. Balkema, Rotterdam, 57-60.

Howie, J., and Campanella R.G. (2008). "Energy Measurement in the Standard Penetration Test (SPT)." Department of Civil Engineering, University of British Columbia, Vancouver, BC, Canada, www.civil.ubc.ca/research/geotech/sptenergy/sptenergy.htm (April 16, 2009).

ISSMFE Technical Committee on Penetration Testing, SPT Working Party. (1988). "Standard Penetration Test (SPT): International Reference Test Procedure." *Proc. of the 1st Int. Symp. On Penetration Testing,* A.A. Balkema, Rotterdam, The Netherlands, 3-26.

Johnsen, L.F., Bemben, S.M., and Jagello, J.J. (2001). "SPT Energy Transfer Measurements for Liquefaction Evaluations in the Northeast." *Proc. of the 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics*, San Diego, CA, 4.20, 1-6.

Kim, D.S., Seo, W.S., and Bang, E.S. (2004). "Energy Ratio Measurement of SPT Equipment." *Proc. ISC-2 on Geotechnical and Geophysical Site Characterization,* Millpress, Rotterdam, The Netherlands, 339-344.

Kovacs, W.D., Evans, J.C., and Griffith, A.H. (1975). "A Comparative Investigation of the Mobile Drilling Company's Safe-T-Driver with the Standard Cathead with Manila Rope for the Performance of the Standard Penetration Test." *School of Civil Engineering,* Purdue University, West Lafayette, IN.

Kovacs, W.D., Evans, J.C., and Griffith, A.H. (1977). "Towards a More Standardized SPT." *Proc. of the 9th Int. Conf. on Soil Mechanics and Foundation Engineering,* Tokyo, Japan, 269-276.

Kovacs, W.D., Griffith, A.H., and Evans, J.C. (1978). "Alternative to the Cathead and Rope for the Standard Penetration Test." *Geotech. Testing J.*, 1(2), 72-81.

Kovacs, W.D., Salomone, L.A., and Yokel, F.Y. (1981). "Energy Measurements in the Standard Penetration Test." *Natl. Bureau of Standards Bldg. Sci. Series 135, U.S.* Department of Commerce, Washington, D.C.

Kovacs, W.D., Salomone, L.A., and Yokel, F.Y. (1983). "Comparison of Energy Measurements in the Standard Penetration Test Using the Cathead and Rope Method." *National Bureau of Standards Report to the US Nuclear Regulatory Commission*, Washington, D.C.

Krusinski, L. (2007). "SPT Energy Measurements with the Pile Driving Analyzer." Maine Department of Transportation, 48th Annual Conference of the Northeast States Geotechnical Engineers, October 23-25, 2007, John Hancock Hotel & Conference Center, Boston, MA

Little, R.D. (2004). "Geological History of the Connecticut River Valley." *Earth View LLC*, http://www.earthview.pair.com/ctriver.html (June 9, 2009).

Lutenegger, A.J. (1999). "In Situ Testing Techniques in Geotechnical Engineering." *Department of Civil and Environmental Engineering,* University of Massachusetts, Amherst, MA.

Morgano, C.M., and Liang, R. (1992). "Energy Transfer in SPT - Rod Length Effect." *Proc. 4th Int. Conf. on the Application of Stress-Wave Theory to Piles,* A.A. Balkema, Rotterdam, The Netherlands, 121-127.

Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, G.P. (2004). "Energy Measurements for Standard Penetration Tests and the Effects of the Length of the Rods." *Proc. ISC-2 on Geotechnical and Geophysical Site Characterization*, Millpress, Rotterdam, The Netherlands, 351-358.

Odebrecht, E., Schnaid, F., Rocha, M.M., and Bernardes, G.P. (2005). "Energy Efficiency for Standard Penetration Tests" *J. Geotech. Geoenviron. Eng.*, ASCE, 131(10), 1252-1263.

Pile Dynamics, Inc. (2004). "Pile Driving Analyzer Manual: PDA-W Manual of Operation." *Pile Dynamics, Inc.*, Cleveland, OH.

Pile Dynamics, Inc. (1999). "SPT Analyzer User's Manual." Pile Dynamics, Inc., Cleveland, OH, 1-30.

Riggs, C.O., Schmidt, N.O., and Rassieur, C.L. (1983). "Reproducible SPT Hammer Impact Force with an Automatic Free Fall SPT Hammer System." *Geotech. Testing J.*, 6(3), 201-209.

Robertson, P.K., Woeller, D.J., and Addo, O. (1992). "Standard Penetration Test Energy Measurements Using a System Based on the Personal Computer." *Can. Geotech. J.*, 29, 551-557.

Schmertmann, J., and Palacios, A. (1979). "Energy Dynamics of SPT." *J. Geotech. Engrg. Div.*, ASCE, 105(8), 909-926.

Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985). "The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations." *J. Geotech. Eng.*, ASCE, 111(12), 1425-1445.

Sjoblom, D., Bischoff, J., and Cox, K. (2002). "SPT Energy Measurements with the PDA." *Proc., of the 2nd Int. Conf. on the Application of Geophysicals and NDT Methodologies to Transportation Facilities and Infrastructure,* Federal Highway Administration, Washington, D.C., 15-19.

Skempton, A.W. (1986). "Standard Penetration Test Procedures and the Effects in Sands of Overburden Pressure, Density, Particle Size, Aging and Overconsolidation." *Geotechnique*, London, 36(3), 425-447.

Steiger, F. (1980). "Experimental Investigation of the Force/Penetration Relationships of Rod Impact." *Geotech. Testing J.*, 3(4), 163-166.

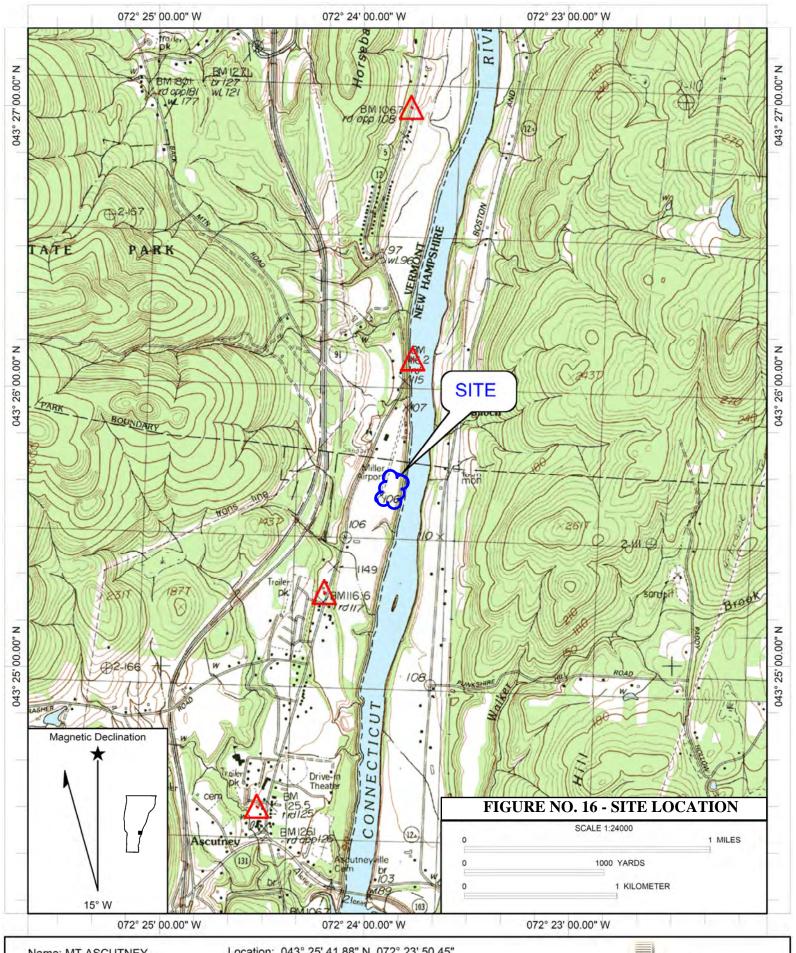
Sy, A., and Campanella, R.G. (1993). "Standard Penetration Test Energy Measurements Using a System Based on the Personal Computer." *Can. Geotech. J.*, 30, 876-882.

Tsai, J.S., Liou, Y.J., Liu, F.C., and Chen, C.H. (2004). "Effect of Hammer Shape on Energy Transfer Measurement in the Standard Penetration Test." *Soils and Foundations,* Japanese Geotechnical Society, Tainan, Taiwan, 44(3), 103-114.

U.S. Army Corps of Engineers. (1988). "Engineering and Design Standard Penetration Test." Department of the Army, Washington, D.C., No. 1110-1-138.

U.S. Patent Office. (2001). "US Patent 6286613-Impact method and the device used in standard penetration test." <www.patents/6286613/description.html> (April 16, 2009).

van der Graaf, H.J., and van den Heuvel, M.H.J.P. (1992). "Determination of the Penetration Energy in the Standard Penetration Test." *Proc. 4th Int. Conf. on the Application of Stress-Wave Theory to Piles,* A.A. Balkema, Rotterdam, The Netherlands, 253-257.

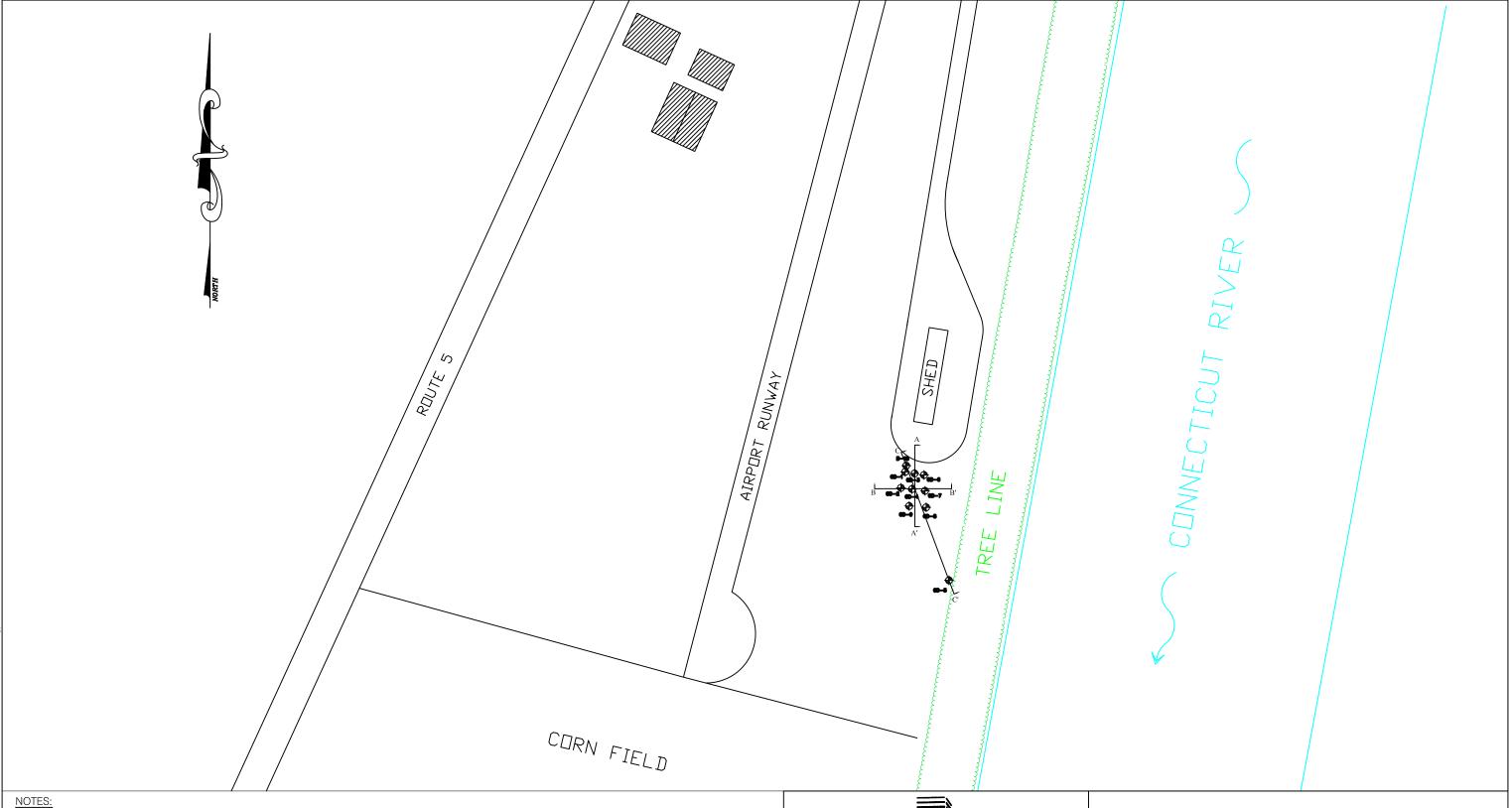

Yokel, F. (1982). "Energy Transfer in Standard Penetration Test." *J. Geotech. Engrg. Div.*, ASCE, 108(9), 1197-1202.

Youd, T.L., Bartholomew, H.W., and Steidl, J.H. (2008). "SPT Hammer Energy Ratio Versus Drop Height." *J. Geotech. Geoenviron. Eng.*, ASCE, 134(3), 397-400.

Youd, T.L., et al. (2001). "Liquefaction Resistance of Soils." *J. Geotech. Geoenviron. Eng.*, ASCE, 127(10), 817-833.

11 APPENDICES

Name: MT ASCUTNEY


Date: 4/1/2009

Scale: 1 inch equals 2000 feet

Location: 043° 25' 41.88" N 072° 23' 50.45"

GEOTECHNICAL ENGINEERS AND ENVIRONMENTAL CONSULTANTS
54 Main Street, PO Box 699 www.geodesign.net Tel: 802-674-2033
Windsor, VT 05089 Fax: 802-674-5943

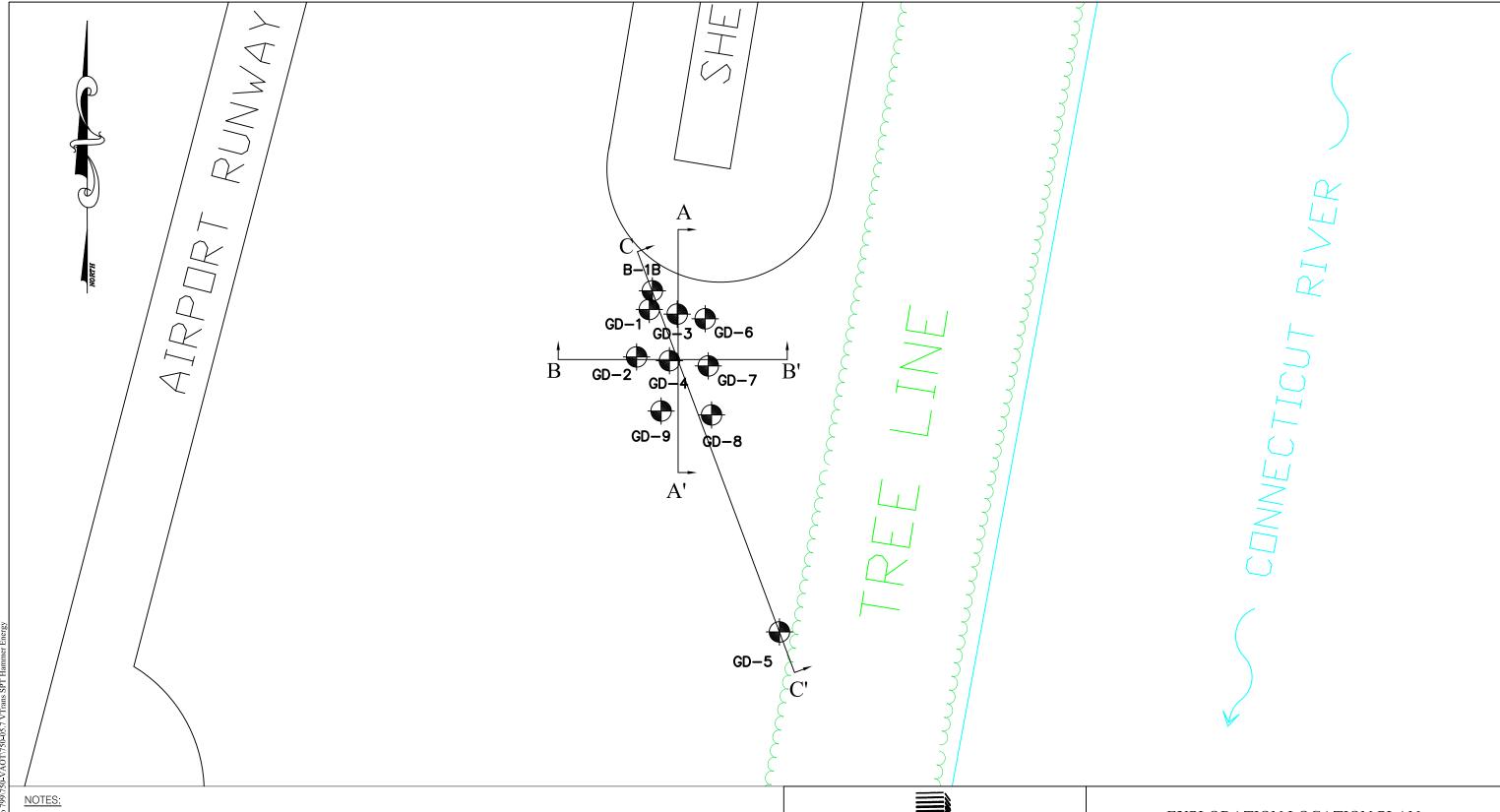
- 1. Exploration Location Plan derived from measuring distances from site features observed in the program 'Google Earth' and by adding soil boring locations from a field sketch created by using taped measurements from existing site features.
- 2. Refer to 'Evaluation of SPT Hammer Energy' report for information regarding the drilling contractors, equipment used, and the date the explorations were performed. 3. All site feature locations and boring locations shown on this drawing are approximate, and should only be considered accurate to the degree implied by the method used to locate them.

GEOTECHNICAL ENGINEERS AND ENVIRONMENTAL CONSULTANTS

54 MAIN STREET POST OFFICE BOX 699 WINDSOR, VERMONT 05089–0699 TEL: (802) 674–2033 FAX: (802) 674–5943 E-MAIL: http://www.geodesign.net

MIDDLEBURY, CT

DRAWN BY: JPM


REVIEWED BY: SPK

BURLINGTON, VT

MILLER CONSTRUCTION SITE PLAN EVALUATION OF SPT HAMMER ENERGY WINDSOR, VERMONT

FILE NO. 750-05.7

SCALE IN FEET 1" = 150'	DATE: 04/01/09
0 125 150 300	FIGURE NO. 17

- 1. Exploration Location Plan derived from measuring distances from site features observed in the program 'Google Earth' and by adding soil boring locations from a field sketch created by using taped measurements from existing site features.
- 2. Refer to 'Evaluation of SPT Hammer Energy' report for information regarding the drilling contractors, equipment used, and the date the explorations were performed.
- 3. All site feature locations and boring locations shown on this drawing are approximate, and should only be considered accurate to the degree implied by the method used to locate them.

GEODESIGN INCORPORATED

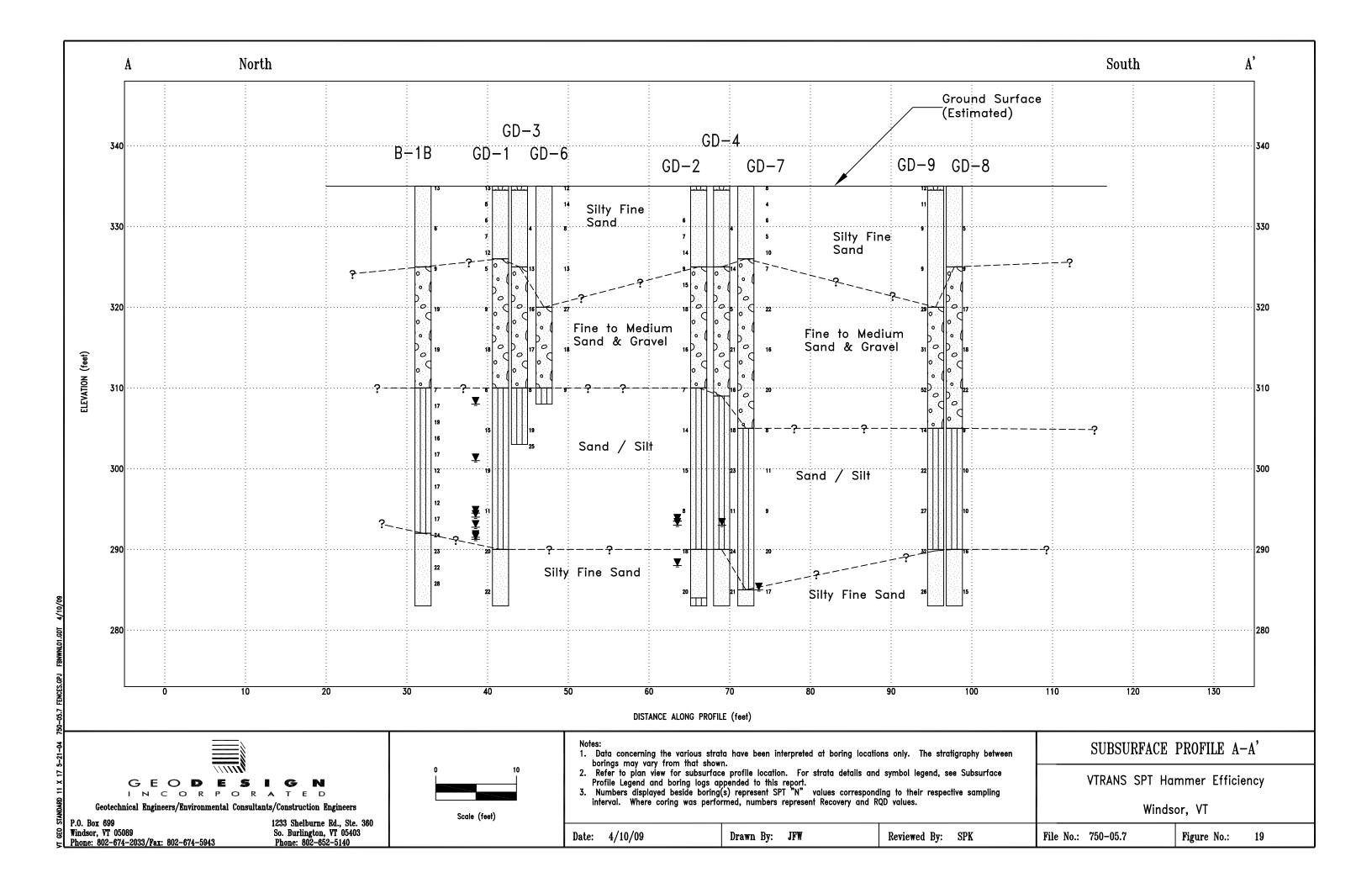
GEOTECHNICAL ENGINEERS AND ENVIRONMENTAL CONSULTANTS

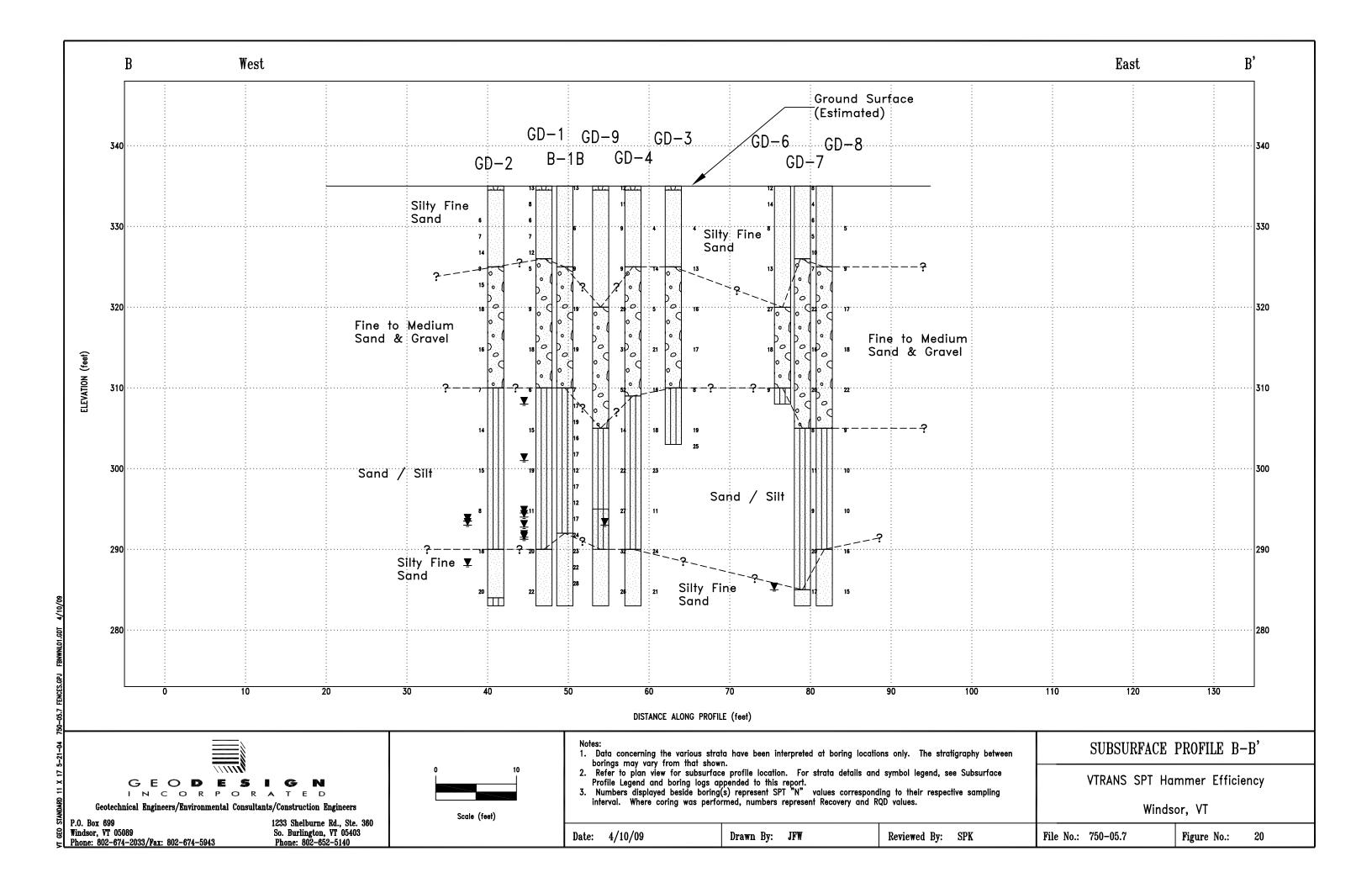
54 MAIN STREET POST OFFICE BOX 699 WINDSOR, VERMONT 05089–0699 TEL: (802) 674–2033 FAX: (802) 674–5943 E-MAIL: http://www.geodesign.net

MIDDLEBURY, CT

DRAWN BY: JPM

REVIEWED BY: SPK


BURLINGTON, VT


EXPLORATION LOCATION PLAN EVALUATION OF SPT HAMMER ENERGY WINDSOR, VERMONT

FILE NO. 750-05.7

SCALE IN FEET 1" = 50'	DATE: 04/01/09
0 25 50 100	FIGURE NO. 18

EXPLANATION OF THE FORM - BORING LOG

The following provides an explanation of the various fields on the Boring Log form.

BORING LOG HEADING

Project and Boring Details

Within the upper portion of the Boring Log, details with regards to the Project Name and Location, Boring Number, and GeoDesign's file number are provided. In addition, within the upper section of the Boring Log, the Drilling Company's name, and their representative, together with the name of GeoDesign's representative, are presented. Details with regards to the dates when the boring was drilled, its coordinates or other location references and the corresponding surface elevation may also be provided. Where applicable, the Datum used is provided in the text of the Report.

Casing and Sampler

This section provides a summary of the typical size of samplers and casings used, together with the type of drilling rig. See below for a description of samplers.

Groundwater Observations

Water levels typically indicated on the Boring Log are levels measured in the boring at the times indicated. In permeable materials, the indicated levels may reflect the location of groundwater. In low permeability soils and/or due to effects of the casing, the accurate determination of groundwater levels may not be possible with only short term observations

CENTRAL PORTION OF BORING LOG

DEPTH

CASING BLOWS

This column gives the depth scale of the boring, in feet or meters.

Indicates the number of blows per foot (0.3 m) required to advance the casing, using a 136 kg (300-pound) hammer.

SAMPLE INFORMATION

The initial columns provide the sample number, sample type, penetration, recovery and sample depth. The Sample Type Coding is as follows:

PS- Undisturbed Piston - 3" (76 mm)

SSL - Large Split-Barrel - 3" (76 mm)

V - Vane Test

C - Core - Diamond Bit - NX double tube, unless otherwise noted. SS - Split-Barrel (Split-Spoon)

ST - Shelby Tube - 3" (76 mm)

Blows / 6 inch (0.15 meter) Interval

Representative soil samples were obtained in the boring by split-barrel sampling procedures in general accordance with ASTM D 1586. The split-barrel sampling procedure utilizes a standard 51 mm (2") outside diameter split-barrel sampler that is driven into the bottom of the boring with a 63.5 kg (140-pound) hammer falling a distance of 0.76 m (30"). The number of blows required to advance the sampler in 0.15 m (6") increments is recorded as part of the Standard Penetration Test (SPT). These values are indicated at their depth of occurrence

The number of blows required to advance the split-barrel sampler the middle two - 0.15 m (6") increments of a 0.61 m (24") penetration is recorded as the Standard Penetration Resistance Value ("N"). Where the sampler advanced by Weight of Rods or Weight of Hammer, the designation WOR and WOH, respectively, was used. In the case of PS or ST samples, the designation PUSH was used.

Coring Time

This column provides the rate in minutes at which the core barrel was advanced into the bedrock (or boulder) in one foot (0.3 m) intervals.

This column provides results for samples which were screened in the field with a photoionization detector for the presence of volatile organic compounds (including certain petroleum constituents) calibrated relative to benzene in air standard.

Moisture Content (%) - Where Applicable

This column provides moisture content determination results for the samples tested.

SAMPLE DESCRIPTION

This column provides a description of the soil and bedrock units, based on visual observation of the samples, sometimes in conjunction with field and laboratory tests. Each sample was generally described according to the following classification and terminology. In general, description of the soil units followed the Burmister classification system.

SOIL PROPERTIES & DESCRIPTIONS

TEXT	URE*	COMPOSITION	I	сон	IESIVE SOILS		COHESIONLESS SOILS	
Component	Size (mm)			ESTIMATED (CONSISTENCY	"N"	ESTIMATED	"N"
CLAY	< 0.002 mm	Principal Compo	onent in Upper Case i.e. >50%	CLASSIFICAT	ΓΙΟΝ ***	Value	COMPACTNESS	Value
SILT	< #200 Sieve	CLAY, SILT, SA	AND, GRAVEL,	Very Soft		< 2	DESCRIPTION ***	
	(0.075 mm)	COBBLES, BOI	ULDERS					
SAND	#200 to #4 Sieve			Soft		2 - 4	Very Loose	< 4
	(0.075 mm to 4.75 mm)	Minor Compone	ent Upper and Lower Case					
Fine	#200 to #40 Sieve	i.e.<50%		Medium		4 - 8	Loose	4 - 10
	(0.075 mm to 0.425 mm)	Clay, Silt, Sand	, Gravel, Cobbles, Boulders					
Med	ium #40 to #10 Sieve	•		Stiff		8 - 15	Medium Dense	10 - 30
	(0.425 mm to 2.00 mm)	DESCRIPTIVE	PERCENTAGE					
Coa	rse #10 to #4 Sieve	ADJECTIVE	REQUIREMENT	Very Stiff		15 - 30	Dense	30 - 50
	(2.00 mm to 4.75 mm)							
GRAVEL	#4 Sieve to 3 in	trace	<10 %	Hard		> 30	Very Dense	> 50
	(4.75 mm to 76 mm)	little	10 - 20 %			*** empirical relations	ship	
Fine	#4 Sieve to 3/4 in	some	20 - 35 %	PLA	STICITY - Burmister		STRUCTURI	
	(4.75 mm to 19 mm)	and	35 - 50 %	Degree of	Soil Type	Smallest Diameter		
Coa	rse 3/4 in to 3 in			Plasticity		of Thread**	Stratified, >6 m	m (1/4")
	(19 mm to 76 mm)	MOISTURE CO	NDITION	Non-Plastic	SILT	None	Laminated, < 6 m	ım (1/4")
COBBLES	3 in to 12 in	Dry	Absence of moisture, dusty	Slight	Clayey SILT	1/4" (6 mm)	Parting, 0 to 1	.6 mm (1/16")
	(76 mm to 305 mm)	Moisture	Damp but no visible water	Low	SILT & CLAY	1/8" (3 mm)	Seam, 1.6 to	13 mm (1/2")
BOULDERS	> 12 in	Wet	Visible free water	Medium	CLAY & SILT	1/16" (1.6 mm)	Layer, 13 to	305 mm (12")
	(305 mm)			High	Silty CLAY	1/32" (0.8 mm)	Stratum, > 305	mm (12")
				Very High	CLAY	1/64" (0.4 mm)		, ,
textural classific	ation as determined by sieve a	and hydrometer ar	nalyses	** moisture at	or near optimum			

BEDROCK PROPERTIES & DESCRIPTIONS

RECOVERY AND ROCK QUALITY DESIGNATION (RQD)

Recovery is defined as the length of core obtained expressed as a percentage of the total length cored.

RQD is defined as the total length of sound core pieces, 4 inches (100 mm) or greater in length. excluding drilling breaks, expressed as a percentage of the total length cored. RQD provides an indication of the integrity of the rock mass and relative extent of seams and bedding planes.

Classification	RQD %
Very Poor Quality	0 - 25
Poor Quality	25 - 50
Fair Quality	50 - 75
Good Quality	75 - 90
Excellent Quality	90 - 100

HARDNESS

Moh's Hardness

Spacing

(mm)

>2000

600 - 2000

200 - 600

60 - 200

20 - 60

6 - 20

TYPICAL ROCK TYPES Scale Hard Cannot be scratched with knife > 5.5 Moderately Hard Can scratch with knife but not fingernail 5.5 - 2.5 Soft Can be scratched with fingernail < 2.5 SANDSTONE 5.5 - 2.5

Well Cemented

Bedding

Very Thick Bedded

Thick Bedded

Thin Bedded

aminated

Medium Bedded

Very Thin Bedded

Thinly Laminated

Capable of scratching a knife blade Can be scratched with knife Poorly Cemented Can be broken apart easily with fingers

Jointing

Very Wide

Moderate

Very Close

Shattered

Fissured

Wide

Close

SPACING OF DISCONTINUITIES

Spacing

(inches)

>80

24 - 80

8 - 24

2.4 - 8

0.8 - 2.4

0.24 - 0.8

< 0.24

WEATHERING

No visible signs of weathering Fresh Slightly Weathered Slight discoloration of parent material in

joints and seams

Moderately Weathered Less than 35% of rock material is decomposed. Fresh or discolored rock is present.

Highly Weathered More than 35% of rock material is decomposed. Fresh or discolored rock is present. Extremely Weathered All rock material is decomposed to soil. Rock

When classification of rock materials has been estimated from disturbed samples, core samples and petrographic analysis may reveal other rock types.

SYMBOL

This column provides a graphical representation of the soil and bedrock units, and inferred geological contacts. See Subsurface Profile Legend.

mass structure may still be intact.

STRATA DESCRIPTION (ELEVATION/DEPTH)

This column gives the elevation and depth of inferred geological contacts together with a general description of the respective soil and bedrock units. Stratification lines represent approximate boundaries between material types, transitions may be gradual.

BORING LOG FOOTER

The lower portion of the log provides additional drilling notes within the Remarks section together with additional General Notes.

geo/cl/temp/explofboringlogs

CONCRETE **FILL TOPSOIL SUBSOIL** ORGANIC SILT OR CLAY WITH SHELLS **PEAT** CLAY SILT CLAY/SILT MIXTURE CLAY/SILT/SAND MIXTURE SILT/SAND MIXTURE POORLY-GRADED SAND WELL-GRADED SAND SAND/GRAVEL MIXTURE BOULDERS AND/OR COBBLES **GLACIAL TILL**

SYMBOLS

TYPICAL DESCRIPTIONS

OF PREDOMINENT

MATERIAL TYPE

ASPHALT

STRATIGRAPHY SYMBOLS EXPLANATION OF BORING

B−1 → Borehole Number

Borehole — Well Construction

WELL SYMBOLS

SYMBOLS	TYPICAL DESCRIPTIONS						
	CEMENT SEAL: 1 PIPE						
	BENTONITE SEAL: 1 PIPE						
	SLOUGH BACKFILL: 1 PIPE						
	FILTER PACK: 1 PIPE						
	SLOTTED PIPE WITH FILTER PACK: 1 PIPE						
	FILTER PACK AT BOTTOM OF HOLE						
	SLOUGH AT BOTTOM OF HOLE						
	BENTONITE AT BOTTOM OF HOLE						

Notes:

- Data concerning the various strata have been interpreted at boring locations only. The stratigraphy between borings may vary from that shown, and may transition more gradually within borings.
- 2. For strata details, see Report and boring logs appended to this report.
- Numbers displayed beside boring(s) represent SPT
 "N" values corresponding to their respective sampling interval.
- 4. Where coring was performed, numbers displayed beside boring(s) represent Recovery and RQD values corresponding to their respective sampling interval.
- 5. "R" corresponds to refusal of sampler, casing and/or roller bit at bottom of boring.

Groundwater Observations (where applicable)

- Water Level Reading at time of drilling.
- Water Level Reading after completing drilling.

SUBSURFACE PROFILE LEGEND

GEOTECHNICAL ENGINEERS • ENVIRONMENTAL CONSULTANTS 54 MAIN STREET, P.O. BOX G99•WINDSOR, VERMONT 05089

DECOMPOSED BEDROCK

SANDSTONE

BEDROCK

TELEPHONE: (802) 674–2033 FACSIMILE: (802) 674–5943

GEO DES	I G N
INCORPO	RATED
Geotechnical Engineers-Environmental Cor	isultants-Construction Engineers
P.O. Box 699	1233 Shelburne Rd., Suite 360
Windsor, VT 05089	So. Burlington, VT 05403
DI 000 (74 2000 F 000 (74 5040	DI 000 CEO E140

BORING LOG

Project Name

Boring No.: B-1B

Page No.: __1 of 2

File No.: 750-05.7

VTRANS SPT Hammer Efficiency

Windsor, VT

SPK Checked By: _

				4-203	33/Fax	: 802-6	574-5943	S Ph	none: 80	2-652-51	.40					1			
Boring Company: VTRANS						Casing: Sampler:			Groundwater Observations										
Fore	eman:	:		_	Glen P	orter							Type: HW		SS	Date		Elev.	Notes
Geo	Desig	gn Ro	ер.:	_	NOT C	BSERV	ED BY G	EODESIG	SN				I.D.: 4.0 in.	1.3	88 in.		(ft)	(ft)	
Date	e Star	ted:		_	Septer	nber 16,	2008	Date	Finished:	Septen	nber 16	6, 2008	Hammer Wt.: NA	14	0 lbs	▼ 9/16/08, 0:00	10.0	325.0	Wet sample.
N. C	Coord	inate	:	_				E. Co	ordinate:				Hammer Fall: NA	30) in.	▼ 9/16/08, 0:00	39.0	296.0	Wet sample.
Gro	und S	urfa	ce Ele	vation	(feet):		335						Rig Type: CME 5	55 Trac	k	Ĭ			
Stati	ion:					Offset:	ft						Hammer/Rod Type: Auto	- AW	J	Ţ			
						C	1. 1	·	41				_			¥			
	Į.					3	ampie i	nforma	шоп				Strata Description			¥			
	SMC			п							ne	9	Description	loqu		Ĭ			
(ft)	Casing Blows/ft	er		Penetration (inches)	Recovery (inches)	(£)	В	lows / 6 i	nch Interv	al	Coring Time (min./ft)	Moisture Content (%)		Symbol				•	
Depth (ft)	sing	Number	Type	netriche	cov	Depth (ft)					in./	oist	Depth &			San	nple I	Descr	iption
ρ	ű	ź	Ţ	Pe (ir	Re (ir	De	0 - 6	6 - 12	12 - 18	18 - 24	υĒ	ŽΫ	Elevation(feet)			sification System: Bu			
		S1	ss	24	19	0	5	6	7	7		14	Silty Fine					own S	SAND and SILT,
													Sand		tra	ce Gravel, mois	st.		
5		<u> </u>											-		60) Loose, brown	CAN	ID ac	ome Silt trace
		S2	SS	24	12	5	3	3	3	5		18.3) Loose, brown avel, moist.	JAIN	טו, אַנ	ome om, nace
															010	a.o., 111010t.			
													-						
		Ш																	
10													10						
		S3	SS	24	13	10	6	4	5	5		18	Fine to 325.0	00 .	S3) Loose, brown	SAN	ID. lit	tle Gravel, trace
							_	-	_	_			medium Sand & Gravel	0. (Silt	t, wet.			
													α Glavei	3					
														O					
														o C					
15														0.1	C 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			CAND Ettle Cressel
		S4	SS	24	13	15	10	10	9	10		10.8		0) Medium dens ce Silt, wet.	e, bro	own s	SAND, little Gravel,
															lia	cc Ont, wet.			
														0					
														0. (
)					
20														0					
		S5	SS	24	13	20	11	9	10	11		11.6		0	S5) Medium dens	e, bro	own S	SAND, some
														0 (Gra	avel, trace Silt,	wet.		
											_) i					
L	L_		_								L_			Ø					
														0					
25														0 (
25													25 Sand/ 210/		00	\	ד ווס		no Cond trees
		S6	SS	24	12	25	6	4	3	6		26.1	Sand/ 310.0 Silt	비니) Loose, brown avel, wet.	SIL I	, son	ne Sana, trace
													5		Già	avei, Wel.			
Remarks 06		S7	SS	24	13	27	6	8	9	12		17.3	1		S7) Medium dens	e, bro	own S	SAND, some Silt,
		5,		۷4	13	۱ ـ				12	-	17.3	-			ce Gravel, mois			,,
]						
30		S8	SS	24	13	29	9	8	11	11		15.3			S8) Medium dens	e, bro	own S	SAND, some Silt,
30		_									-		ı	Italia Ita					
	1)	Car	nnot	adva	nce (casing	at 10',	2 gallo	ons of b	entonit	e use	ed.							
ırks										0' to 15									
Remarks	3) . 4)	∠ga Fro	สแบก m <i>วเ</i>	5' to /	วยกเต 19' สล	iiiile U	seu ad amplina	rancing Loneie	ted of	5' to 20	, uee	;p. follow	ed by cleaning the h	hole v	with t	he rollercone fo	or 2'	follow	ved by another
R		mpl		, 10 2	-5 ut	,cp, 50	annpiini (0011313	nou UI d	∡ ∠ Jaii	ıρı c ,	IOIIOW	od by oleaning the f	ioie (** 1 LI L	TIO TONETOUTE IC	υι ∠ ,	·OIIOV	TOO by anome
1				ed ca	sing	to 31'	after sa	ampling	at 29'	deep.									
Note	1	1) Strat	ification	Lines Rep	resent Ap	proximate B	oundary Betwo	en Material T	ypes, Transitio	ns May Be Gra		au Com P	a To Other Ecotors Than The De	A+ TL - 77	ma M.	aramante Wara Mad			
1	- 2				Have Beer R. = Not F		mes And Und	conditions S	stated, r luctua	uons Of Groun	uwater M	ay Occur Di	te To Other Factors Than Those Present	At the Ti	me Meast	nements were Made.			

2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due 1o Other Factors Than Those: A.C. = After Corings, N.R. = 80 McGeorded.
3) Sample Type Coding: A-Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane; WOR:H=Weight of Road/Hammer
4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual.

Boring No.:

B-1B

GEODESIGN INCORPORATED

BORING LOG

Project Name

Boring No.: **B-1B**

__2 of 2 Page No.:

File No.: 750-05.7

VTRANS SPT Hammer Efficiency

Boring No.: B-1B

	Geote P.O. I				ıeers-l	Enviror	nmental		ants-Cons 33 Shelb				"				\/ T	o,			50-05.7
				05089 74-20		s: 802-i	674-5943		o. Burling hone: 80			13		V	Vind	sor,	VI		Che	ecked By:	SPK
Bori	ng Co	mpa	ny:		VTRAN	NS								Casing:	Sa	mpler:		Ground	water C	Observations	
Fore	man:	•		_	Glen P	'orter							Type:	HW		SS	Date		Elev.	Notes	s
Geo	Desig	n Rej	p.:	_	NOT C	BSERV	/ED BY G	EODESIC	3N				I.D.:	4.0 in.	1.3	38 in.		(ft)	(ft)		
Date	Start	ed:		_	Septer	mber 16,	, 2008	Date	Finished:	Septer	nber 1	6, 2008	Hammer W	t.: NA	14	10 lbs	▼ 9/16/08, 0:00	10.0	325.0	Wet sample.	
N. C	oordi	nate:	:	_				E. Co	oordinate:				Hammer Fa	ıl <u>l: NA</u>	3	0 in.	₹ 9/16/08, 0:00	39.0	296.0	Wet sample.	
Grou	ınd Sı	ırfac	e Ele	evatior	(feet):		335						Rig Type:		55 Trac		<u>¥</u>				
Stati	on:					Offset:	ft						Hammer/Re	od Type: Au	to - AW	J	¥ 1_		₩		
						S	Sample 1	Informa	ation				St	rata			<u>*</u>		\vdash		
	ws/ft	Т									9		Desc	ription	loc		<u>*</u>		_		
(ft)	Casing Blows/ft	,		Penetration (inches)	Z	£	F	Blows / 6	inch Interv	/al	Coring Time (min./ft)	Moisture Content (%)			Symbol		÷				
Depth (ft)	sing	Number	Type	netra	Recovery (inches)	Depth (ft)		T			ring in./f	oistu	Depth &		"		Sar	nple l	Descri	iption	
De	Ca	ž	Ţ	Fe (i)	S (ii)	Ď	0 - 6	6 - 12	12 - 18	18 - 24	ರಿ 🗵	žΰ	Elevation(f		<u> </u>	Class	sification System: B	urmiste	er		
														and/ ontinued)		mc	oist.				
		S9	SS	24	14	31	5	7	9	11		19.3	311 (00	miinueu)) Medium dens		own S	SAND, some	Silt,
							+	1					-			tra	ce Gravel, moi	st.			
		240		0.4	44		+	+		40		40	_			S1	0) Medium der	nse h	rown	SAND some	e Silt
		S10	55	24	14	33	7	8	9	12		16	-				ce Gravel, moi			C/ 1112, COIII	o ot,
35						<u> </u>										L					
		311	SS	24	23	35	7	6	6	7		14.5				S1 tra	 Medium der ce Gravel, moi 	nse, b	rown	SAND, some	e Silt,
																lia	ce Graver, mor	St.			
		312	ss	24	15	37	7	9	8	8		19.9					2) Medium der		rown	SILT and SA	۹ND,
		\neg					1	1								littl	e Gravel, mois	t.			
		313		24	18	39	4	+ -	-	7		27.6		Ţ	<u>'</u>	S1	3) Medium der	nse. h	rown	SII T. little S	and.
40		513	33	24	10	39	+ 4	6	6	/		27.0	-				ce Gravel, wet			0.2.,	αα,
		_				<u> </u>		<u> </u>									A) 8.4 P			04110	
		514	SS	24	12	41	6	7	10	10		21.7					4) Medium der t, trace Gravel,			-gray SAND,	some
													43			"	i, ilado Olavoi,	wot.			
		S15	SS	24	14	43	9	11	13	15		18.5		Fine 292	2.0		5) Medium der	nse, b	rown	-gray SAND,	little
45													. 5	and		Sili	t, wet.				
45		S16	SS	24	13	45	8	10	13	16		18.4				S1	6) Medium der	nse, b	rown	-gray SAND,	little
		1			10		+	+		10		10.4	-				t, wet.				
		+					+	₩								<u>C1</u>	7) Medium der	nco h	rown	gray SAND	little
		S17	SS	24	13	47	9	8	14	16		20.4				1	t, wet.	156, L	, OWIT	-gray SAND,	IIIIIE
																	,				
50		S18	SS	24	15	49	9	12	16	18		19.1				1	8) Medium der	nse, b	rown	-gray SAND,	little
																511	t, wet.				
							+						F-0			╁					
		+					+	+					52 Bo	ttom 283	3.0	1					
		_				\vdash								loration							
		_						↓					at 5	1.0 ft							
55																					
													1								
						<u> </u>	+	+					_								
						<u> </u>	+	+													
60						<u> </u>		\perp													
	6) <i>A</i>	Adva	anc	ed c	asing	to 35'	' after s	ampling	g at 33'	deep.											
marks	7) /	١dv	anc	ed c	asing	to 41'	' after s	ampling	g at 39'	deep.											
na	8) <i>A</i>	١dv	anc	ed c	asing	to 45'	after s	ampling	g at 43'.												

Remarks

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made.
A.C. = After coring; N.R. = Not Recorded.
3) Sample Type Coding: A=Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;
WORH=Weight of Rod/Hammer
4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual.

BORING LOG

Project Name

Boring No.: **GD-1**

Page No.: __1 of 2

File No.: 750-05.7

VTRANS SPT Hammer Efficiency

Windsor, VT

Checked By: SPK

Boring No.: GD-1

<u> </u>	HOH	<i>.</i> . oc	,_ 0	, . 20.	JJ/I un	. 002	J17-J/7-	, 11	10110. 00	2-032-31	. 10						_				
Bor	ing Co	mpa	iny:	_	VTRAN	NS								Casing:	Sar	npler:		G	round	water (Observations
Fore	man:				Glen P	orter							Type:	HW		SS	Date		Depth	Elev.	Notes
Geo	Desig	n Re	р.:		Shawn	Kelley	& Joe Kid	ld					I.D.: _	4.0 in.	1.3	38 in.			(ft)	(ft)	
Date	Start	ed:		_	Septen	nber 23,	, 2008	Date	Finished:	Septer	nber 24	4, 2008	Hammer Wt.:	NA	14	0 lbs	▼ 9/24/08,	0:00	43.5	291.5	In open hole
N. 0	Coordi	nate	:	_				E. Co	ordinate:				Hammer Fall	: NA	3	0 in.	▼ 9/24/08,	14:00	27.0	308.0	Hole collapsed at 45'
Gro	und Si	ırfac	e Ele	evation	(feet):		335						Rig Type: _	CME 5	5 Trac	k	¥ 9/24/08,	17:30	34.0	301.0	
Stat	ion:					Offset:	ft						Hammer/Rod	Type: Auto	- AW	J	y 9/25/08,	9:00	40.5	294.5	In open hole (collapse at 45
						S	ample	Informa	ntion				Com				y 9/25/08,	16:00	41.0	294.0	In open hole (collapse at 45
	,/ft						ampic	1111011116	шоп				Stra Descri		_		¥ 9/26/08,	11:40	42.3	292.8	In open hole (collapse at 45
	Casing Blows/ft			u.							Coring Time (min./ft)	(%	Descri	ption	Symbol		y 9/29/08,	13:00	43.8	291.3	In open hole (collapse at 45
h (ft)	g B	per		tratic es)	very es)	h (ft.	I	Blows / 6 i	nch Interv	val	ng T	ture ent (Sy			C	1. T		
Depth (ft)	asii	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	orin	Moisture Content (%)	Depth &	4)		Class	sification Syst		•		iption
I	-	\rightarrow									00	20	Elevation(fee		71 14.		<u> </u>				ND and SILT, trace
		S1	SS	24	16	0	2	6	7	6			Silty F			roc		DIOW	11 11111	e SAI	ND and SILT, trace
													Sar					Tann	ish b	rown	fine SAND, little(+)
		S2	SS	24	14	2	2	3	5	4						Silt					, , , ,
																S2) Tannish	brow	n fine	SAN	ND, little Silt, trace
		20						_		.							ća, moist.				/
5		S3	SS	24	14	4	2	3	3	4						S3) Tannish	brow	n fine	SAN	ND, little Silt, trace
																mid	ca, moist.				
		S4	SS	24	14	6	2	3	4	4						S4) Tannish	brow	n fine	SAN	ND, little Silt, trace
																mid	ca, moist.				
		S5	SS	24	14	8	2	4	8	10						S5) Top 6" -	Brow	n fine	e SAI	ND, little(-) Silt.
		33		24	14	0		-	-	10			9 Fine	to 326.0		1 '					edium SAND, trace
10													Medium S		0		t, trace fine				
		S6	SS	24	16	10	5	3	2	3			Grav	/el	0 (S6) Brown fir	ne SA	ND,	trace	fine Gravel, trace
															0	Silt	t, moist.				
															, (
															,						
															0 (
15															0						
		S7	SS	24	12	15	3	4	5	6					。 C) Brown fir avel, trace			ium S	SAND, trace fine
																Gi	avei, ii ace	Siit,	wet.		
															0 (
		-											-		0						
															, (
20																					
		S8	SS	24	14	20	4	9	9	8					0 (S8) Brown fir	ne to	med	ium S	SAND, trace fine
													-		0	Gra	avel, trace	Silt,	wet.		
													-		, C						
															0 1	1					
															, ,						
25													25		0						
		S9	SS	24	13	25	7	3	3	5			Sand	/Silt 310.0		S9) Brown fir	ne SA	ND,	some	e(+) Silt, trace clay
																sea	am layered	d, trad	ce m	ica, w	vet.
_													-	Ā		-					
<u> </u>											_		1								
30																					
	41	٠.	1	-1.01	- 40:										rate C	1					
S	1) S 2) l	San Jse	nple ed w	a 0' 1 ash 1	:0 10' oore t	contir	nuously	r. h bento	nite in	wash w	ater.										

3) Using water in casing while spinning in ground (i.e., not pound and wash) 0' to 30'. 4) At 30', roller bit ahead of casing.

1) Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made.

2) Water Level Readings Have Been Made Al Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due 10 Other Factors Than Those I A.C. = After coring; N.R. = Not Recorded.

3) Sample Type Coding; A=Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo-GeoProbe V=Vane; WOR.H=Weight of Rod/Hammer

4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%

5) Stratification lines represent approximate boundary between material types, transitions may be gradual.

750-05.7.GPJ

GEODESIGNINCORPORATED

BORING LOG

Project Name

VTRANS SPT Hammer Efficiency

Windsor, VT

Sampler:

SS

4.0 in. 1.38 in.

Date

▼ 9/24/08, 0:00

Boring No.: _GD-1

Page No.: 2 of 2

File No.: 750-05.7

Notes

Checked By: __ SPK

Groundwater Observations

43.5 291.5 In open hole

Depth Elev.

▼ 9/24/08, 14:00 | 27.0 | 308.0 | Hole collapsed at 45'

Geotechnical Engineers-Environmental Consultants-Construction Engineers

Windsor, VT 05089 Phone: 802-674-2033/Fax: 802-674-5943

Depth (

6

6

P.O. Box 699

Casing Blows/ft

40

50

55

Number

S10 SS

S11 SS

S12 SS

S13 SS

S14 SS

24 17 50

Penetration (inches) Recovery (inches)

24 12 30

24 17 35

24 15 40

1233 Shelburne Rd., Suite 360 So. Burlington, VT 05403 Phone: 802-652-5140

Blows / 6 inch Interval

12 - 18

8

10

7

6 - 12

7

9

4

11

12

11

11

Boring Company: VTRANS Foreman: Glen Porter Type: GeoDesign Rep.: Shawn Kelley & Joe Kidd I.D.: September 23, 2008 Date Finished: September 24, 2008 E. Coordinate: _ N. Coordinate:

Ground Surface Elevation (feet): 335 Offset: ft

Sample Information

Hammer Wt.: NA 140 lbs Hammer Fall: NA

Coring Time (min./ft) Moisture Content (%)

18 - 24

9

12

10

___30 in. Rig Type: CME 55 Track Hammer/Rod Type: Auto - AWJ Strata Description Symbol

Casing:

HW

▼ 9/25/08, 9:00 | 40.5 | 294.5 In open hole (collapse at 45' 9/25/08, 16:00 41.0 294.0 In open hole (collapse at 45) ▼ 9/26/08, 11:40 | 42.3 | 292.8 In open hole (collapse at 45' ₹ 9/29/08, 13:00 | 43.8 | 291.3 | In open hole (collapse at 45") Sample Description

▼ 9/24/08, 17:30 34.0 301.0

Depth & Elevation(feet) Sand/Silt (Continued)

Classification System: Burmister S10) Tannish brown fine SAND, trace(+) Silt, trace mica, moist.

₹ S11) Tannish brown fine SAND, little Silt layered (top 9"), trace mica, moist.

> S12) Grayish tan, layered fine SAND and SILT, trace mica, wet.

Silty Fine 290.0

¥

mica, 2" lens of medium SAND, wet.

S13) Tannish gray fine SAND, trace Silt, trace

S14) Grayish tan fine SAND, trace Silt, trace mica, 2-3" lens of SILT and fine SAND (layered), moist to wet.

Bottom 283.0 of Exploration at 52.0 ft

5) Sample open hole 35' to 37'.

6) Casing down to 35'.

7) From 40' deep to end of the borehole, sampling procedure consisted of a 2' split-spoon sample, followed by advancing casing an additional 5' prior to rollerconing ahead for the next sample.

12) Hole collapsed to 48.5'.

13) 9/24/08 Hole collapsed to 46'. Warm up hammer with 46' to 48'.

1) Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made.

3) Sample Type Coding: A=Auger; C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;

WOR/H=Weight of Rod/Hammer

 Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50% 5) Stratification lines represent approximate boundary between material types, transitions may be gradual

																LOG		Bor	ing No.	: <u>G</u>	D-2
							/////	1					P	roje	ct Na	me			e No.:	1	
(Geot	echr	ı ical	N Engin		O R		S I R A Consulta	G T E ants-Con	struction	ı Engi	ineers	VTRANS SP	ΤH	łamı	mer Efficien	су		No.:)-05.7
Ţ	P.O. Vinc	Box Isor,	699 VT	05089)		674-594	12: Sc	33 Shelb o. Burlin hone: 80	urne Rd. gton, VT	, Suit 0540	e 360	W	ind	sor,	VT		Che	cked B	y:S	PK
	ng C				VTRA		071 371		none. oo	2 032 3	10		Casing:	Saı	mpler:	(Ground	water C	bservation	ıs	
	man	-		_		d Garro	w						Type: H.S.A.		SS	Date		Elev.		Notes	
	Desi	_	ep.:	_	Shawr	n Kelley							I.D.: 3.25 in.	1.3	38 in.		(ft)	(ft)			
	Star			-	Septer	mber 23	, 2008		Finished:		nber 2	4, 2008			10 lbs	▼ 9/23/08, 0:00			Wet Samp		
	oord			- wation	(feet):		335	E. Co	oordinate:				Hammer Fall: NA Rig Type: CME 45		0 in.	▼ 9/23/08, 0:00 ▼ 9/24/08, 0:00			See note : Hole colla		
	ion:	ourra	ce Ei	vation	(ieet).	Offset:							Hammer/Rod Type: Auto			¥ 9/24/08, 0:00 ▼ 9/24/08, 17:30			See note		-
						S	Sample	Inform	ation				Strata			¥					
	ıs/ft												Description	l lo		T					
(11)	Casing Blows/ft	i		Penetration (inches)	ery (s)	(ft)	I	Blows / 6	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)	_	Symbol		Ā					—
Deptn (тт)	asing	Number	Type	enetr	Recovery (inches)	Depth (ft)					oring nin./f	loistu onter	Depth &				nple I		ption		
1	C	z	Ţ	A G	₩.Ξ	Δ	0 - 6	6 - 12	12 - 18	18 - 24	0.5	ΣÜ	Elevation(feet) Topsoil	31/2		sification System: B	urmiste	r			
_													Silty Fine 334.5								
_													Sand								
_															:						
_															-	\ Ton firs O^*	ID 2111	lo/ \ 1	NII4 4	n ra!	- جالم
5		S1	SS	24	20	4	3	3	3	2					51) Tan fine SAN	ווtt, ווtt	ie(-) S	olit, trac	e mica	, ary.
															-	V Tan bee		ND :	/ `	City :	
		S2	SS	24	18	6	3	4	3	4						l) Tan-brown fir ca, dry.	ne SA	ND, t	race(+)	Silt, tra	асе
																•					
		S3	SS	24	20	8	4	5	9	7) Tan-brown fir avel, dry.	ne SA	ND, t	race Sil	t, trace	; fine
10													10		1						
		S4	SS	24	18	10	4	5	4	7			Fine to 325.0 Medium Sand and	0) Tan-brown fir ce mica, dry.	ne to d	cours	e SAND), trace	: Silt,
													Gravel	0.1							
		S5	SS	24	16	12	7	8	7	13				0		i) Tan-brown fir t, trace mica, tr					е
														0		t, trace mica, ti	acc ii	110 0	avoi, ui	у.	
15														0. [
		S6	SS	24	18	15	5	9	9	9)	S6	i) Tan-brown fir avel, trace Silt,	ne to i	mediu	ım SAN	D, little	fine
														, C		avei, trace ont,	Hacc	TITIOE	i, diy.		
		L												0.1	;						
		L) · ·							
0														0	L						_
		S7	SS	24	19	20	3	6	10	12				0) Tan-brown fir					е
														0 (311	t, trace mica, tr	au u il	ne G	avei, di	y.	
														O							
٦														0 (1						
25													25	0. [
		S8	SS	24	17	25	2	3	4	5			Sand/Silt 310.0	Î) Top 10" - Bro	wn fir	ne SA	ND and	SILT,	trace
\neg													1			ca, moist. ittom 7" - Tan fi	ina S	VVID	little Sil	t trace	
													1			ca, dry.	iiie S/	אואט,	iittie Oli	і, пасе	
\dashv		H													`						
_															1						
30						1		1	1	[1		111	1						
s,	1)	GD Fro	-22 m 4	6.5' N	North	of GE)-2.	SA War	advan	ced to	ton o	f samr	oling interval immedi	atel	v nrio	r to sampling					
Remarks	۷)	-10	111 4	io e	iiu Of	borer	ioie, no	on were	auvan	c c a เดา	op 0	ı sallı	mig interval illilliedi	aiei	y PHO	i w sampling.					
Keı																					
Vote		2) Wat	er Level	Readings	Have Beer	n Made At T			Γypes, Transition Stated, Fluctua			Iay Occur D	ne To Other Factors Than Those Present	At The T	ime Meas	urements Were Made.					
		3) Sam	ple Type	Coding:			=Driven; G=Gr	rab; PS=Piston	Sampler; SS=5	Split Barrel (Sp	olit Spoon); ST=Shelby	Tube; Geo=GeoProbe V=Vane;								
		4) Prop	ortions		ce = 1-10%		0-20%; Some =										ſ	Bori	ng No.:	GD-	-2
		5) Stra	ification	lines repr	resent appr	oximate bot	undary between	n material type	s, transitions m	ay be gradual.								_ 511	50		

BORING LOG Boring No.: _GD-2 Project Name Page No.: 2 of 2 GEODESIGNINCORPORATED VTRANS SPT Hammer Efficiency File No.: 750-05.7 Geotechnical Engineers-Environmental Consultants-Construction Engineers 1233 Shelburne Rd., Suite 360 So. Burlington, VT 05403 Phone: 802-652-5140 P.O. Box 699 Windsor, VT Checked By: _ SPK Windsor, VT 05089 Phone: 802-674-2033/Fax: 802-674-5943 Groundwater Observations Casing: Sampler: Boring Company: VTRANS Foreman: Howard Garrow H.S.A. SS Depth Elev Type: Date Notes (ft) GeoDesign Rep.: I.D.: ____3.25 in._____ 1.38 in. Shawn Kelley September 23, 2008 Hammer Wt.: NA 140 lbs Date Finished: September 24, 2008 **▼** 9/23/08, 0:00 47.0 288.0 Wet Sample E. Coordinate: _ 42.0 293.0 See note 3. N. Coordinate: Hammer Fall: NA 30 in. **▼** 9/23/08, 0:00 Ground Surface Elevation (feet): Rig Type: CME 45C Skid **▼** 9/24/08, 0:00 41.5 293.5 Hole collapsed 335 Offset: ft Hammer/Rod Type: Auto - AWJ ▼ 9/24/08, 17:30 41.5 293.5 See note 4. Sample Information Strata Casing Blows/ft Description Symbol Coring Time (min./ft) Moisture Content (%) Penetration (inches) Recovery (inches) Blows / 6 inch Interval Number Depth (Sample Description Depth & Elevation(feet) 6 - 12 12 - 18 18 - 24 Classification System: Burmister Sand/Silt S9) Tan fine SAND, trace Silt, trace fine S9 SS 24 19 30 5 7 7 9 (Continued) Gravel, trace mica, dry. S10) Top 12" - Fine to medium SAND, trace S10 SS 24 23 35 5 8 7 7 Silt, trace mica, dry. Bottom 12" - Fine SAND, little Silt, trace mica, moist. 40 S11) Brown fine SAND, some(+) Silt, trace S11 SS 24 21 40 3 5 13 mica, trace fine Gravel - layered. 45 Silty Fine 290.0 S12) Tan-brown fine SAND, little (+) Silt, trace S12 SS mica, trace fine Gravel, moist. ₹

Sand/Silt 284.0 Bottom 283.0 of Exploration at 52.0 ft

S13) Brown fine SAND, trace Silt, trace mica,

Boring No.: GD-2

wet. Bottom 2" fine SAND and SILT layered.

3) Dry - hole collapsed after HSA removal.

4) Dry, (no water observed in borehole).

10

10

10

25

50

55

S13 SS

24 19 50

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made A.C. = After coring; N.R. = Not Recorded

³⁾ Sample Type Coding: A=Auger; C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;

WOR/H=Weight of Rod/Hammer

⁴⁾ Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%

⁵⁾ Stratification lines represent approximate boundary between material types, transitions may be gradual

								<u> </u>					BOI	RIN	١Ġ	LOG		Bor	ing No	: <u>GD-3</u>
							/////	j					P	rojec	et Na	ame			_	
			ı	И		O R	E P C						VTRANS SP	тн	lam	mer Efficiend	Су	-	ge No.:	1 of 2
(F	Geote P.O.	echr Box	ical 699	Engir	ieers-	Enviro	nmental	Consulta 12	<i>ants-Con</i> 33 Shelb	struction	i Engi Suit	neers e 360								
V	Wind	lsor,	VT	05089		v: 802_	674-594	So	o. Burlin hone: 80	gton, VI	Γ 0540)3	W	inds	sor,	VT		Che	ecked By	y: SPK
	ing C				VTRA		014-374	<u> </u>	none. oo	2-032-3	140		Casing:	Sar	npler:		Ground	water C	Observation	ıs
	man:	-		_		rd Garro	w						Type: <u>HW</u>	;	SS	Date	Depth			Notes
Geo	Desig	gn R	ep.:	-		n Kelley							I.D.: 4.0 in.		38 in.		(ft)	(ft)		
	Star			-	Septer	mber 24	, 2008		Finished:		mber 2	4, 2008			0 lbs	▼ 9/24/08, 0:00 ▼			Collapse t	o 30'
	Coord und S			evation	(feet):		335	E. C	oordinate:	-			Hammer Fall: NA Rig Type: CME 5		0 in. :k	¥				
Stati						Offset:							Hammer/Rod Type: Auto			¥				
						S	Sample	Informa	ation				Strata			<u>*</u>				
	Casing Blows/ft			_			T				эс		Description	loq		¥ ¥				
(ft)	g Blo	er		Penetration (inches)	ery (sc)	(£)	I	Blows / 6	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)		Symbol						
Depth (ft)	asin	Number	Type	enet	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 10	18 - 24	Jorin J	Aoist Conte	Depth & Elevation(feet)		Class	Sam ssification System: Bu	-		iption	
		_	L	ш.	<u> </u>		0-6	0 - 12	12 - 18	18 - 24	100	20	Topsoil	71.17	Cias	ssification System: Bt	irmiste	Г		
											-		Silty Fine 334.5							
													Sand							
5															-	1) Prown fine C/	\ NID	troop	/ ı \ Cil+	traca mica
		S1	SS	24	14	5	2	2	2	2					dr	1) Brown fine SA y.	AND,	lrace	(+) SIII,	trace mica,
10													10							
		S2	SS	24	13	10	4	6	7	6			Fine to 325.0 Medium Sand) 0		2) Brown fine to ravel, trace Silt,				ttle fine
													and Gravel	0 (raver, trace ont,	liace	iiiiCc	a, wet.	
														0						
														° C						
15														0 (
		S3	SS	24	10	15	7	8	8	10				0		B) Brown fine to ravel, trace Silt,				ce (+) fine
														° C	اق	raver, trace Siit,	пасе	HIIICa	a, wet.	
														0.1						
20														0						
		S4	SS	24	12	20	5	8	9	12				0	S ²	4) Fine to mediu	m SA	ND,	trace Si	lt, trace fine
													-	0 (Gı	ravel, trace mica	a, wet	t.		
														Ø						
														° C						
25													25	0 (
25		S5	SS	24	15	25	7	4	4	7			25 Sand/Silt 310.0		S	5) Top 1" - Gray	CLA	Y, we	et.	
		+		<u> </u>	Ť	<u> </u>	+						1		В	ottom 14" - Fine	SAN			ayered,
													_		tra	ace mica, moist.				
											1		1							
							+				1		1							
30				<u> </u>								1		111.	1					
Sq.	1) .	Ad۱	and	e ca	sing t	o the	top of e	ach sa	mpling	interval	imm	ediate	ly prior to sampling.							
Remarks																				
Re																				
Note		2) Wate	er Level	Readings	Have Bee	n Made At T			Types, Transition Stated, Fluctua			Iay Occur Du	ne To Other Factors Than Those Present	At The T	ime Mea	surements Were Made.				
		3) Sam	ple Type	Coding:			=Driven; G=G	rab; PS=Piston	Sampler; SS=5	Split Barrel (Sp	plit Spoon)); ST=Shelby	Tube; Geo=GeoProbe V=Vane;							
	4	4) Prop	ortions		ce = 1-109		0-20%; Some =			uay ha ama 4*								Bori	ng No.:	GD-3
) Strat	ıncatıor	innes rep	resent appr	oximate bot	undary between	ı ınateriai type	s, transitions m	ay be gradual.									-	

BORING LOG Boring No.: _GD-3 Project Name Page No.: 2 of 2 GEODESIGNIN CORPORATED VTRANS SPT Hammer Efficiency File No.: 750-05.7 Geotechnical Engineers-Environmental Consultants-Construction Engineers P.O. Box 699 1233 Shelburne Rd., Suite 360 Windsor, VT 05089 So. Burlington, VT 05403 Phone: 802-674-2033/Fax: 802-674-5943 Phone: 802-652-5140 Windsor, VT Checked By: SPK Groundwater Observations Casing: Sampler: Boring Company: VTRANS SS Foreman: Howard Garrow Type: HW Depth Elev Notes GeoDesign Rep.: Shawn Kelley I.D.: 4.0 in. 1.38 in. Date Started: September 24, 2008 Date Finished: September 24, 2008 Hammer Wt.: NA 140 lbs **▼** 9/24/08, 0:00 Collapse to 30' E. Coordinate: _ N. Coordinate: Hammer Fal<u>l: NA 30 in.</u> Ground Surface Elevation (feet): 335 Rig Type: CME 55 Track Ţ Hammer/Rod Type: Auto - NWJ Offset: ft ₹ Sample Information Strata Casing Blows/ft Description Symbol Coring Time (min./ft) Moisture Content (%) Penetration (inches) Recovery (inches) Blows / 6 inch Interval Number Depth (Sample Description Depth & Elevation(feet) 18 - 24 0 - 6 6 - 12 12 - 18 Classification System: Burmister Sand/Silt S6) Tannish gray fine SAND, little Silt, trace s6 SS 24 14 30 8 9 10 14 (Continued) fine Gravel, trace mica, dry. 32 303.0 S7) Tan fine SAND, trace(+) Silt, trace fine S7 SS 14 24 18 32 12 12 13 Gravel, trace mica, dry. Bottom of Exploration at 34.0 ft 55 60 1) Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual. 2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made A.C. = After coring; N.R. = Not Recorded. 3) Sample Type Coding: A=Auger; C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;

Boring No.: GD-3

WOR/H=Weight of Rod/Hammer

4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual

								<u> </u>					BOR	RIN	١G	LOG		Bor	ing No	: <u>GD-4</u>
							/////)					Pr	ojec	et Na	nme			_	
	~		ı	N		O R					_		VTRANS SP	ТН	lam	mer Efficiend	СУ	-	ge No.:	1 of 2 750-05.7
F	P.O. 1	Box	699			Enviroi	nmental	12:	33 Shelb	urne Rd.	., Suite	e 360	\//i	nde	sor	VT				y: SPK
				05089 74-20		x: 802-	674-594	3 P	o. Burlin hone: 80	gton, V1 2-652-51	`0540 140	03	***	Hu	301,	VI		Che	ескей Бу	y: <u>SPK</u>
Bori	ng Co	omp	any:	_	VTRA	NS							<u>Casing:</u>	Sar	npler:	(Ground	water C	Observation	ıs
	man:			_		rd Garro							Type: H.S.A.		SS	Date	Depth (ft)	Elev. (ft)		Notes
	Desig		ер.:	_		n Kelley mber 24		Date	Finished:	Septer	mber 2	4. 2008	I.D.: 3.25 in. Hammer Wt.: NA		38 in. 0 lbs	▼ 9/24/08, 0:00			Wet Samp	le
	oord		:	_					oordinate:				Hammer Fall: NA		0 in.	Ţ		200.0		
		urfa	ce Ele	evation	(feet):		335						Rig Type: CME 450			Ţ				
Stati	on:					Offset:		TC					Hammer/Rod Type: Safety	/ - AV	VJ	¥				
	s/ft						Sample	ınıorma	ation		1.		Strata Description	[C		¥				
ft)	Casing Blows/ft	r		tion	<u> </u>	Œ	F	Slows / 6	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)		Symbol		Ĩ				
Depth (ft)	asing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)					oring nin./f	loistu onten	Depth &	0,			-		iption	
D	Ü	Z	Ĥ.	₽.E	2 E	Ω	0 - 6	6 - 12	12 - 18	18 - 24	0.5	ΣÚ	Elevation(feet)Topsoil	'/ ₁ / ₁ /.	Clas	ssification System: Bu	ırmiste	r		
_													Silty Fine 334.5							
													Sand							
5		S1	SS	24	17	5	4	2	2	2					S1	1) Tan fine SAN	D, tra	ice S	ilt, trace	mica, dry.
		_																		-
10													10							
10		S2	SS	24	14	10	4	7	7	7			Fine to Medium 25.0 Sand and Gravel	0		2) Tan fine to m	ediun	n SAN	ND, trace	e Silt, trace
													Sand and Graver	٥ (mı	ica, dry.				
) Ø						
														۰ C						
15														o (
		S3	SS	24	17	15	2	3	2	2) O		B) Tan-brown fir It, trace fine Gra				
														, C			,			,-
														٥ (
) O						
20		0.4		0.4	4-				4-	40				, C	\$/	4) Same as S-3.				
		S4	SS	24	17	20	3	6	15	16				o (3-	+) Same as 5-5.				
) Ø						
														, C						
_														0 (
25		S5	SS	24	17	25	7	9	7	7) Ø	S5	5) Top 5" - Sam	e as \$	S3.		
					'	 -	<u> </u>	<u> </u>	<u> </u>	<u> </u>			26 Sand/Silt 309.0	Ť	Вс	ottom 12" - Brov			ND little	(-) Silt, trace
															<u>_</u> mı	ica.				
30																				
50	1)	Αdv	าลทา	e HS	A to	the to	n of ear	ch sam	nlina int	terval in	nmer	diately	prior to sampling.	4.1.	1					
ırks	.,,		۵1 IU	5 110	.,0		- 01 Gal	Juiil	ry 1111	. 5. VUI II		anatory	por to ouriping.							
Remarks																				
-																				
Note		2) Wate	r Level	Readings	Have Bee	n Made At T	Boundary Betw Γimes And Und					lay Occur Du	e To Other Factors Than Those Present A	t The T	ime Meas	surements Were Made.				
		3) Sam	ole Type				=Driven; G=Gr	ab; PS=Piston	Sampler; SS=5	Split Barrel (Sp	olit Spoon)	; ST=Shelby	Tube; Geo=GeoProbe V=Vane;							
	4	Prop	ortions l	Used: Trac	ce = 1-109		0-20%; Some = undary betweer			ay be gradual.								Bori	ng No.:	GD-4

BORING LOG Boring No.: _GD-4 Project Name Page No.: 2 of 2 GEODESIGNINCORPORATED VTRANS SPT Hammer Efficiency File No.: 750-05.7 Geotechnical Engineers-Environmental Consultants-Construction Engineers P.O. Box 699 1233 Shelburne Rd., Suite 360 Windsor, VT 05089 So. Burlington, VT 05403 Phone: 802-674-2033/Fax: 802-674-5943 Phone: 802-652-5140 Windsor, VT Checked By: __ SPK Groundwater Observations Casing: Sampler: Boring Company: VTRANS SS Foreman: Howard Garrow Type: H.S.A. Depth Elev Notes (ft) GeoDesign Rep.: I.D.: ____3.25 in._____ 1.38 in. Shawn Kelley September 24, 2008 Hammer Wt.: NA 140 lbs Date Started: Date Finished: September 24, 2008 42.0 293.0 Wet Sample E. Coordinate: _ Hammer Fall: NA ___30 in. N. Coordinate: Ground Surface Elevation (feet): Rig Type: CME 45C Track Ţ 335 Offset: ft Hammer/Rod Type: Safety - AWJ ₹ Sample Information Strata Casing Blows/ft Description Symbol Coring Time (min./ft) Moisture Content (%) Penetration (inches) Recovery (inches) Blows / 6 inch Interval Number Depth (Sample Description Depth & Elevation(feet) 6 - 12 12 - 18 18 - 24 Classification System: Burmister Sand/Silt S6) Tan fine SAND, trace Silt, trace fine S6 SS 24 22 30 5 8 10 11 (Continued) Gravel, trace mica, dry. S7) Tannish brown fine SAND, little Silt, trace S7 SS 24 21 35 5 13 10 9 fine Gravel, trace mica, moist. 5" layer fine to medium SAND, trace Silt, dry (same as S-3). 40 S8) Brown fine SAND and SILT, trace mica, S8 SS 24 20 40 3 5 6 11 wet. (Layered) Ā 45 Silty Fine San@90.0 S9) Tan fine SAND, trace Silt, trace mica, dry. S9 SS 2" layer (middle of spoon) fine SAND, some Silt, moist. 50 S10) Brown fine SAND, trace(+) Silt, trace S10 SS 24 20 50 11 10 9 8 mica, wet. Bottom 5" - Fine SAND and SILT, layered, wet. Bottom 283.0 of Exploration at 52.0 ft 55 60

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made

A.C. = After coring; N.R. = Not Recorded.

³⁾ Sample Type Coding: A=Auger; C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane; WOR/H=Weight of Rod/Hammer

⁴⁾ Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual

																LOG		Boı	ing No.	GD
				~ -	. ~		/////	<u> </u>	_	. -			Pr	oje	ct Na	me		Pag	ge No.:	1 of
	Geote P.O. 1		ı ical	N Engir		O R		Consulta	T E ants-Con 33 Shelb	struction			VTRANS SP				су	File	e No.:	750-0
V	Vind	lsor,	VT	05089		k: 802-	674-594	So	o. Burlin hone: 80	gton, VT	0540	3	Wi 	nd	sor,	V I		Che	ecked By	y: <u>SP</u>
	ng Co	-	any:	_	Trans								Casing:		mpler:				Observation	S
	man: Desig		ер.:	_		eonhard Kelley	dt						Type: H.S.A. I.D.: 4.25 in.		SS 38 in.	Date	Depth (ft)	Elev. (ft)		Notes
	Star			_	Septer	mber 25	, 2008		Finished:		nber 2	5, 2008	Hammer Wt.: NA		10 lbs	▼ 9/25/08, 0:00	48.0	287.0	Wet Samp	le
	oordi			- evation	(feet):		335	E. Co	oordinate:				Hammer Fall: NA Rig Type: CME 75		60 in. ck	Ţ Ţ				
tati	on:				. ,	Offset:	ft						Hammer/Rod Type: Auto -			¥				
	Ţ,					S	Sample	Informa	ation				Strata			¥ ¥				
(11)	Casing Blows/ft	er		Penetration (inches)	ery ss)	(ff)	I	Blows / 6	inch Interv	val	Coring Time (min./ft)	Moisture Content (%)	Description	Symbol		¥				
Depui (ii)	Casin	Number	Type	Penet (inche	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Corin (min.	Moist	Depth & Elevation(feet)		Class	Sample sification System: B			on	
		S1	SS	24	15	0	2	3	3	2			Topsoil Silty Fine Sand 34.5	11/) Tan fine SAN osoil, dry.	ID, litt	le(+)	Silt, top	2"
		S2	SS	24	20	2	2	2	3	3			_		S2) Same as S1,	exce	pt wit	h trace i	mica. mica, mica
		00			10										63) Tan fine SAN	ID and	4 CII .	T trace	mica
5		S3	SS	24	18	4	2	1	2	1					dry		iD ain	J OIL	i, iidoc	moa,
		S4	SS	24	16	6	2	2	3	3)Tan fine SAN	D, tra	ce (+) Silt, tra	ce
															mic	ca, dry.				
10		S5	SS	24	14	10	1	2	3	4					S5) Grayish tan fi	ine S/	AND.	little(-) S	Silt.
		00		24	'-	10	'		3	7						ce mica, moist		,	()	,
15		S6	SS	24	18	15	1	3	4	7			15.5		S6) Top 9" - Sam	e as	S5 ex	cept mo	
					10	10			,				Fine to 319.5 Medium Sand and	0	we	t. ttom 9" - Brow	n fina	to co	Jarca SA	ND
													- Gravel)		ce Silt, trace m			136 SP	/ [
														0						/
20		S7	SS	24	18	20	4	7	5	4				0	S7) Brown fine to	coar	se SA	ND. tra	
		31	33	24	10	20	4		3	4				0		t, trace fine Gra				
														o `						
25			-							_			25 Sand/Silt 310.0) Ø	00) Grayish brow	n fina	CAN	ID and 9	SII T
		S8	SS	24	21	25	1	1	2	2			Jana/Siit 310.0		tra	ce mica layere pist.	d, 1"	seam	of gray	SILT, Clay,
30																				
Nemains	2)	Αuς	ger t	o 4' a	and s	ample	m grou d twice n of the			ers wer	e adv	vance	d to the top of the sar	mpl	ing in	terval immedia	itely p	rior t	o sampli	ng.
lote		2) Wate	er Level	Readings	Have Beer	n Made At T			Types, Transition Stated, Fluctua			lay Occur De	e To Other Factors Than Those Present A	at The T	Γime Measi	urements Were Made.				
	3	A.C. 3) Sam	= After ple Type	coring; N Coding:	.R. = Not l A=Auger;	Recorded.							Tube; Geo=GeoProbe V=Vane;							
	4	4) Prop	ortions 1		ce = 1-10%		0-20%; Some =		l = 35-50% s, transitions m	ay be gradual.								Bori	ng No.:	GD-5

																LOG		Bor	ing No.:	_GD)-5
			-		. o		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	() S I	G	N					et Na			Page	e No.:	20	f 2
P	.O. I	Зох	ical 699	Engin	eers-l		P O mental (Consulta 123	nts-Cons 33 Shelbi	struction urne Rd.	, Suite	360	VTRANS SP		lamr sor,				No.:	<u>750-</u>	
				05089 74-203		x: 802-6	574-5943	So Pl	o. Burling none: 802			3							cked By		ZK
Bori: Fore	ng Co man:	omp	any:	_	Trans1 John L	ech eonhard	lt						Casing: Type: H.S.A.		npler: SS	Date	Froundwa Depth E		bservations	Notes	
Geol	_		ep.:	_		Kelley	2000	Dete	Finish ad.	Conton	ahau 25	2000	I.D.: 4.25 in.		38 in.	▼ 9/25/08, 0:00		(ft)			
Date N. C			»:	_	Septer	nber 25,	2008		Finished: ordinate:		nber 25	0, 2008	Hammer Wt.: NA Hammer Fall: NA		0 lbs 0 in.	₹ 9/25/08, 0:00	48.0 2	87.0	Wet Sample)	
Grou Stati		urfa	ce Ele	evation	(feet):	Offset:	335 ft						Rig Type: CME 75 Hammer/Rod Type: Auto			Ā					
								Informa	ition				Strata			¥					
(t)	Casing Blows/ft			tion (2.0	ft)	P	Blows / 6 i	nch Interv	79l	Time (. (%)	Description	Symbol		Ā.					
Depth (ft)	Casing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0 - 6	6 - 12	12 - 18	18 - 24	Coring Time (min./ft)	Moisture Content (%)	Depth & Elevation(feet)	S	Class	Sample sification System: B		iptic	on		Inclino. Log
		S9	SS	24	24	30	6	8	8	10			Sand/Silt (Continued)		S9) Gray tan fine rered, trace fine	SAND,				
													(dry		Joiavo	, ti c	acc mica	,	
35																					
		S10	SS	24	20	35	4	6	6	8					Sil	0) Grayish bro t, trace mica, 2	" layer				
															wit	h trace Silt, mo	oist.				
40															C4	4) Ton 40! Co		040			
		S11	SS	24	24	40	2	5	8	11					Во	1) Top 12" - Sa ttom 12" - Gray	ish tan	n fine			
															tra	ce Silt, trace m	ica, dry	y .			
45		C12	SS	24	21	45	4	6	7	8			45 Silty Fine San@90.0		S1	2) Top 10" - Gi	avish b	orow	n fine S	AND.	
		312	33	24	21	45		0	,	0					SOI	me (+) Silt, trad ttom 11" - Gray	e mica	ı, mc	oist.	,	
													Ţ			ce Silt, trace m			S OAND,		
50		S13	SS	24	20	50	1	3	3	4						3) Top 14" - Br		ne S	AND and	l	
													52		1	_T, trace mica, ttom 6" - Gray		ittle	(+) fine	_	
													Bottom 283.0 of Exploration		∖Sa	nd, trace mica.				/	
EF													at 52.0 ft								
55																					
60																					
Remarks	Ins A0/ Me	tall 'A1 ası	50' 80 N are 3	inclin N-S 34.5'	omet	er with	1 2.5' st	tick up.					powder, 40 gallons oneter pipe.	of w	ater}	grout mix x4 b	atches				
Note	Me	ası) Strat	ification	Lines Rep	op of present Ap	grout proximate Be	oundary Betwo	pm the	ypes, Transitio	ns May Be Gra	idual.		_								
	3	A.C. Sam	= After ple Type	coring; N. Coding:	R. = Not F A=Auger;	Recorded.							e To Other Factors Than Those Present A Tube; Geo=GeoProbe V=Vane;	at The T	ime Measi	urements Were Made.	_				
	4) Prop	ortions		e = 1-10%			20-35%; And material types		ay be gradual.							F	3orii	ng No.:	GD-	5

_			_												IG et Na	LOG		Bor	ing No.:	GD-	-6
			(3 I	E C	D	\\ \\\	" S I	G	N								Pag	e No.:	1 of	1
(Genti	echr	l sical	N Fnoir		O R Enviror	P O	R A	T E	E D struction	ı Fnoi	neers	VTRANS SP	ΤН	amı	mer Efficien	су	File	No.:	750-0	5.7
I V	P.O.] Wind	Box lsor,	699 VT	05089	9		674-594	123 Sc	33 Shelb 5. Burlin	urne Rd. gton, VT 2-652-51	., Suite 3 0540	e 360	Wi	nds	sor,	VT		Che	cked By	y: <u>SPI</u>	<u> </u>
Bori	ing C	omp	any:	_	Trans	Tech							Casing:	San	npler:		Ground	water C	bservation	S	
	eman:			-			dt and Mik	e Blakely					Type: H.S.A.		SS	Date	Depth (ft)	Elev. (ft)		Notes	
	Desig		ep.:	-		n Kelley mber 25	2008	Date	Finished:	Septer	mher 2	5 2008	I.D.: 3.25 in. Hammer Wt.: NA		8 in. 0 lbs	▼ 9/25/08, 0:00	(11)		None		_
	Coord		:	-	Осртс	TIDOT ZO			ordinate:		IIDOI Z	0, 2000	Hammer Fall: NA) in.	¥ 5/26/60; 0.00			INOTIE		
		Surfa	ce Ele	evation	(feet):		335						Rig Type: CME 75			Ī					
Stat	ion:					Offset:							Hammer/Rod Type: Safety	/ - AV	VJ	Ţ					
	Æ					S	ample 1	Informa	ition				Strata Description			¥					_
	Casing Blows/ft			on							ime	(%)	Description	Symbol		Ā					
Depth (ft)	ing B	Number	9	Penetration (inches)	Recovery (inches)	Depth (ft)	E	Blows / 6 i	nch Interv	val	Coring Time (min./ft)	Moisture Content (%)	D 41.6	Sy		San	nple I	Descri	ption		
Dep	Cas	Nui	Type	Pen (inc	Rec	Deg	0 - 6	6 - 12	12 - 18	18 - 24	Co mi	Cor	Depth & Elevation(feet)			sification System: B	urmiste	r	•		
		S1	SS	24	18	0	6	6	6	6			Silty Fine Sand.) Tannish brow ca, dry.	n fine	e SAN	ID, little	Silt, trac	Э
		S2	SS	24	20	2	5	7	7	8) Tannish brow ce mica, dry.	n fine	e SAN	ID, trac	e (+) Silt	,
															ua	cc mica, dry.					
5																					
		S3	SS	24	18	5	3	3	5	5					S3 dry) Tan fine SAN	ID, tra	ace(+)	Silt, tra	ice mica,	
															۵.,						
10															C 4	\ T== f:== t= ==	مان المام	- 0 ^ ^	ID 4===	- 0:14 4=-	
		S4	SS	24	18	10	5	6	7	7) Tan fine to m ca, dry.	ealun	n SAN	ND, trace	e Siit, tra	се
15		S5	SS	24	18	15	11	13	14	12			15 Fine to 320.0		S5) Tan brown fir	ne to i	mediu	ım SAN	D. trace(+)
		33	33	24	10	15	- ''	13	14	12			Medium Sand and Gravel	0 1		e Gravel, trace				_,(٠,
		H											Glavei)							
		\vdash												Ø							
		\vdash												0 7							
20		S6	SS	24	21	20	5	8	10	9)	S6) Tan brown fir	ne to i	mediu	ım SAN	D, trace	(+
		H		<u> </u>	<u> </u>					<u> </u>				Ø	fine	e Gravel, trace	mica	, dry.			
														٥]							_
														。()							
25													25	Ø							
		S7	SS	24	15	25	6	4	5	8			Sand/Silt 310.0	Π) Tannish brow			ID, little	(+) Silt,	
													27		tra	ce mica, moist	. (Lay	ered)			
													Bottom 308.0 of Exploration	.1.4.							
													at 27.0 ft								
30														_							
							ound su														
arks									ere adv	vanced	to to	p of sa	ampling interval imme	edia	tely p	orior to samplin	ıg.				
Remarks																					
Note										ons May Be Grations Of Groun		lay Occur Di	te To Other Factors Than Those Present A	t The Ti	me Measi	arements Were Made.					
		A.C.	= After	coring; N	I.R. = Not I	Recorded.							Tube; Geo=GeoProbe V=Vane;	1							
					Hammer ce = 1-10%	6; Little = 10	0-20%; Some =	20-35%; And	= 35-50%									Bori	ng No ·	GD-6	

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made.
A.C. = After coring; N.R. = Not Recorded.
3) Sample Type Coding: A=Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;
WORH=Weight of Rod/Hammer
4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual.

BORING LOG

Project Name

Boring No.: **GD-7**

Page No.: __1 of 2

File No.: 750-05.7

VTRANS SPT Hammer Efficiency

Windsor, VT

Checked By: SPK

							574-5943							Cosing	Cor	mpler		Ground	water (Observations
	ng Co	mpa	iny:	_	VTRAN									Casing:		mpler:				
	man:	. D.		_	Glen P		0 1001/:4	<u> </u>					Type:	H.S.A.		SS	Date	Depth (ft)	Elev. (ft)	Notes
	Design Starte		:р.:			Kelley a nber 26,	& Joe Kide		Finichad.	Septen	nher ?	6 2000	I.D.: Hammer Wt.	3.25 in.		38 in. 10 lbs	▼ 9/26/08, 0:00			Wet Sample
	oordi			_	Septen	ibei 20,	2000			_ Зеріеі			Hammer Fall			0 in.	¥ 9/26/08, 0:00	30.0	265.0	Hole collapsed 15.5'
				vation	(feet):		335	D. CO	oramate.				Rig Type:				₹			Tiole collapsed 15.5
Stati					. ,	Offset:							Hammer/Roo				¥			
						C	omanlo I	fo	4:								¥			
	#					ა	ample I	шоша	шоп				Descr	ata intion			¥			
<u>ت</u>	Casing Blows/ft			uo	>	<u> </u>					Coring Time (min./ft)	Moisture Content (%)	Descr	iption	Symbol		Ī			
Depth (ft)	ng E	per		etrati nes)	over nes)	Depth (ft)	В	lows / 6 i	nch Inter	val	ng T	sture			S		San	nnle I	Descr	iption
Dep	Casi	Number	Type	Penetration (inches)	Recovery (inches)	Dep	0 - 6	6 - 12	12 - 18	18 - 24	Cori (mir	Moi	Depth & Elevation(fee	et)		Class	ification System: B	1		iption
		-	ss	24	22	0	2	4	4	3			Silty Fin							D, little(+) Silt, tra
		-					_		·								ca, slightly moi			. , ,
																. 60	Manulagaa h	rown	fina	SAND, little(+) Sil
		S2	SS	24	18	2	3	2	2	3							ce mica, slightl			SAND, IIIIIe(+) SII
																1		•		
5		S3	ss	24	20	4	2	3	3	3						1 . '		ie SA	ND, I	ittle Silt, trace mid
													1			dry	•			
		S4	ss	24	23	6	2	2	3	3						S4	Top 8" - Tan	fine S	SAND	, little(+) Silt, trac
	\dashv			•						- -			1			mid	ca, dry.			, ,
	-	05	-	0.1	0.1				_	40		-	-					se, ta	n fine	SAND, trace Silt
		S5	SS	24	21	8	3	3	7	10			9 Fine Co	nd and 26.0			ce mica, dry.			
10													Gra		Ĭ.,	1 ') Medium dens		a bro	we fine CAND litt
		S6	SS	24	23	10	3	4	3	4					0 (Silt	r, trace mica, m	noist.	סומ ו	wn fine SAND, litt
															0				ish b	rown fine to coars
															0		ND, little fine C			
															0 /		Loose, tannis			
)	SA	ND, trace Silt,	trace	fine	Gravel, dry.
15		S7	SS	24	8	15	5	9	13	14					O	S7) Medium dens	e, tai	nnish	brown fine to
		31	33	24	0	10	3	9	13	14			<u> </u>		0	coa	arse SAND, tra			avel, trace Silt,
															0 (slig	htly moist.			
)					
																1				
20															0 7	;				
		S8	SS	24	22	20	6	7	9	11					0 (Medium dens			
															0		arse SAND, tra Ihtly moist.	ice fir	ie Gr	avel, trace Silt,
													-		0	- 5119	intry moist.			
		\dashv											1		0.1	i				
	\dashv	\dashv	-										-		5					
25	_	_													0		Tonnich hear	ın fin) to -	oarse SAND, trad
		S9	SS	24	20	25	4	9	11	9					0		e Gravel, trace			
															0 (L	,	•1	01	
															0	:				
]			1				
30		\dashv											30		,	;				
3 ∪	4.									·	-				1.0.1	ч				
g	1) <i>F</i>	١d٧	anc	ed H	SA to	top o	t sampl	ing inte	erval im	mediate	ely pi	rior to	sampling.							
Remarks																				
Reı																				

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made.
A.C. = After coring; N.R. = Not Recorded.
3) Sample Type Coding: A=Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;
WORH=Weight of Rod/Hammer
4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual.

BORING LOG Boring No.: _GD-7 Project Name Page No.: 2 of 2 GEODESIGNINCORPORATED VTRANS SPT Hammer Efficiency File No.: 750-05.7 Geotechnical Engineers-Environmental Consultants-Construction Engineers P.O. Box 699 1233 Shelburne Rd., Suite 360 Windsor, VT 05089 So. Burlington, VT 05403 Phone: 802-674-2033/Fax: 802-674-5943 Phone: 802-652-5140 Windsor, VT Checked By: SPK Groundwater Observations Casing: Sampler: Boring Company: VTRANS Foreman: Glen Porter Type: H.S.A. SS Depth Elev Date Notes (ft) GeoDesign Rep.: Shawn Kelley & Joe Kidd I.D.: ____3.25 in._____ 1.38 in. September 26, 2008 Hammer Wt.: NA 140 lbs Date Finished: September 26, 2008 **▼** 9/26/08, 0:00 50.0 285.0 Wet Sample E. Coordinate: _ N. Coordinate: Hammer Fall: NA 30 in. **▼** 9/26/08, 0:00 Hole collapsed 15.5' Ground Surface Elevation (feet): Rig Type: CME 45C Track Ţ 335 Offset: ft Hammer/Rod Type: Auto - AWJ **T** Sample Information Strata Casing Blows/ft Description Symbol Coring Time (min./ft) Moisture Content (%) Penetration (inches) Recovery (inches) Blows / 6 inch Interval Number Depth (Sample Description Depth & Elevation(feet) 6 - 12 12 - 18 18 - 24 Classification System: Burmister Sand/Silt 305.0 S10) Tan fine SAND, little Silt, trace mica, dry. S10 SS 24 24 30 3 4 4 5 S11) Tan fine SAND, trace(+) Silt, trace mica, S11 SS 24 18 35 4 5 6 6 dry. 2" seam of brown fine SAND, little(+) Silt, trace mica. 40 S12) Brownish gray fine SAND and SILT, trace S12 SS 24 21 40 3 5 4 6 mica, trace fine Gravel layered, moist. 45 S13) Tan fine SAND, trace Silt, trace mica, dry. S13 SS 50 Silty Fine San@85.0 S14A) Top 16" - Grayish brown fine SAND, S14 SS 24 24 50 9 10 7 10 trace(+) Silt, trace mica, wet. S14B) Bottom 8" - Gray/brown fine SAND and Bottom 283.0 SILT, trace mica, wet. of Exploration at 52.0 ft 55 60 1) Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual. 2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made

Boring No.: GD-7

A.C. = After coring; N.R. = Not Recorded.

3) Sample Type Coding: A=Auger; C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;

WORNTE-WEIGH OR KOM HAMMER

4) Proportions Used: Trace = 1.0%; Little = 10-20%; Some = 20-35%; And = 35-50%

5) Stratification lines represent approximate boundary between material types, transitions may be gradual

WOR/H=Weight of Rod/Hammer

BORING LOG

Project Name

Boring No.: **GD-8**

Page No.:

1 of 2

GD-8

Boring No.:

File No.: 750-05.7

VTRANS SPT Hammer Efficiency

Windsor, VT

Checked By: SPK

]	Phon	e: 8	02-6	74-20	33/Fax	: 802-	674-5943	3 Pl	hone: 80	2-652-51	40								
Bor	ing Co	ompa	my:	_	VTRAN	NS							Casin	<u>ıg:</u>	Sample	er:	Ground	water C	Observations
Fore	eman:			_	Glen P	orter ar	nd Eric						Type: H.S.	A	SS	Date	Depth		Notes
Geo	Desig	n Re	p.:	_	Shawn	Kelley							I.D.: 3.25 i	in	1.38 ii	n.	(ft)	(ft)	
Date	e Start	ted:		_	Septer	nber 26	, 2008	Date	Finished:	Septen	nber 2	9, 2008	Hammer Wt.: NA		140 lb	s 🛂 9/26/08, 0:00	50.0	285.0	Wet sample.
N. C	Coordi	inate	:	_				E. Co	ordinate:				Hammer Fall: NA		30 in	. 🛂			
Gro	und S	urfac	e Ele	vation (feet):		335						Rig Type:CN	/IE 45C	Track	Ţ			
Stat	ion:					Offset:	ft						Hammer/Rod Type:	Auto -	NWJ	¥			
							Sample 1	In famora	tion							Ī			
	Ψ					i.	sample i	шоппа	uon				Strata Description			Ţ			
	Casing Blows/ft			п							Coring Time (min./ft)	%)	Description		Symbol	T			
Depth (ft)	g Bl	er		Penetration (inches)	Recovery (inches)	Depth (ft)	F	Blows / 6 i	nch Interv	al	E E	Moisture Content (%)			Syr				
epth	asin	Number	Type	enet	eco	epth					orin nin.	foist	Depth & Elevation(feet)				mple I	<i>J</i> escri	ption
Ω	0	z	T	A C	23	Д	0 - 6	6 - 12	12 - 18	18 - 24	0 5	20			С	lassification System: Bu	ırmister		
													Silty Fine Sand	a E					
													_						
													-						
5														[.:					
-3		S1	SS	24	22	5	2	2	3	2		10.1	1			S1) Tan fine SAN	D. little	e Silt.	trace mica. drv.
		01		24					-			10.1	_			Layers of fine SA			
													_						
10													Fine to Mediun	-90E 0		00) Ton fine to a		ANID	anna fina Oneval
		S2	SS	24	17	10	3	4	5	5		4.0	Sand and Grav	ലി		sz) Tan fine to co trace Silt. dry.	arse s	AND	, some fine Gravel,
															ال•	race ont. dry.			
														1)					
													_		d				
														Ĉ					
15															∘∴[
		S3	SS	24	19	15	9	10	7	7		3.7)			arse S	SAND	, little fine Gravel,
													1			race Silt, dry.			
													_	Ċ					
															o∴ (
20															Ø				
		S4	SS	24	21	20	6	9	9	13		4.3	_	¢		S4) Tan fine to co	arse S	SAND), trace(+) fine
		0,					-	-	-	10		7.0	-		o (Grável, trace Silt,	dry.		, , ,
														Ď	0				
														[:	O				
														¢					
													_		o. /				
25													-	ŀ.	Y	O5) T (6	- 4		CAND to a series
		S5	SS	24	21	25	9	11	11	14		4.5		[:		trace Silt, trace G		barse	SAND, trace mica,
														ė.	.:Q'	irace Siit, trace O	iavci.		
													-		∵├				
-													-		. · · \				
<u> </u>													1	ال	O				
30													30		d				
Note of the state					SA to a		samplin	g interv	al imme	ediately p	orior 1	o sam							
<u> </u>	L,	1) Street	ificatio=	Linee D~	aregent A.	nrovimata D	loundary Batoo	en Material T	unes Transition	ns May Be Gra	fnal								
Note		2) Wate	er Level	Readings		Made At 7						ay Occur D	ue To Other Factors Than Those	Present At	The Time	Measurements Were Made.			

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made.
A.C. = After coring; N.R. = Not Recorded.
3) Sample Type Coding: A-Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo-GeoProbe V=Vane;
WORH=Weight of Rod/Hammer
4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual.

GEODESIGNIN CORPORATED

BORING LOG

Project Name

Boring No.: **GD-8**

Page No.: 2 of 2

									TE				VTRANS SP	T F	łamr	mer Efficiend	СУ	File	No.: _7	50-05.7
l (<i>Geote</i> P.O. 1	chn. 3ox	ical I 699	Engine	ers/Er	ıvironm	ental Co	nsultants 12	/Constru 33 Shelb	ction Engurne Rd	<i>gineer</i> . Suit	s e 360	,,,	<i>r</i> :		\				
7	Vind	sor,	VT	05089) 22/Ear	୧၈၁ 4	674-594 <u>:</u>	Sc	Burling	gton, VT	0540	3	VV	ına	sor,	VI		Cho	ecked By:	SPK
							0/4-394.	5 PI	1011e. 80.	2-032-31	40		Coning	Co	mnlar:	1	Ground	votor C	bservations	
	ng Co	mpa	ny:	_	VTRAN								Casing:		mpler:					
	man:	ъ		_		orter an	d Eric						Type: H.S.A.		SS	Date	Depth (ft)	Elev. (ft)	Note	S
	Design		p.:	_		Kelley		-					I.D.: 3.25 in.		38 in.					
	Start			-	Septer	mber 26,	, 2008		Finished:		nber 2	9, 2008			0 lbs	▼ 9/26/08, 0:00	50.0	285.0	Wet sample.	
	oordi			_				E. Co	ordinate:				Hammer Fall: NA		0 in.	¥				
		ırfac	e Ele	vation (_	335						Rig Type: CME 45			Ţ				
Stati	on:					Offset:	ft						Hammer/Rod Type: Auto	<u>- NW</u>	J	Ā Ā				
						S	ample 1	Informa	tion				Strata							
	vs/fi					1	1				9		Description	70		Ţ Ţ				
ft)	Casing Blows/ft	Ĺ		Penetration (inches)	2_	æ	,	Plowe / 6 i	nch Interva	al	Coring Time (min./ft)	Moisture Content (%)		Symbol		¥				
th (ing	Number	ō	etra hes)	ove hes)	Depth (ft)	- 1	510WS / 0 1		ai I	ing n./ft	istur	D 4.0	S		San	nple I	Descri	ption	
Depth (ft)	Cas	Nur	Type	Pen (inc	Recovery (inches)	Dep	0 - 6	6 - 12	12 - 18	18 - 24	Sor mir	Con	Depth & Elevation(feet)		Class	ification System: Bur	-		P	
		S6	SS	24	24	30	4	4	5	7		7.4	Sand/Silt 305.0	1.1) Tan fine SANI		e Silt.	trace mica, w	vet.
		-			24	30	-	-		,		7.4		[1	,	•	,	•	
														$ \cdot \cdot $	ــــــ					
														$ \cdot \cdot $	1					
															ł					
														[]].	1					
35															67) Tannish browr	fino	CANI) some Silt	traco
		S7	SS	24	23	35	4	4	6	6		12.6) rannish browi ca, moist.	ı iirie	SAINI	J, Some Siit,	ırace
															''''`	oa, moiot.				
															ł					
														$ \cdot $	1					
40																				
		S8	SS	24	23	40	5	3	7	9		26.1) Brown SILT, li			nd, trace fine	Gravel,
															lla	ce mica, wet, la	yereu			
														$ \cdot $	1					
															ł					
															1					
45													45		1					
		S9	SS	24	19	45	5	7	9	10		8.2	Silty Fine Sand290.0) : . : :] S9) Tan fine SANI	D, sor	ne Sil	t, trace mica,	moist.
															├					
															}					
50													Ţ							
		S10	SS	24	22	50	6	7	8	8		23.8	<u> </u>			0) Top 15" - Bro	own fi	ne SA	ND, trace Sil	t, trace
		\exists											50		1	ca, wet.				
													52 Bottom 283.0)		ttom 7" - Fine S	AND	and S	SILT, trace mi	ca,
													of Exploration	1	lay	ered, wet.				/
													at 52.0 ft	1						
55														1						
- 55																				
								-					1	1						
\vdash													1	1						
60													1							
00					L	<u> </u>	<u> </u>	1	L	<u> </u>		<u> </u>	<u>I</u>		1					
_																				
Remarks																				
Rem																				

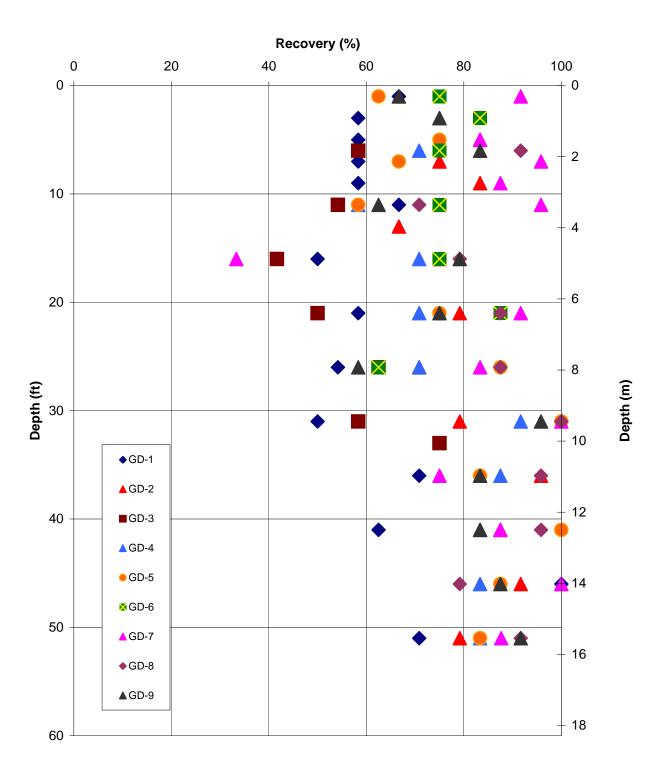
Notes:

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made.
A.C. = After coring; N.R. = Not Recorded.
3) Sample Type Coding: A-Auger, C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo-GeoProbe V=Vane;
WORH=Weight of Rod/Hammer
4) Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual.

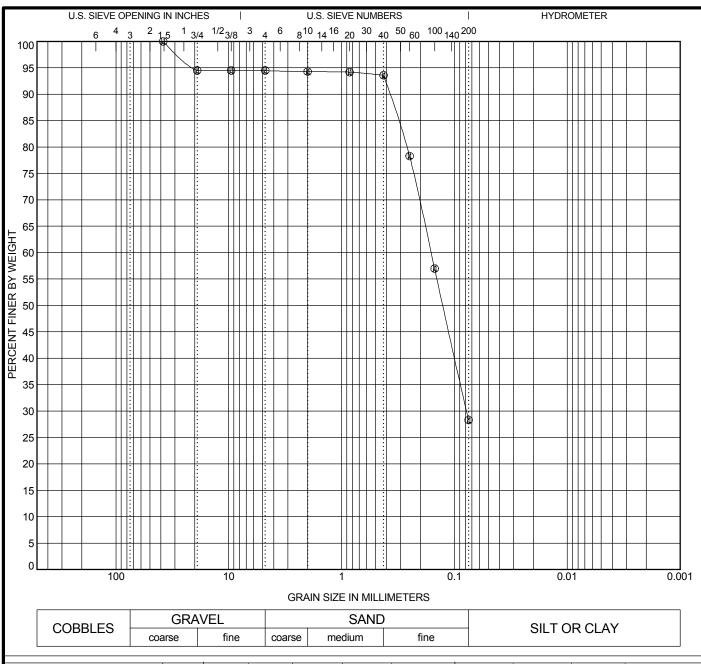
							\\ \\\								NG ct Na	LOG me				_GD-9
F V	P.O. Vind	Box lsor,	ical 699 VT	Engir	neers-l	O R Environ	P 0 nmental 674-594	Consulta 12 So	33 Shelb 5. Burlin		., Suite 3 0540	e 360	VTRANS SP		lamı sor,		су	File	ge No.: e No.: ecked By	1 of 2 750-05 : SPK
	ng C						ing & Inve			2 002 0			Casing:	Saı	mpler:		Ground	water C	Observations	
	man:	-		_			and Matth						Type: H.S.A.		SS	Date	Depth	Elev.		Notes
Geo	Desig	gn R	ep.:		Shawr	n Kelley							I.D.: 4.25 in.	1.3	38 in.		(ft)	(ft)		110103
Date	Star	ted:			Septer	mber 29	, 2008	Date	Finished:	Septer	mber 2	9, 2008	Hammer Wt.: NA	14	0 lbs	▼ 9/29/08, 0:00	50.0	285.0	Wet sample) .
N. C	oord	inate	::	_				E. C	oordinate:				Hammer Fall: NA	3	0 in.	Ţ				
Gro	and S	urfa	ce Ele	evation	(feet):	_	335						Rig Type: Simco 28			Ā				
Stati	on:					Offset:	ft						Hammer/Rod Type: Wireli	ne -	AWJ T	¥				
	. ــ					S	Sample	Informa	ation				Strata			¥				
ft)	Casing Blows/ft	_		tion	5.	[£]		Plows / 6	inch Inter	wal	Time	(%)	Description	Symbol		Ā				
Depth (ft)	Casing	Number	Type	Penetration (inches)	Recovery (inches)	Depth (ft)	0 - 6	6 - 12			Coring Time (min./ft)	Moisture Content (%)	Depth & Elevation(feet)	S	Class	Sar sification System: B	nple I		iption	
		S1	SS	24	16	0	3	6	6	7			_ Topsoil _	11/	S1) Top 6" - Top:	soil			
													Silty Fine Sand 34.5			ttom 10" - Tan	/orang	ge fin	e SAND,	little Silt,
		S2	SS	24	18	2	3	4	7	7					$\overline{}$	oist. N Ton/brown fir		ND .	maa=/:\ 1	NII4 4mm - :
		-			٠.٣	-	+ -	<u> </u>	<u> </u>	<u> </u>) Tan/brown fii ca, moist.	ie SA	ND, t	race(+) S	ont, trace
															 					
5		_				_	_	_							53) Tan fine SAN	ID tra	2 22	ilt trace t	fine
		S3	SS	24	20	5	3	5	4	4						avel, trace mic			iit, tracc i	
															:					
															-					
10			L			L						L			L					
		S4	SS	24	15	10	5	4	5	6) Tan fine San		e Sil	t, trace fi	ne Grave
															ua	ce mica, moist				
15													15		1					
10		S5	SS	24	19	15	9	13	16	18			Fine to Medium 20.0 Sand and Gravel	0		i) Tannish brov e Gravel, trace				
_): : ·	-					
														Ø						
														٥ · `						
20		<u> </u>	_								-	-		0 [00	i) Tan fine to m	odi	2011	VID trace	fine
		S6	SS	24	18	20	7	14	17	18				Ø	Gr	avel, trace mic				mie
														0						
														0 [d					
) <u> </u>						
25														Ø						
		S7	SS	24	14	25	18	27	25	15				0	S7) Tan fine to co	parse	SAN	D, trace f	ine Grave
														• (ua	ce Silt, trace m	ııca.			
														0						
]	ø (1					
30													30	0. [
Remarks	1) 2)	Sar Fro	mple m 5	ed twi	ce fro	om gro	ound su prehole,	rface 0 advan	' to 4'. ced HS	A to top	o of s	amplir	ng interval immediate	ely p	rior to	o sampling.				
Note	es:	2) Wate A.C.	er Level = After	Readings coring; N	Have Beer	n Made At T Recorded.		ler Conditions	Stated, Fluctua	ations Of Grou	ndwater M		te To Other Factors Than Those Present A	at The T	ime Meas	urements Were Made.				
	1	WOR/I	I=Weig	ht of Rod/	Hammer					opiit Barrel (Sp	out Spoon)	; S1=Shelby	Tube; Geo=GeoProbe V=Vane;				ı	-		05.5
							0-20%; Some = undary between			nay be gradual.								Bori	ng No.:	GD-9

BORING LOG Boring No.: **GD-9** Project Name Page No.: 2 of 2 GEODESIGNINCORPORATED VTRANS SPT Hammer Efficiency Geotechnical Engineers-Environmental Consultants-Construction Engineers P.O. Box 699 Windsor, VT 05089 Phone: 802-674-2033/Fax: 802-674-5943 Phone: 802-652-5140 File No.: 750-05.7 Windsor, VT Checked By: SPK Groundwater Observations Casing: Sampler: Boring Company: Specialty Drilling & Investigation SS Foreman: Chris Aldrich and Matthew Miller Type: H.S.A. Depth Elev Notes (ft) GeoDesign Rep.: Shawn Kelley I.D.: 4.25 in. 1.38 in. September 29, 2008 Hammer Wt.: NA 140 lbs Date Started: Date Finished: September 29, 2008 50.0 285.0 Wet sample. E. Coordinate: _ N. Coordinate: Hammer Fall: NA 30 in. Ground Surface Elevation (feet): Rig Type: Simco 2800 Truck Ţ 335 Offset: ft Hammer/Rod Type: Wireline - AWJ ₹ Sample Information Strata Casing Blows/ft Description Symbol Coring Time (min./ft) Moisture Content (%) Penetration (inches) Recovery (inches) Blows / 6 inch Interval Number Depth (Sample Description Depth & Elevation(feet) Classification System: Burmister 6 - 12 12 - 18 18 - 24 Sand/Silt 305.0 S8) Tan fine SAND, trace Silt, trace mica, S8 SS 24 23 30 4 6 8 10 S9) Grayish brown fine SAND, little(-) Silt, trace S9 SS 24 20 35 5 9 13 12 S10) Grayish tan fine SAND, trace Silt, trace S10 SS 24 20 40 12 15 15 mica, layered, moist. 45 S11) Tannish gray fine SAND, trace Silt, trace mica, moist. 2" seam of brown fine SAND, S11 SS little(+) Silt. 50 ₹ S12) Brown/dark gray fine SAND and SILT, S12 SS 24 22 50 10 16 17 10 trace mica, layered. Bottom 6" - Fine SAND, trace Silt, trace mica, Bottom 283.0 of Exploration at 52.0 ft 55 60

¹⁾ Stratification Lines Represent Approximate Boundary Between Material Types, Transitions May Be Gradual.
2) Water Level Readings Have Been Made At Times And Under Conditions Stated, Fluctuations Of Groundwater May Occur Due To Other Factors Than Those Present At The Time Measurements Were Made


A.C. = After coring; N.R. = Not Recorded.

3) Sample Type Coding: A=Auger; C=Core; D=Driven; G=Grab; PS=Piston Sampler; SS=Split Barrel (Split Spoon); ST=Shelby Tube; Geo=GeoProbe V=Vane;


WOR/H=Weight of Rod/Hammer

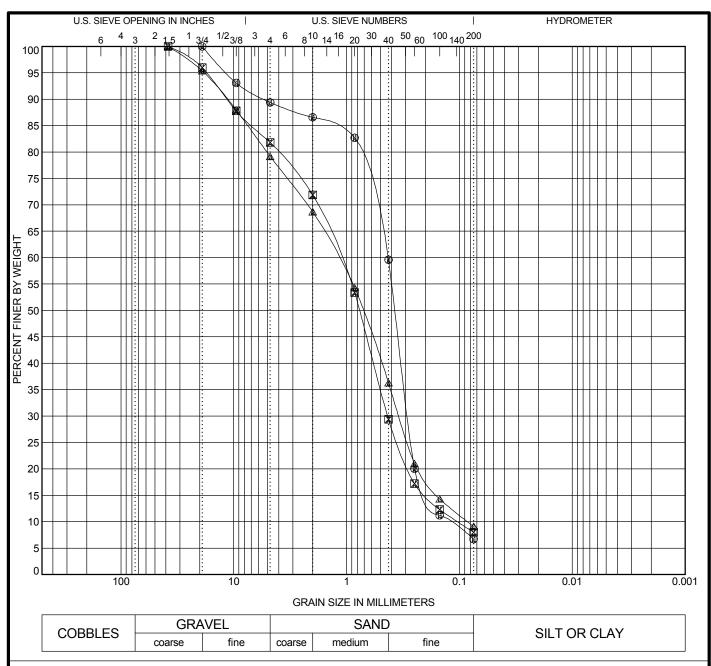
⁴⁾ Proportions Used: Trace = 1-10%; Little = 10-20%; Some = 20-35%; And = 35-50%
5) Stratification lines represent approximate boundary between material types, transitions may be gradual

SPT Hammer Energy Variability Evaluation Windsor, VT

Bor	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
Θ	B-1B		5.0	18.3	38.1	0.161	0.078		5.5	66.2	28	3.3	29.9

Note: Upper Silty Fine Sand Strata

750-05.7.GPJ US LAB.GDT



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

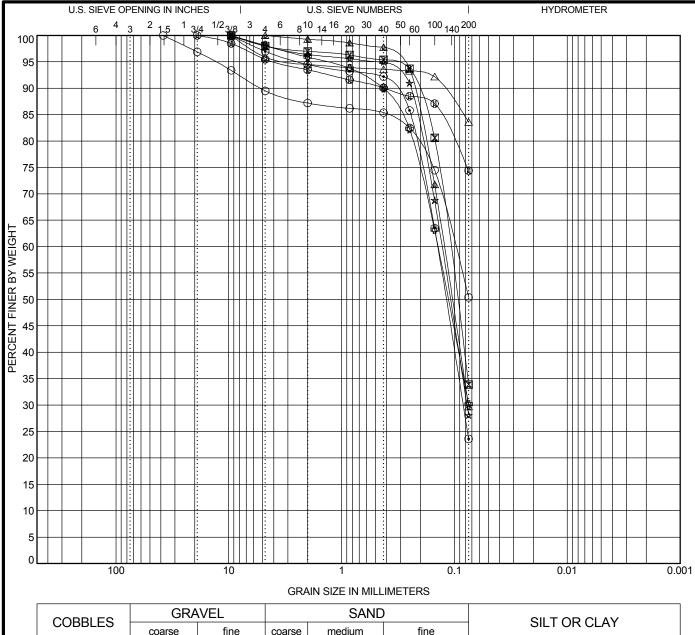
GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

В	orehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
4	₿-1 В	S3	10.0	18	19.05	0.43	0.286	0.125	10.6	82.7	6	.7	7.5
	B-1B	S4	15.0	10.8	38.1	1.153	0.432	0.104	18.2	73.8	8	.0	9.8
Δ	⊾ B-1B	S5	20.0	11.6	38.1	1.193	0.342	0.085	20.8	70.1	9	.1	11.5
28/0													
0/62/9													

Note: Sand & Gravel Strata



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

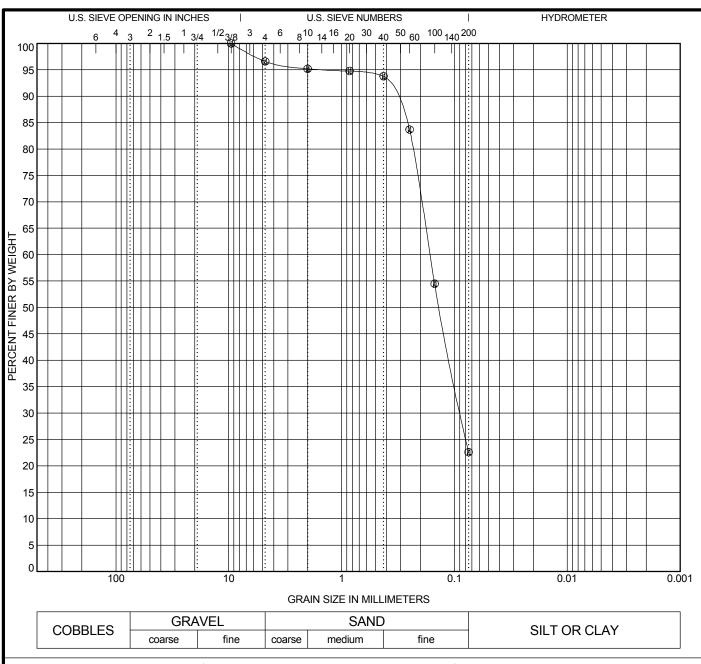
Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

	COBBLES		GRA	VEL			SAND			SILT O	R CLAY	
	COBBLES	coa	rse	fine	coarse	e me	edium	fine		SILTO	K CLAT	
eh∩l	e No. Sample No.	Denth (ft)	Water	D100	Den	しるり	D10	%Gravel	%Sand	0/, Cilt	%Clay	Fines based on

o. Sample No.	Depth (ft	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
3 S6	25.0	26.1	19.05				4.5	21.1	74	.4	77.9
3 S7	27.0	17.3	9.525	0.11			2.0	64.1	33	3.9	34.6
3 S8	29.0	15.3	4.75	0.124	0.075		0.0	70.3	29.7		29.7
3 S9	31.0	19.3	9.525	0.129	0.077		2.0	69.9	28	3.1	28.7
3 S10	33.0	16	9.525	0.141	0.084		3.0	73.4	23	3.6	24.3
3 S11	35.0	14.5	9.525	0.14			1.9	67.9	30).2	30.8
3 S12	37.0	19.9	38.1	0.099			10.5	39.1	50).4	56.3
3 S13	39.0	27.6	9.525				4.1	12.3	83	3.6	87.2
	B S7 B S8 B S9 B S10 B S11 B S12	B S6 25.0 B S7 27.0 B S8 29.0 B S9 31.0 B S10 33.0 B S11 35.0 B S12 37.0	B S6 25.0 26.1 B S7 27.0 17.3 B S8 29.0 15.3 B S9 31.0 19.3 B S10 33.0 16 B S11 35.0 14.5 B S12 37.0 19.9	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 B S8 29.0 15.3 4.75 B S9 31.0 19.3 9.525 B S10 33.0 16 9.525 B S11 35.0 14.5 9.525 B S12 37.0 19.9 38.1	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 0.11 B S8 29.0 15.3 4.75 0.124 B S9 31.0 19.3 9.525 0.129 B S10 33.0 16 9.525 0.141 B S11 35.0 14.5 9.525 0.14 B S12 37.0 19.9 38.1 0.099	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 0.11 B S8 29.0 15.3 4.75 0.124 0.075 B S9 31.0 19.3 9.525 0.129 0.077 B S10 33.0 16 9.525 0.141 0.084 B S11 35.0 14.5 9.525 0.14 B S12 37.0 19.9 38.1 0.099	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 0.11 B S8 29.0 15.3 4.75 0.124 0.075 B S9 31.0 19.3 9.525 0.129 0.077 B S10 33.0 16 9.525 0.141 0.084 B S11 35.0 14.5 9.525 0.14 B S12 37.0 19.9 38.1 0.099	B S6 25.0 26.1 19.05 4.5 B S7 27.0 17.3 9.525 0.11 2.0 B S8 29.0 15.3 4.75 0.124 0.075 0.0 B S9 31.0 19.3 9.525 0.129 0.077 2.0 B S10 33.0 16 9.525 0.141 0.084 3.0 B S11 35.0 14.5 9.525 0.14 1.9 B S12 37.0 19.9 38.1 0.099 10.5	B S6 25.0 26.1 19.05 4.5 21.1 B S7 27.0 17.3 9.525 0.11 2.0 64.1 B S8 29.0 15.3 4.75 0.124 0.075 0.0 70.3 B S9 31.0 19.3 9.525 0.129 0.077 2.0 69.9 B S10 33.0 16 9.525 0.141 0.084 3.0 73.4 B S11 35.0 14.5 9.525 0.14 1.9 67.9 B S12 37.0 19.9 38.1 0.099 10.5 39.1	B S6 25.0 26.1 19.05 4.5 21.1 74 B S7 27.0 17.3 9.525 0.11 2.0 64.1 33 B S8 29.0 15.3 4.75 0.124 0.075 0.0 70.3 29 B S9 31.0 19.3 9.525 0.129 0.077 2.0 69.9 28 B S10 33.0 16 9.525 0.141 0.084 3.0 73.4 23 B S11 35.0 14.5 9.525 0.14 1.9 67.9 30 B S12 37.0 19.9 38.1 0.099 10.5 39.1 50	B S6 25.0 26.1 19.05 4.5 21.1 74.4 B S7 27.0 17.3 9.525 0.11 2.0 64.1 33.9 B S8 29.0 15.3 4.75 0.124 0.075 0.0 70.3 29.7 B S9 31.0 19.3 9.525 0.129 0.077 2.0 69.9 28.1 B S10 33.0 16 9.525 0.141 0.084 3.0 73.4 23.6 B S11 35.0 14.5 9.525 0.14 1.9 67.9 30.2 B S12 37.0 19.9 38.1 0.099 10.5 39.1 50.4

Note: Sand/Silt Strata


54 Main Street Windsor, VT 05089 Telephone: (802) 674-203

Telephone: (802) 674-2033 Fax: (802) 674-5943

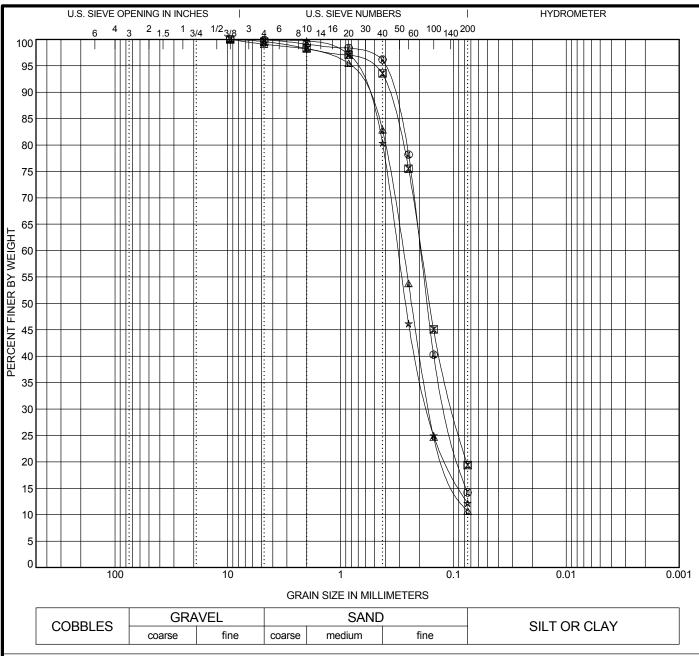
GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Bor	ehole No.	Sample No.	Depth (ft)	Water Content		D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
⊖	B-1B	S14	41.0	21.7	9.525	0.165	0.088		3.4	74.0	22	2.6	23.4

Note: Sand/Silt Strata



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

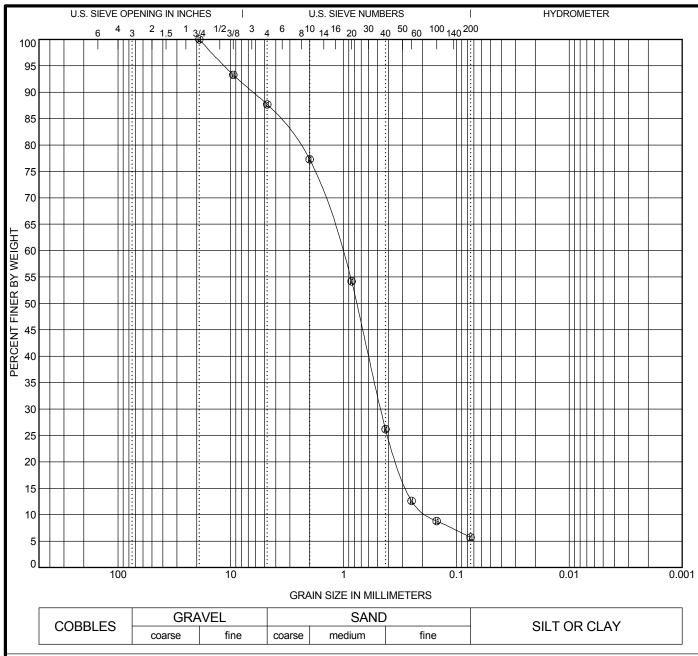
Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

L													
Е													
В	orehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
(S15	43.0	18.5	9.525	0.196	0.114		0.1	85.7	14	.2	14.2
	🛮 B-1B	S16	45.0	18.4	9.525	0.193	0.1		0.4	80.2	19).4	19.5
4	∆ B-1B	S17	47.0	20.4	9.525	0.28	0.165		0.9	88.4	10).7	10.8
ŀ	& B-1B	S18	49.0	19.1	4.75	0.31	0.169		0.0	87.8	12	2.2	12.2

△ B-1B S17 47.0 20.4 9.525 0.28 0.165 0.9 88.4 10.7 10. ★ B-1B S18 49.0 19.1 4.75 0.31 0.169 0.0 87.8 12.2 12.

Note: Lower Silty Fine Sand Strata


54 Main Street Windsor, VT 05089 Telephone: (802) 674-203

Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

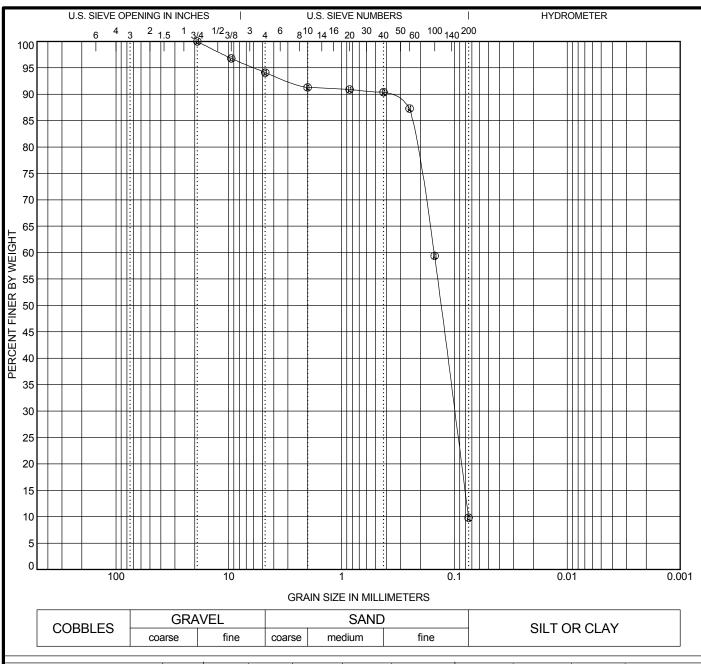
Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

CODDIES	GRA	VEL		SAND		CILT OD CLAV
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

Bor	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
0	GD-2	S6	15.0		19	1.054	0.467	0.176	12.3	82.0	5	.7	6.5

Note: Sand & Gravel Strata


54 Main Street Windsor, VT 05089

Telephone: (802) 674-2033 Fax: (802) 674-5943

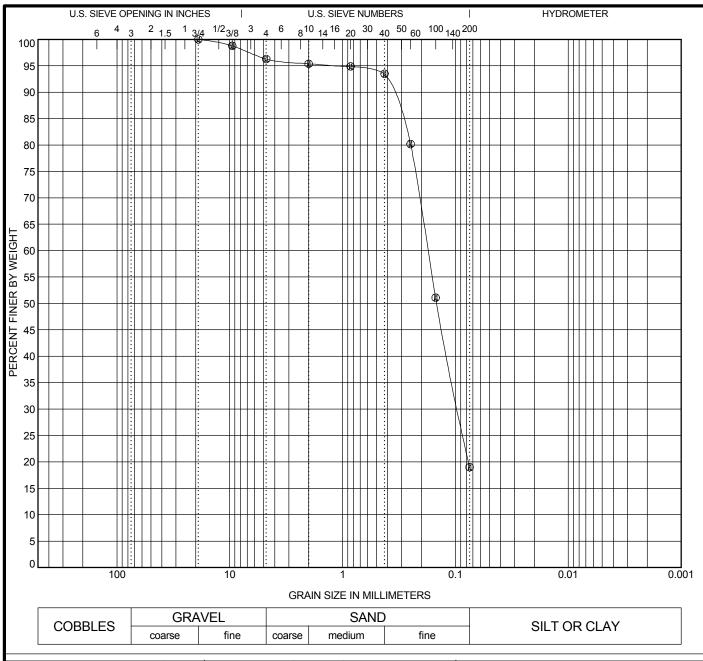
GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Bor	rehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
0	GD-2	S9	30.0		19	0.152	0.099	0.075	5.9	84.3	9.	.8	10.4

Note: Sand/Silt Strata



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Bore	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
(GD-2	S12	45.0		19	0.175	0.095		3.7	77.3	19	0.0	19.7

Note: Lower Silty Fine Sand Strata

54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

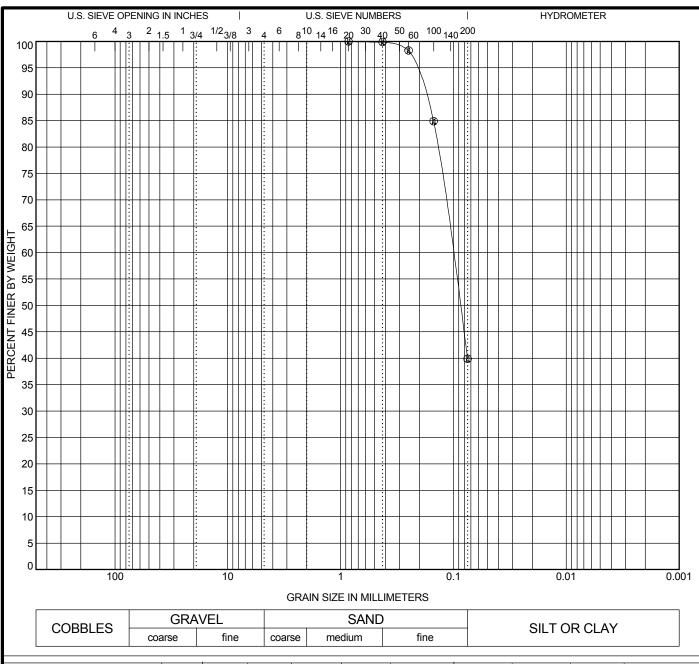
Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

	CODDIES	GRA	\V CL			SAND			CII T O		
	COBBLES	coarse	fine	coarse	med	dium	fine		SILT U	K CLAT	
arabal	o No. Cample No.	Donth (ft) Water	D400	Deo	Dan	D10	0/ Croval	0/ Cand	0/ 0:14	0/ Clay	Fines based on

Bor	ehole No.	Sample No.	Depth (ft)	Water Content		D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
⊖	GD-3	S2	10.0		19	0.719	0.314	0.077	14.3	75.9	9.	.8	11.4

Note: Sand & Gravel Strata



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Bore			Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.	
(GD-5	S3	4.0		0.85	0.102			0.0	60.1	39	.9	

Note: Upper Silty Fine Sand Strata

750-05.7.GPJ US LAB.GDT

54 Main Street Windsor, VT 05089

Telephone: (802) 674-2033 Fax: (802) 674-5943

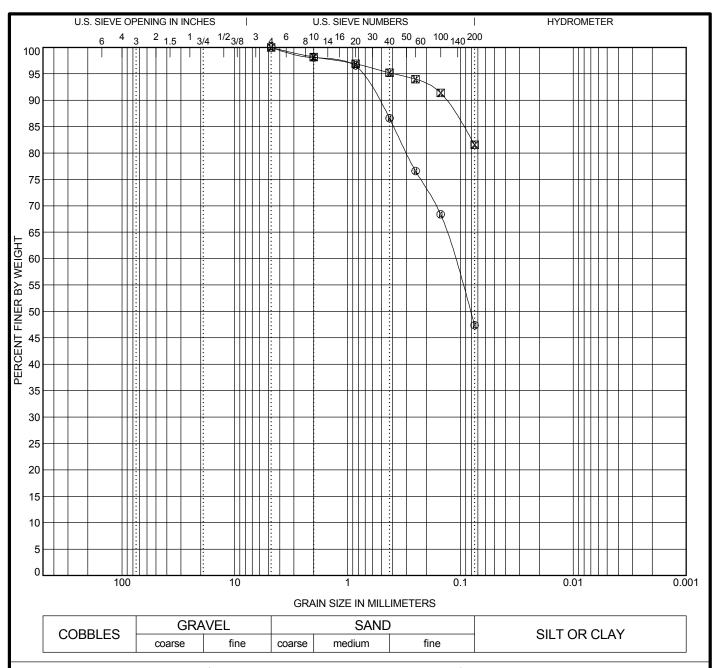
GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

GD-5			Water Content	D100	D60	D30	D10	%Gravel	%Sanu	%Silt	%Clay	Fines based on % passing No. 4 sieve.
-5	S9	30.0		19	0.121	0.078		2.2	70.2	27	'.6	28.2

Note: Sand/Silt Strata



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

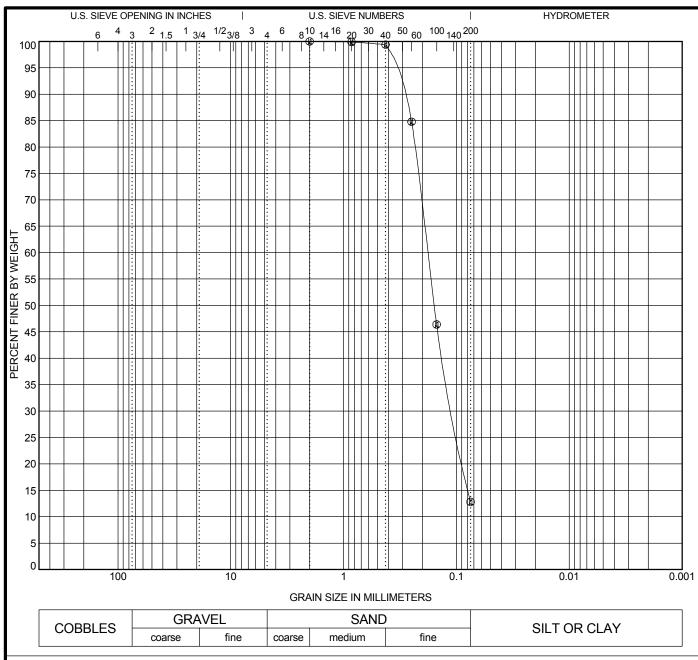
GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Bore	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
⊖	GD-5	S13	50.0		4.75	0.114			0.0	52.6	47	7.4	47.4
X	GD-5		51.2		4.75				0.0	18.4	81	.6	81.6

Note: Lower Silty Fine Sand Strata



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

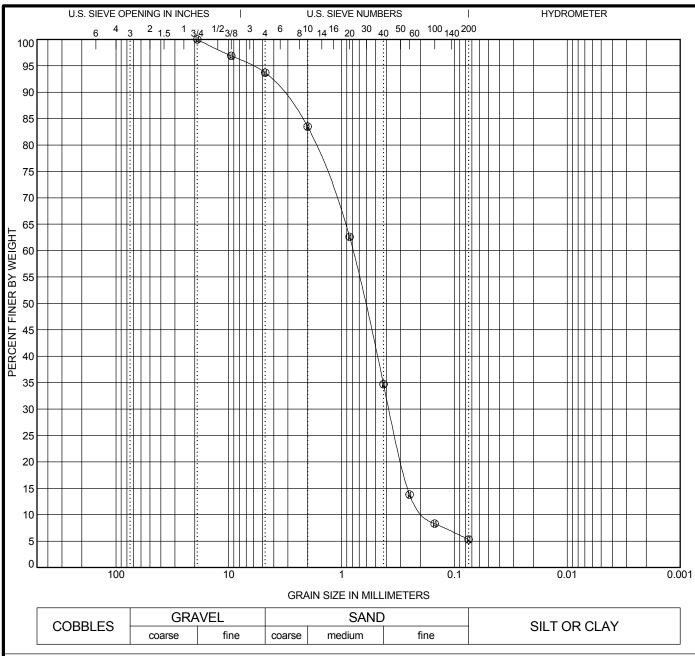
GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

	' ''	ADDI LC									CH I / 1	$\mathbf{D} \cap \mathbf{A} \mathbf{V}$	
	_ C(OBBLES	coa	arse	fine	coar	se me	dium	fine		SILTO	RCLAY	
Borehol	e No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on passing No. 4 sie

Bore	hole No.	Sample No.	Depth (ft)	Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	passing No. 4 siev
0	GD-7	S3	4.0		2	0.18	0.107		0.0	87.2	12	2.8	
+													
+													
+													
ı													
٧o	te: Upper	Silty Fine Sar	nd Strata										
		<u> </u>								GRAIN	I SIZE I	DISTRI	BUTION
					54 Mair	Street				Project: VTRA	ANS SPT Ham	mer Efficiency	y


54 Main Street Windsor, VT 05089

Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

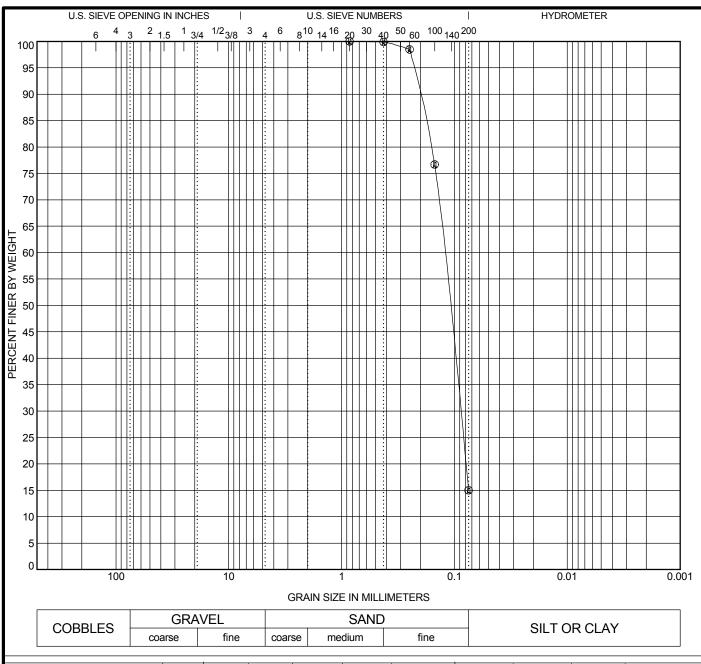
Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

CORRLES	GRA	VEL		SAND		SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

Bore	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
©	GD-7	S8	20.0		19	0.797	0.377	0.176	6.3	88.4	5	.3	5.7

Note: Sand & Gravel Strata


54 Main Street Windsor, VT 05089

Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

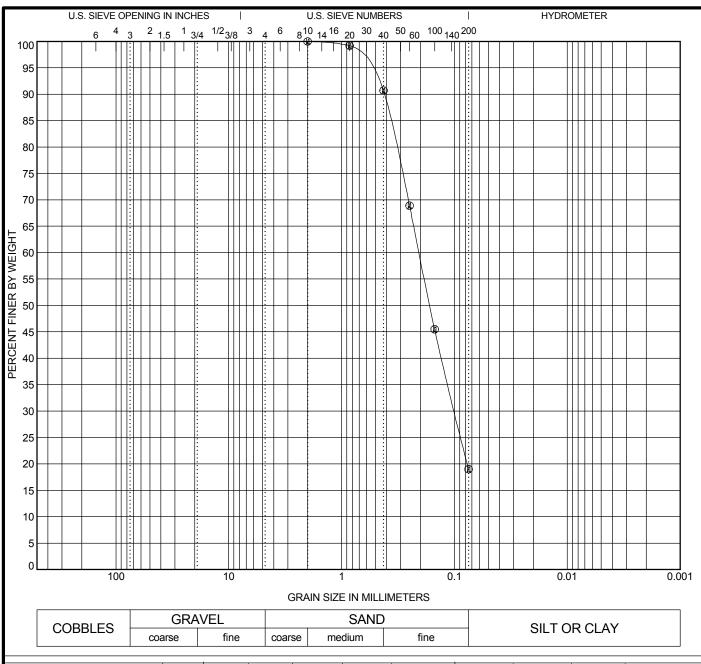
Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

			•			•	•			•			
Bor	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
0	GD-7	S10	30.0		0.85	0.124	0.089		0.0	85.0	15	0.0	1
													1

0	GD-7	S10	30.0	0.85	0.124	0.089	0.0	85.0	15.0	
Г										
30/67										
90/82/9										

Note: Sand/Silt Strata


54 Main Street Windsor, VT 05089

Telephone: (802) 674-2033 Fax: (802) 674-5943

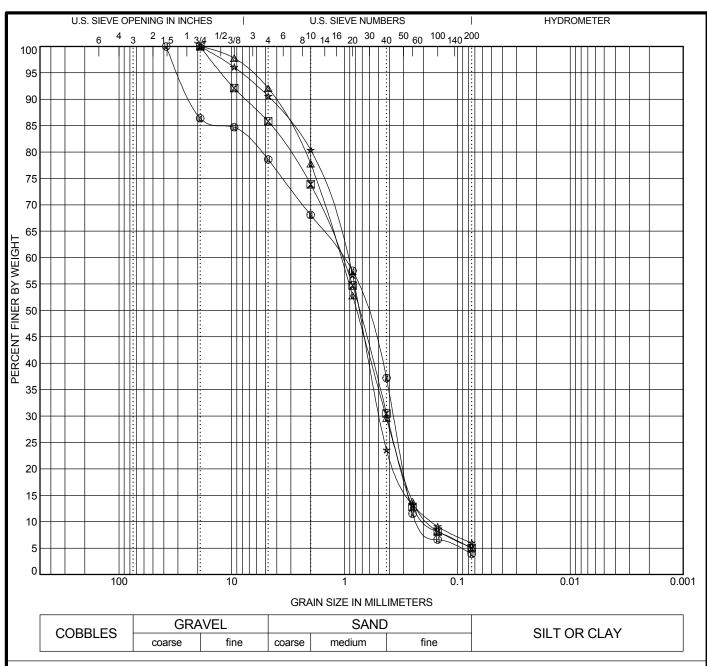
GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Во	rehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
0				10.1	2	0.206	0.1		0.0	81.0	19	.0	

Note: Upper Silty Fine Sand Strata



54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

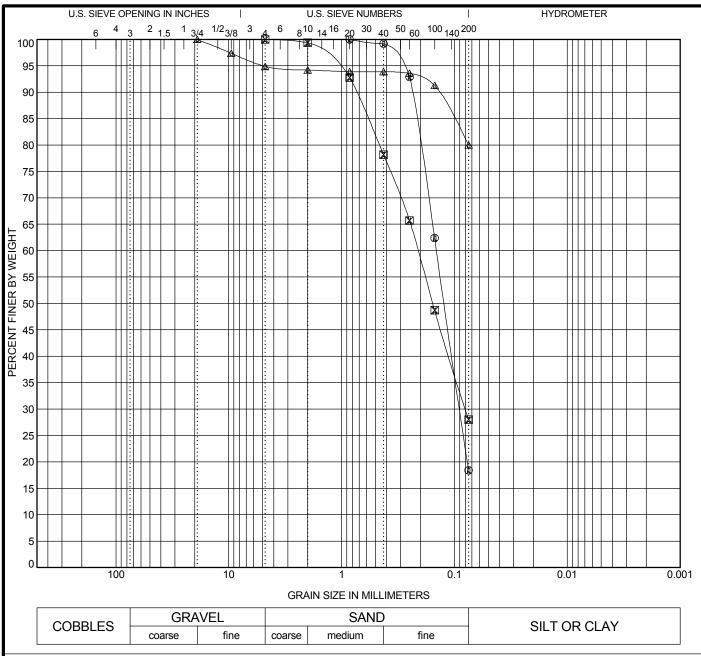
Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Bore	hole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
(D)	GD-8	S2	10.0	4.0	38.1	1.04	0.366	0.214	21.4	74.7	3	.9	5.0
X	GD-8	S3	15.0	3.7	19.05	1.076	0.419	0.184	14.2	80.8	5	.0	5.8
Δ	GD-8	S4	20.0	4.3	19.05	1.088	0.43	0.177	7.9	87.0	5	.1	5.5
*	GD-8	S5	25.0	4.5	19.05	0.958	0.486	0.168	9.4	84.6	6	.0	6.6

Note: Sand & Gravel Strata

54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943


GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS Date: 2009 Method: ASTM D6913 (Method A)

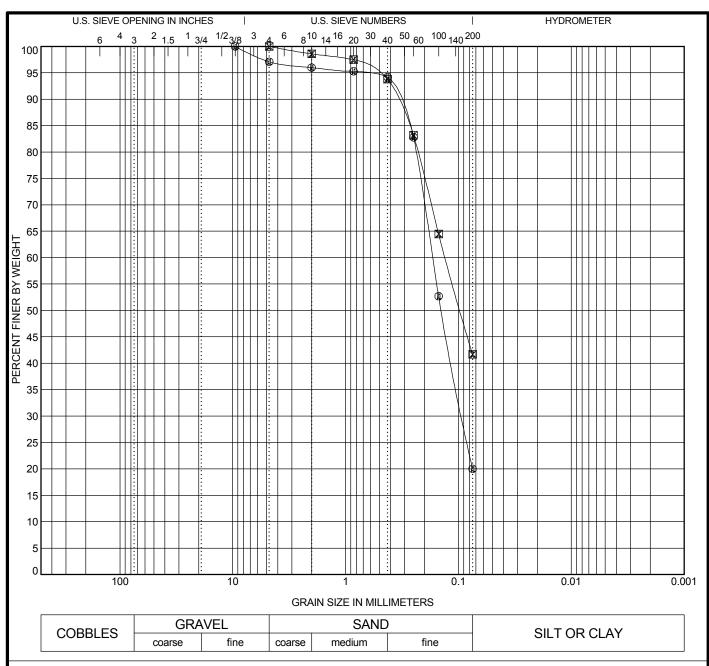
SIEVE FORM 750-05.7.GPJ US_LAB.GDT

					+				_					_
Вс	orehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on of passing No. 4 sies	
0	GD-8	S6	30.0	7.4	0.85	0.144	0.09		0.0	81.6	18	3.4		

0	GD-8	S6	30.0	7.4	0.85	0.144	0.09	0.0	81.6	18.4	
X	GD-8	S7	35.0	12.6	4.75	0.211	0.08	0.0	72.0	28.0	28.0
Δ	GD-8	S8	40.0	26.1	19.05			5.1	14.9	80.0	84.3
0/67/6											
) -											

Note: Sand/Silt Strata

54 Main Street Windsor, VT 05089


Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS
Date:2009 Method: ASTM D6913 (Method A)

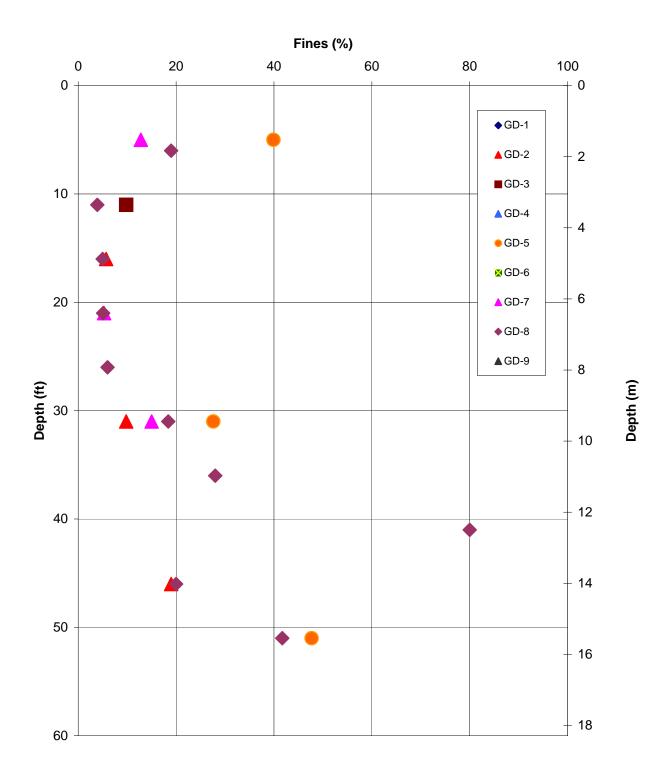
Bore	hole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
0	GD-8	S9	45.0	8.2	9.525	0.17	0.093		2.9	77.1	20	0.0	20.6
X	GD-8	S10	50.0	23.8	4.75	0.131			0.0	58.3	41	1.7	41.7
			·				·						

Note: Lower Silty Fine Sand Strata

54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency


Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS Date:2009 Method: ASTM D6913 (Method A)

SPT Hammer Energy Variability Evaluation Windsor, VT

SPT Hammer Energy Variability Evaluation Windsor, VT

HAMMER STUDY, WINDSOR

HOLE: B-1B 09/16/08 – 09/17/08

DEPTH FT.	% MOIST.	CLASS.	DES.	N VALUE	% PASS 1.5"	% PASS 3/4"	% PASS 3/8"	% PASS #4	% PASS #10	% PASS #20	% PASS #40	% PASS #60	% PASS #100	% PASS #200
0-2	14.0	A-4	Sa Si	13		100	98.4	94.9	88.5	80.2	73.0	68.6	63.8	45.2
5-7	18.3	A-2-4	Si Sa	6	100	94.5	94.5	94.5	94.3	94.2	93.6	78.3	57.0	28.3
10-12	18.0	A-3	Sa	9		100	93.1	89.4	86.6	82.7	59.6	20.0	11.2	6.7
15-17	10.8	A-1-b	Gr Sa	19	100	96.0	87.8	81.8	71.9	53.4	29.4	17.2	12.3	8.0
20-22	11.6	A-1-b	Gr Sa	19	100	95.4	88.0	79.2	68.7	54.3	36.3	21.0	14.3	9.1
25-27	26.1	A-4	Si	7		100	98.5	95.5	93.5	91.6	90.1	88.5	87.1	74.4
27-29	17.3	A-2-4	Si Sa	17			100	98.0	97.0	96.3	95.4	93.7	80.6	33.9
29-31	15.3	A-2-4	Si Sa	19				100	99.3	98.6	97.8	93.8	71.8	29.7
31-33	19.3	A-2-4	Si Sa	16			100	98.0	96.4	95.6	95.0	91.0	68.8	28.1
33-35	16.0	A-2-4	Si Sa	17			100	97.0	94.5	93.2	92.2	85.8	63.5	23.6
35-37	14.5	A-2-4	Si Sa	12			100	98.1	95.9	93.8	90.0	82.3	63.2	30.2
37-39	19.9	A-4	Sa Si	17	100	96.9	93.4	89.5	87.2	86.2	85.4	82.5	74.5	50.4
39-41	27.6	A-4	Si	12			100	95.9	94.5	93.9	93.6	93.3	92.2	83.6
41-43	21.7	A-2-4	Si Sa	17			100	96.6	95.2	94.8	93.8	83.7	54.5	22.6
43-45	18.5	A-2-4	Sa	24			100	99.9	99.1	98.4	96.2	78.2	40.3	14.2
45-47	18.4	A-2-4	Sa	23			100	99.6	98.3	97.1	93.6	75.5	45.1	19.4
47-49	20.4	A-2-4	Sa	22			100	99.1	98.2	95.5	82.9	53.8	24.7	10.7
49-51	19.1	A-2-4	Sa	28				100	99.7	97.2	80.4	46.2	25.0	12.2

G:/Soils&Foundation/Projects/Hammer Study/Boring Logs/B-1b samples

Report on Soil Sample

Lab number: E090289 Corrected copy: N/A Report Date: 4/20/2009 12:55:24

Project: HAMMER STUDY Number: WINDSOR Site: RSCH011-703

Date sampled: Received: Tested: 4/13/2009 Tested by: J. TOUCHETTE

Station: Offset: Hole: GD-2 Depth: 15 FT to: 17 FT

Field description:

Submitted by:WERNER/GeoDesignAddress:Sample type:SPLIT BARRELQuantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis
T-88 % Passing
Limits

Total Sample T-265 Moisture content: 3.3%

75 mm (3.0"):

37.5 mm (1.5"):

T-89 Liquid Limit:

T-90 Plastic Limit:

19 mm (3/4"): T-90 Plasticity Index: NP

9.5 mm (3/8"): 93.3% Moisture Density

4.75 mm (#4): 87.7% **Test method:** T-180 **Method:**

2.00 mm (#10): 77.3% Maximum density: pcf

850 μm (#20): 54.2% 425 μm (#40): 26.2% Optimum moisture:

250 μm (#60): 12.6% T-100 Specific Gravity:

150 μm (#100): 8.8% Gr: 22.7% D2487: SP-SM
75 μm (#200): 5.7% Sec. 71.6% M145: Δ.1 h. Green line Sec.

Sa: 71.6% M145: A-1-b Gravelly Sand

Wildrameter Analysis

Si: 5.7%

Hydrometer Analysis Si: 5

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-2 S-6

Report on Soil Sample

Lab number: E090290 Corrected copy: N/A **Report Date:** 4/20/2009 12:55:24

Project: HAMMER STUDY **Number:** WINDSOR Site: RSCH011-703

4/13/2009 Tested by: J. TOUCHETTE **Date sampled: Received:** Tested:

Offset: Hole: GD-2 30 FT **Station:** Depth: to: 32 FT

Field description:

Submitted by: WERNER/GeoDesign Address: Sample type: **SPLIT BARREL** Quantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis Limits **T-88** % Passing

T-265 Moisture content: 5.9% **Total Sample**

T-89 Liquid Limit: 75 mm (3.0"): **T-90 Plastic Limit:**

37.5 mm (1.5"): **T-90 Plasticity Index:** NP 19 mm (3/4"):

9.5 mm (3/8"): 96.8% **Moisture Density**

4.75 mm (#4): 94.1% **Test method:** T-180 Method:

2.00 mm (#10): 91.3% Maximum density: pcf 850 μm (#20): 90.9%

Optimum moisture: 425 μm (#40): 90.4%

T-100 Specific Gravity: 87.3% 250 μm (#60):

150 μm (#100): 59.4% Gr: 8.7% **D2487:** SP-SM 9.8% 75 μm (#200):

Sa: 81.5% **M145:** A-3 Sand 9.8%

Si: **Hydrometer Analysis**

Particles smaller % total sample

0.05 mm: 0.02 mm: 0.005 mm:

0.002 mm: 0.001 mm:

Comments: GD-2 S-9

Report on Soil Sample

Project: HAMMER STUDY Number: WINDSOR Site: RSCH011-703

Date sampled: Received: Tested: 4/13/2009 Tested by: J. TOUCHETTE

Station: Offset: Hole: GD-2 Depth: 45 FT to: 47 FT

Field description:

Submitted by:WERNER/GeoDesignAddress:Sample type:SPLIT BARRELQuantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis
T-88 % Passing
Limits

Total Sample T-265 Moisture content: 11.0%

75 mm (3.0"): T-89 Liquid Limit: 37.5 mm (1.5"): T-90 Plastic Limit:

19 mm (3/4"): T-90 Plasticity Index: NP

9.5 mm (3/8"): 98.8% Moisture Density

4.75 mm (#4): 96.3% **Test method:** T-180 **Method:**

2.00 mm (#10): 95.4% Maximum density: pcf

850 μm (#20): 94.9% 425 μm (#40): 93.5% Optimum moisture:

250 μm (#60): 80.2% T-100 Specific Gravity:

150 μm (#100): 51.1% Gr: 4.6% D2487: SM
75 μm (#200): 19.0% Sec. 76.4% M145: A 2.4 Sec.

Sa: 76.4% M145: A-2-4 Sand

Underworden Analysis

Si: 19.0%

Hydrometer Analysis Si: 19.0

Particles smaller % total sample

0.05 mm:

0.02 mm: 0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-2 S-12

Report on Soil Sample

Lab number: E090292 Corrected copy: N/A **Report Date:** 4/20/2009 12:55:26

Project: HAMMER STUDY **Number:** WINDSOR Site: RSCH011-703

4/13/2009 Tested by: J. TOUCHETTE **Date sampled: Received:** Tested:

Offset: Hole: GD-3 10 FT **Station:** Depth: to: 12 FT

Field description:

Submitted by: WERNER/GeoDesign Address: Sample type: **SPLIT BARREL** Quantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis Limits **T-88** % Passing

T-265 Moisture content: 12.8% **Total Sample**

T-89 Liquid Limit: 75 mm (3.0"): **T-90 Plastic Limit:** 37.5 mm (1.5"):

T-90 Plasticity Index: NP 19 mm (3/4"):

9.5 mm (3/8"): 90.4% **Moisture Density**

4.75 mm (#4): 85.7% **Test method:** T-180 Method:

2.00 mm (#10): 77.4% Maximum density: pcf

850 μm (#20): 65.4% **Optimum moisture:** 425 μm (#40): 43.0%

T-100 Specific Gravity: 250 μm (#60): 20.2%

150 μm (#100): 14.4% Gr: 22.6% **D2487:** SP-SM 9.8% 75 μm (#200):

M145: A-1-b Sa: 67.5% Gravelly Sand

Si: 9.8% **Hydrometer Analysis**

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-3 S-2

Report on Soil Sample

Project: HAMMER STUDY Number: WINDSOR Site: RSCH011-703

Date sampled: Received: Tested: 4/13/2009 Tested by: J. TOUCHETTE

Station: Offset: Hole: GD-5 Depth: 4 FT to: 6 FT

Field description:

Submitted by:WERNER/GeoDesignAddress:Sample type:SPLIT BARRELQuantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis
T-88 % Passing
Limits

Total Sample T-265 Moisture content: 7.2%

75 mm (3.0"): T-89 Liquid Limit: T-90 Plastic Limit:

37.5 mm (1.5"):

19 mm (3/4"):

T-90 Plasticity Index:

19 mm (3/4"): T-90 Plasticity Index: NP

9.5 mm (3/8"): Moisture Density

4.75 mm (#4): 100.0% **Test method:** T-180 **Method: 2.00 mm** (#10): 100.0%

.500 mm (#10). 100.0 % Maximum density: pcf

850 μm (#20): 425 μm (#40): 99.9% Optimum moisture:

250 μm (#60): 98.3% T-100 Specific Gravity: 150 μm (#100): 84.9%

75 μm (#200): 39.9% Gr: 0.0% D2487: SM
Sa: 60.1% M145: A-4 Silty Sand

Hydrometer Analysis Si: 39.9%

Particles smaller % total sample

0.05 mm:

0.02 mm: 0.005 mm: 0.002 mm: 0.001 mm:

Comments: GD-5 S-3

Report on Soil Sample

Lab number: E090294 Corrected copy: N/A **Report Date:** 4/20/2009 12:55:27

Project: HAMMER STUDY **Number:** WINDSOR Site: RSCH011-703

4/13/2009 Tested by: J. TOUCHETTE **Date sampled: Received: Tested:**

Offset: Hole: GD-5 30 FT **Station:** Depth: to: 32 FT

Field description:

Submitted by: WERNER/GeoDesign Address: Sample type: **SPLIT BARREL** Quantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis Limits **T-88** % Passing

T-265 Moisture content: 9.1% **Total Sample**

T-89 Liquid Limit: 75 mm (3.0"): **T-90 Plastic Limit:** 37.5 mm (1.5"):

T-90 Plasticity Index: NP 19 mm (3/4"):

9.5 mm (3/8"): 98.7% **Moisture Density**

4.75 mm (#4): 97.8% **Test method:** T-180 Method:

2.00 mm (#10): 97.0% Maximum density: pcf

850 μm (#20): 96.6% **Optimum moisture:** 96.4%

425 μm (#40): **T-100 Specific Gravity:** 93.4% 250 μm (#60):

150 μm (#100): 74.5% Gr: 3.0% **D2487:** SM 27.6% 75 μm (#200):

Sa: 69.4% **M145:** A-2-4 Silty Sand

Si: 27.6% **Hydrometer Analysis**

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-5 S-9

Report on Soil Sample

Lab number: E090295 Corrected copy: N/A Report Date: 4/20/2009 12:55:27

Project: HAMMER STUDY Number: WINDSOR Site: RSCH011-703

Date sampled: Received: Tested: 4/13/2009 Tested by: J. TOUCHETTE

Station: Offset: Hole: GD-5 Depth: 50 FT to: 52 FT

Field description:

Submitted by:WERNER/GeoDesignAddress:Sample type:SPLIT BARRELQuantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

T-88

Test Results

Sieve Analysis

% Passing

Limits

Total Sample T-265 Moisture content: 20.6%

75 mm (3.0"):

37.5 mm (1.5"):

T-89 Liquid Limit:

T-90 Plastic Limit:

19 mm (3/4"): T-90 Plasticity Index: NP

9.5 mm (3/8"): Moisture Density

4.75 mm (#4): 100.0% **Test method:** T-180 **Method: 2.00 mm** (#10): 98.1%

.00 mm (#10): 98.1% Maximum density: pcf

850 μm (#20): 96.6%
Optimum moisture:

425 μm (#40): 86.6% T-100 Specific Gravity:

150 μm (#100): 68.4% Gr: 1.9% D2487: SM
75 μm (#200): 47.4% Site Send

Sa: 50.7% M145: A-4 Silty Sand

Hydrometer Analysis Si: 47.4%

Particles smaller % total sample

1 at ticles smaller // total sample

0.05 mm: 0.02 mm:

0.02 11111.

0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-5 S-13a

Report on Soil Sample

Project: HAMMER STUDY Number: WINDSOR Site: RSCH011-703

Date sampled: Received: Tested: 4/13/2009 Tested by: J. TOUCHETTE

Station: Offset: Hole: GD-5 Depth: 50 FT to: 52 FT

Field description:

Submitted by:WERNER/GeoDesignAddress:Sample type:SPLIT BARRELQuantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis
T-88 % Passing
Limits

Total Sample T-265 Moisture content: 31.5%

75 mm (3.0"): T-89 Liquid Limit: T-90 Plastic Limit:

37.5 mm (1.5"):

19 mm (3/4"):

T-90 Plasticity Index: NP

9.5 mm (3/8"): Moisture Density

4.75 mm (#4): 100.0% **Test method:** T-180 **Method:**

2.00 mm (#10): 98.2% Maximum density: pcf

850 μm (#20): 96.9% 425 μm (#40): 95.2% Optimum moisture:

250 μm (#60): 94.0% T-100 Specific Gravity:

150 μm (#100): 91.4% Gr: 1.8% D2487: ML
75 μm (#200): 81.6%

75 μm (#200): 81.6% Sa: 16.6% M145: A-4 Silt

Hydrometer Analysis Si: 81.6%

Particles smaller % total sample

0.05 mm:

0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-5 S-13b

Report on Soil Sample

Lab number: E090296 Corrected copy: N/A Report Date: 4/20/2009 12:55:28

Project: HAMMER STUDY Number: WINDSOR Site: RSCH011-703

Date sampled: Received: Tested: 4/13/2009 Tested by: J. TOUCHETTE

Station: Offset: Hole: GD-7 Depth: 4 FT to: 6 FT

Field description:

Submitted by:WERNER/GeoDesignAddress:Sample type:SPLIT BARRELQuantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis
T-88 % Passing
Limits

Total Sample T-265 Moisture content: 7.7%

75 mm (3.0"):

37.5 mm (1.5"):

T-89 Liquid Limit:

T-90 Plastic Limit:

19 mm (3/4"): T-90 Plasticity Index: NP

9.5 mm (3/8"): Moisture Density

4.75 mm (#4): 100.0% **Test method:** T-180 **Method:**

2.00 mm (#10): 100.0% Maximum density: pcf

850 μm (#20): 99.9% 425 μm (#40): 99.4% Optimum moisture:

250 μm (#60): 84.8% T-100 Specific Gravity:

150 μm (#100): 46.4% Gr: 0.0% D2487: SM
75 μm (#200): 12.8% Gr: 97.2% M145: A 2.4 Sep

Sa: 87.2% M145: A-2-4 Sand

Hydrometer Analysis Si: 12.8%

Particles smaller % total sample

1 at ticles smaller // total sample

0.05 mm: 0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-7 S-3

Report on Soil Sample

Lab number: E090297 Corrected copy: N/A **Report Date:** 4/20/2009 12:55:28

Project: HAMMER STUDY **Number:** WINDSOR Site: RSCH011-703

4/13/2009 Tested by: J. TOUCHETTE **Date sampled: Received: Tested:**

Offset: Hole: GD-7 20 FT **Station:** Depth: to: 22 FT

Field description:

Submitted by: WERNER/GeoDesign Address: Sample type: **SPLIT BARREL** Quantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis Limits

T-88 % Passing **T-265 Moisture content:** 4.6% **Total Sample**

T-89 Liquid Limit: 75 mm (3.0"):

T-90 Plastic Limit: 37.5 mm (1.5"):

T-90 Plasticity Index: NP 19 mm (3/4"):

9.5 mm (3/8"): 96.9% **Moisture Density**

4.75 mm (#4): 93.7% **Test method:** T-180 Method:

2.00 mm (#10): 83.5% Maximum density: pcf 850 μm (#20): 62.6%

Optimum moisture: 425 μm (#40): 34.7%

T-100 Specific Gravity: 250 μm (#60): 13.8%

Gr: 16.5% **D2487:** SP-SM 5.3% 75 μm (#200): Sa: 78.1% **M145:** A-1-b Sand

Si: 5.3% **Hydrometer Analysis**

8.3%

Particles smaller % total sample

0.05 mm: 0.02 mm:

150 μm (#100):

0.005 mm:

0.002 mm: 0.001 mm:

Comments: GD-7 S-8

Report on Soil Sample

Lab number: E090298 Corrected copy: N/A Report Date: 4/20/2009 12:55:29

Project: HAMMER STUDY Number: WINDSOR Site: RSCH011-703

Date sampled: Received: Tested: 4/13/2009 Tested by: J. TOUCHETTE

Station: Offset: Hole: GD-7 Depth: 30 FT to: 32 FT

Field description:

Submitted by:WERNER/GeoDesignAddress:Sample type:SPLIT BARRELQuantity:

Sample source/Outside agency name:

Location used: Examined for: CLASSIFICATION

Comment:

Test Results

Sieve Analysis
T-88 % Passing
Limits

Total Sample T-265 Moisture content: 3.9%

75 mm (3.0"): T-89 Liquid Limit: T-90 Plastic Limit:

37.5 mm (1.5"):

19 mm (3/4"):

T-90 Plasticity Index: NP

9.5 mm (3/8"):

Moisture Density

4.75 mm (#4): 100.0% **Test method:** T-180 **Method:**

2.00 mm (#10): 100.0% Maximum density: pcf

850 μm (#20):

425 μm (#40): 99.9% Optimum moisture:

250 μm (#60): 98.5% T-100 Specific Gravity:

75 μm (#200): 75.7% Gr: 0.0% D2487: SM

Sa: 85.0% M145: A-2-4 Sand

Sa. 65.0% W1145. A-2-4 Sa

Undergrater Analysis

Hydrometer Analysis

Particles smaller % total sample

76.7%

0.05 mm:

150 μm (#100):

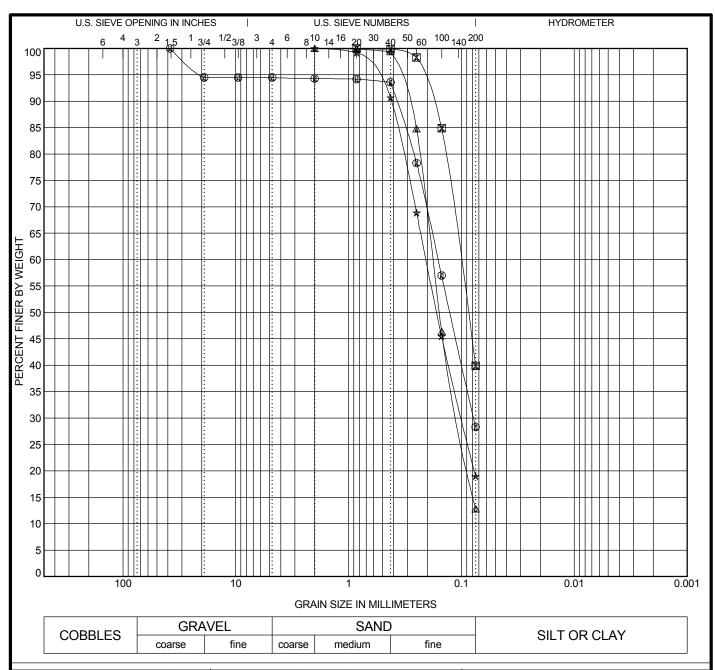
0.02 mm:

0.005 mm:

0.002 mm:

0.001 mm:

Comments: GD-7 S-10


HAMMER STUDY, WINDSOR

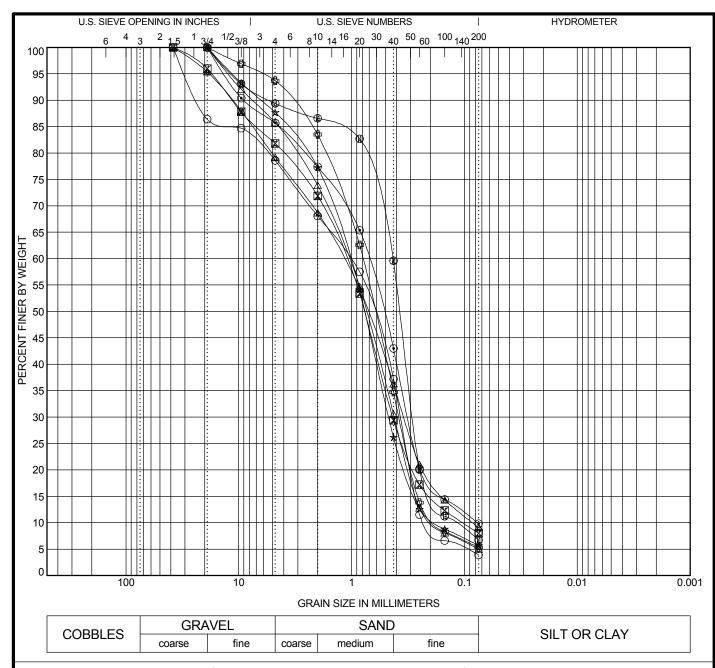
HOLE: GD-8 09/26/2008

DEPTH FT.	SAMPLE #	% MOIST.	CLASS.	DES.	% PASS 1.5"	% PASS 3/4"	% PASS 3/8"	% PASS #4	% PASS #10	% PASS #20	% PASS #40	% PASS #60	% PASS #100	% PASS #200
5-7	1	10.1	A-2-4	Sa					100	99.2	90.7	68.9	45.5	19.0
10-12	2	4.0	A-1-b	Gr Sa	100	86.4	84.7	78.6	68.1	57.5	37.2	11.5	6.6	3.9
15-17	3	3.7	A-1-b	Gr Sa		100	92.1	85.8	73.9	54.7	30.5	12.8	8.1	5.0
20-22	4	4.3	A-1-b	Gr Sa		100	97.8	92.1	77.8	52.8	29.6	13.8	8.2	5.1
25-27	5	4.5	A-1-b	Sa		100	96.1	90.6	80.4	56.7	23.6	13.2	9.1	6.0
30-32	6	7.4	A-2-4	Sa						100	99.2	92.9	62.4	18.4
35-37	7	12.6	A-2-4	Si Sa				100	99.4	92.8	78.2	65.7	48.7	28.0
40-42	8	26.1	A-4	Si		100	97.4	94.9	94.2	93.9	93.9	93.6	91.3	80.0
45-47	9	8.2	A-2-4	Si Sa			100	97.1	96.0	95.3	94.2	82.8	52.7	20.0
50-52	10	23.8	A-4	Si Sa				100	98.6	97.5	93.8	83.2	64.5	41.7

G:/Soils&Foundation/Projects/Hammer Study/Boring Logs/GD-8 samples

				Water									Fines based on %
Bore	ehole No.	Sample No.	Depth (ft)	Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	passing No. 4 sieve
0	B-1B	S2	5.0	18.3	38.1	0.161	0.078		5.5	66.2	28	3.3	29.9
X	GD-5	S3	4.0		0.85	0.102			0.0	60.1	39	9.9	
Δ	GD-7	S3	4.0		2	0.18	0.107		0.0	87.2	12	2.8	
*	GD-8	S1	5.0	10.1	2	0.206	0.1		0.0	81.0	19	9.0	
T													

Note: Upper Silty Fine Sand Strata


54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

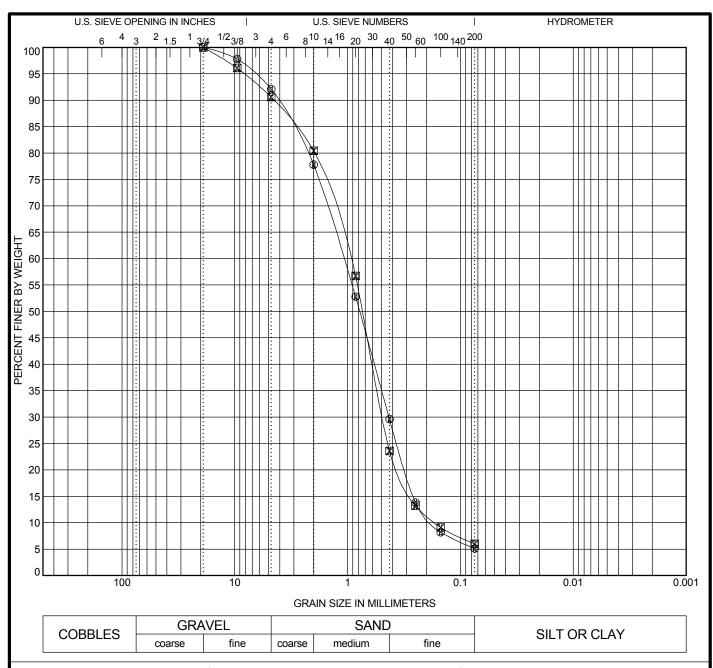
Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS Date:2009 Method: ASTM D6913 (Method A)

Bore	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
€	B-1B	S3	10.0	18	19.05	0.43	0.286	0.125	10.6	82.7	6	.7	7.5
X	B-1B	S4	15.0	10.8	38.1	1.153	0.432	0.104	18.2	73.8	8	.0	9.8
Δ	B-1B	S5	20.0	11.6	38.1	1.193	0.342	0.085	20.8	70.1	9	.1	11.5
*	GD-2	S6	15.0		19	1.054	0.467	0.176	12.3	82.0	5	.7	6.5
•	GD-3	S2	10.0		19	0.719	0.314	0.077	14.3	75.9	9	.8	11.4
D	GD-7	S8	20.0		19	0.797	0.377	0.176	6.3	88.4	5	.3	5.7
0	GD-8	S2	10.0	4.0	38.1	1.04	0.366	0.214	21.4	74.7	3	.9	5.0
Δ	GD-8	S 3	15.0	3.7	19.05	1.076	0.419	0.184	14.2	80.8	5	.0	5.8

Note: Sand & Gravel Strata

750-05.7.GPJ US_LAB.GDT


GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

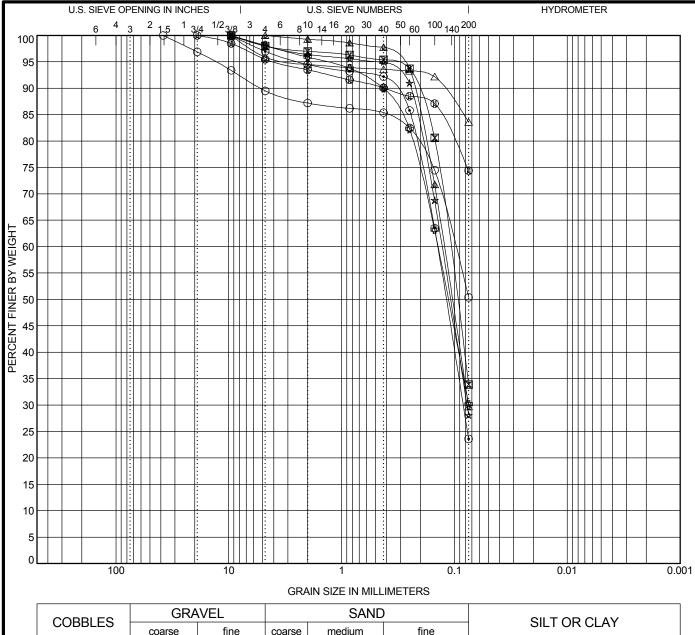
Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS Date:2009 Method: ASTM D6913 (Method A)

Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

Bore	hole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
(D)	GD-8	S4	20.0	4.3	19.05	1.088	0.43	0.177	7.9	87.0	5	.1	5.5
X	GD-8	S5	25.0	4.5	19.05	0.958	0.486	0.168	9.4	84.6	6	.0	6.6

Note: Sand & Gravel Strata


54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

Location: Windsor, VT Number: 750-05.7

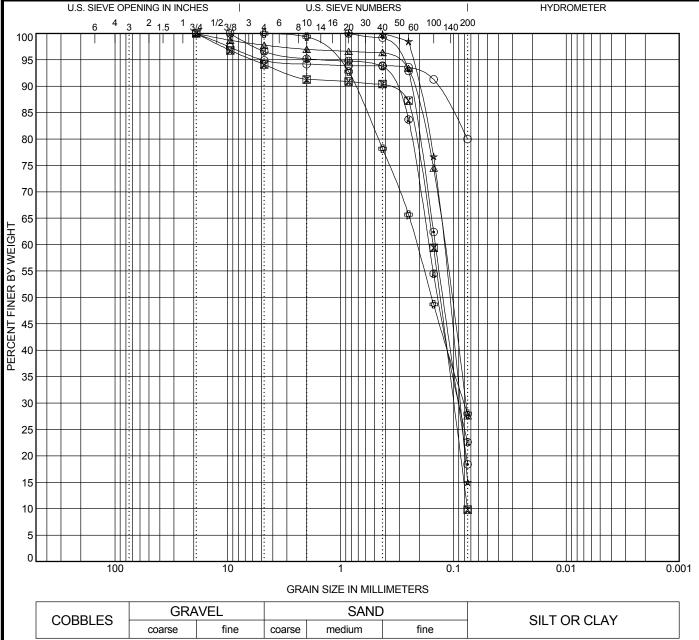
Tested By: VTRANS Reviewed By: VTRANS Date:2009 Method: ASTM D6913 (Method A)

	COBBLES		GRA	VEL			SAND			SILT O	R CLAY	
	COBBLES	coa	rse	fine	coarse	e me	edium	fine		SILTO	K CLAT	
eh∩l	e No. Sample No.	Denth (ft)	Water	D100	Den	しるり	D10	%Gravel	%Sand	0/, Cilt	%Clay	Fines based on

o. Sample No.	Depth (ft	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
3 S6	25.0	26.1	19.05				4.5	21.1	74	.4	77.9
3 S7	27.0	17.3	9.525	0.11			2.0	64.1	33	3.9	34.6
3 S8	29.0	15.3	4.75	0.124	0.075		0.0	70.3	29).7	29.7
3 S9	31.0	19.3	9.525	0.129	0.077		2.0	69.9	28	3.1	28.7
3 S10	33.0	16	9.525	0.141	0.084		3.0	73.4	23	3.6	24.3
3 S11	35.0	14.5	9.525	0.14			1.9	67.9	30).2	30.8
3 S12	37.0	19.9	38.1	0.099			10.5	39.1	50).4	56.3
3 S13	39.0	27.6	9.525				4.1	12.3	83	3.6	87.2
	B S7 B S8 B S9 B S10 B S11 B S12	B S6 25.0 B S7 27.0 B S8 29.0 B S9 31.0 B S10 33.0 B S11 35.0 B S12 37.0	B S6 25.0 26.1 B S7 27.0 17.3 B S8 29.0 15.3 B S9 31.0 19.3 B S10 33.0 16 B S11 35.0 14.5 B S12 37.0 19.9	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 B S8 29.0 15.3 4.75 B S9 31.0 19.3 9.525 B S10 33.0 16 9.525 B S11 35.0 14.5 9.525 B S12 37.0 19.9 38.1	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 0.11 B S8 29.0 15.3 4.75 0.124 B S9 31.0 19.3 9.525 0.129 B S10 33.0 16 9.525 0.141 B S11 35.0 14.5 9.525 0.14 B S12 37.0 19.9 38.1 0.099	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 0.11 B S8 29.0 15.3 4.75 0.124 0.075 B S9 31.0 19.3 9.525 0.129 0.077 B S10 33.0 16 9.525 0.141 0.084 B S11 35.0 14.5 9.525 0.14 B S12 37.0 19.9 38.1 0.099	B S6 25.0 26.1 19.05 B S7 27.0 17.3 9.525 0.11 B S8 29.0 15.3 4.75 0.124 0.075 B S9 31.0 19.3 9.525 0.129 0.077 B S10 33.0 16 9.525 0.141 0.084 B S11 35.0 14.5 9.525 0.14 B S12 37.0 19.9 38.1 0.099	B S6 25.0 26.1 19.05 4.5 B S7 27.0 17.3 9.525 0.11 2.0 B S8 29.0 15.3 4.75 0.124 0.075 0.0 B S9 31.0 19.3 9.525 0.129 0.077 2.0 B S10 33.0 16 9.525 0.141 0.084 3.0 B S11 35.0 14.5 9.525 0.14 1.9 B S12 37.0 19.9 38.1 0.099 10.5	B S6 25.0 26.1 19.05 4.5 21.1 B S7 27.0 17.3 9.525 0.11 2.0 64.1 B S8 29.0 15.3 4.75 0.124 0.075 0.0 70.3 B S9 31.0 19.3 9.525 0.129 0.077 2.0 69.9 B S10 33.0 16 9.525 0.141 0.084 3.0 73.4 B S11 35.0 14.5 9.525 0.14 1.9 67.9 B S12 37.0 19.9 38.1 0.099 10.5 39.1	B S6 25.0 26.1 19.05 4.5 21.1 74 B S7 27.0 17.3 9.525 0.11 2.0 64.1 33 B S8 29.0 15.3 4.75 0.124 0.075 0.0 70.3 29 B S9 31.0 19.3 9.525 0.129 0.077 2.0 69.9 28 B S10 33.0 16 9.525 0.141 0.084 3.0 73.4 23 B S11 35.0 14.5 9.525 0.14 1.9 67.9 30 B S12 37.0 19.9 38.1 0.099 10.5 39.1 50	B S6 25.0 26.1 19.05 4.5 21.1 74.4 B S7 27.0 17.3 9.525 0.11 2.0 64.1 33.9 B S8 29.0 15.3 4.75 0.124 0.075 0.0 70.3 29.7 B S9 31.0 19.3 9.525 0.129 0.077 2.0 69.9 28.1 B S10 33.0 16 9.525 0.141 0.084 3.0 73.4 23.6 B S11 35.0 14.5 9.525 0.14 1.9 67.9 30.2 B S12 37.0 19.9 38.1 0.099 10.5 39.1 50.4

Note: Sand/Silt Strata

54 Main Street Windsor, VT 05089 Telephone: (802) 674-203


Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

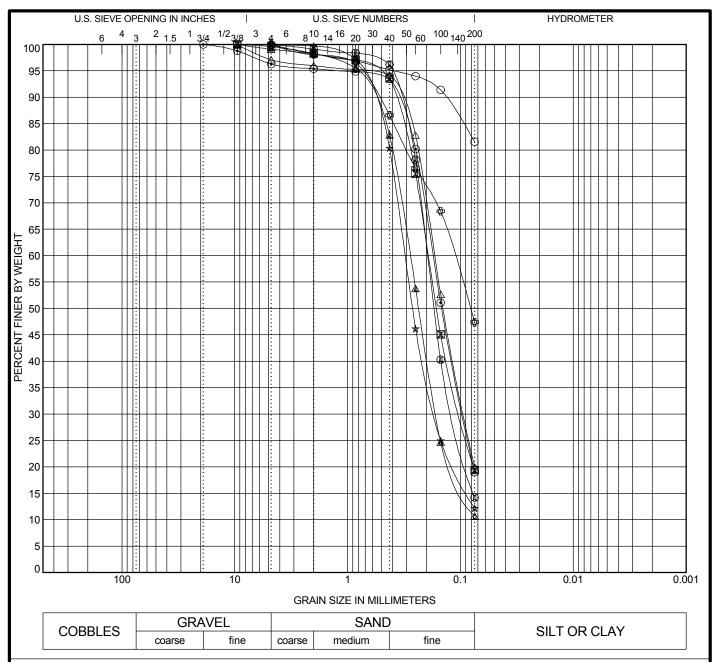
Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS Date: 2009 Method: ASTM D6913 (Method A)

CORRLES	GRA	VEL		SAND		CILT OD CLAV
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAT

Bor	rehole No.	Sample No.	Depth (ft	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
0	B-1B	S14	41.0	21.7	9.525	0.165	0.088		3.4	74.0	22.6		23.4
X	GD-2	S9	30.0		19	0.152	0.099	0.075	5.9	84.3	9	.8	10.4
Δ	GD-5	S9	30.0		19	0.121	0.078		2.2	70.2	27.6		28.2
*	GD-7	S10	30.0		0.85	0.124	0.089		0.0	85.0	15	5.0	
•	GD-8	S6	30.0	7.4	0.85	0.144	0.09		0.0	81.6	18	3.4	
ď.	GD-8	S7	35.0	12.6	4.75	0.211	0.08		0.0	72.0	28	3.0	28.0
0	GD-8	S8	40.0	26.1	19.05				5.1	14.9	80	0.0	84.3

Note: Sand/Silt Strata


54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

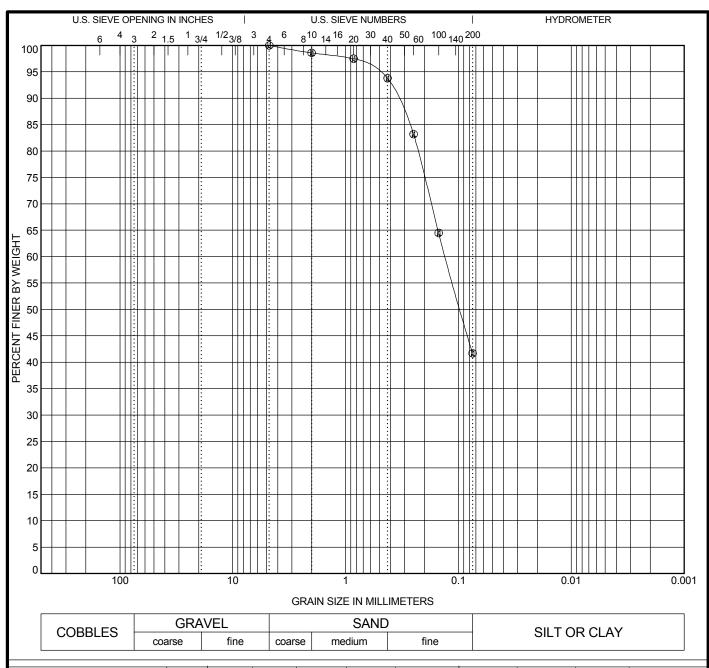
Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS Date:2009 Method: ASTM D6913 (Method A)

				Motor		1			1			1 1	F' b 1 0/
3ore	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 siev
(B-1B	S15	43.0	18.5	9.525	0.196	0.114		0.1	85.7	14	1.2	14.2
X	B-1B	S16	45.0	18.4	9.525	0.193	0.1		0.4	80.2	19	9.4	19.5
Δ	B-1B	S17	47.0	20.4	9.525	0.28	0.165		0.9	88.4	10).7	10.8
*	B-1B	S18	49.0	19.1	4.75	0.31	0.169		0.0	87.8	12	2.2	12.2
⊚	GD-2	S12	45.0		19	0.175	0.095		3.7	77.3	19	9.0	19.7
Ф	GD-5	S13	50.0		4.75	0.114			0.0	52.6	47	7.4	47.4
	GD-5		51.2		4.75				0.0	18.4	81	1.6	81.6
	GD-8	S9	45.0	8.2	9.525	0.17	0.093		2.9	77.1	20	0.0	20.6

Note: Lower Silty Fine Sand Strata

54 Main Street Windsor, VT 05089


Telephone: (802) 674-2033 Fax: (802) 674-5943

GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency

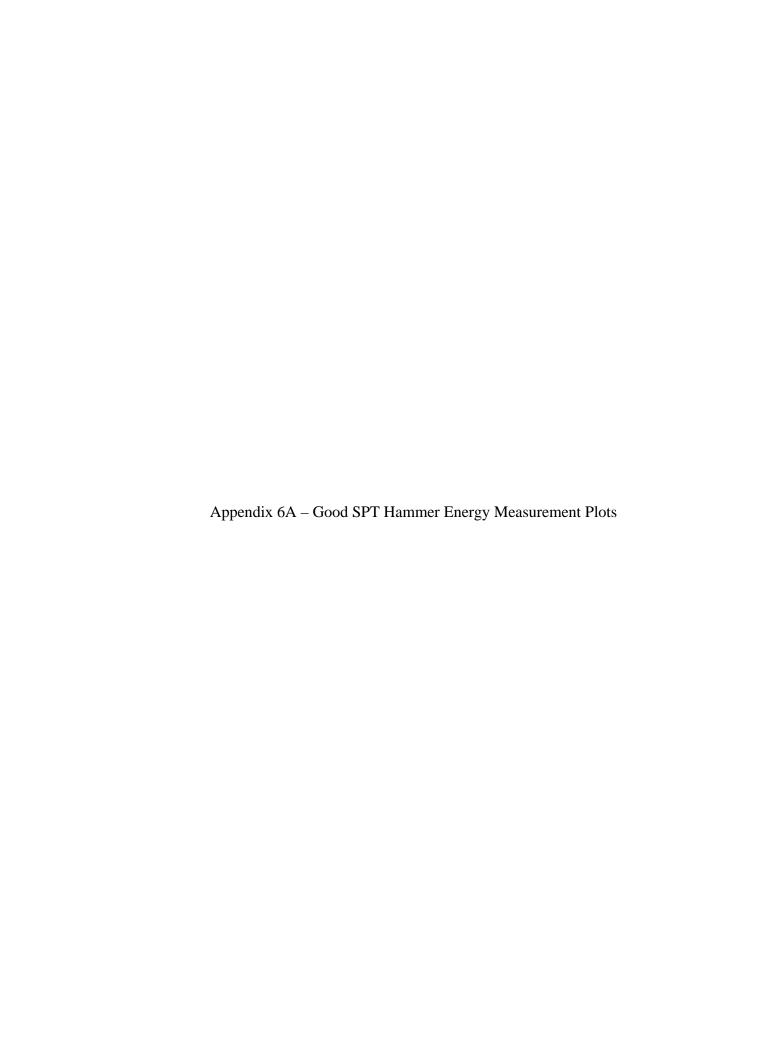
Location: Windsor, VT Number: 750-05.7

Tested By: VTRANS Reviewed By: VTRANS Date: 2009 Method: ASTM D6913 (Method A)

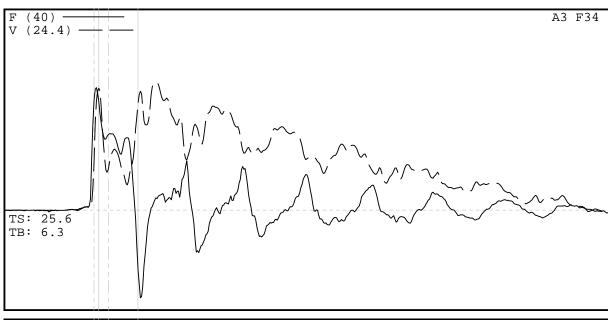
Bor	ehole No.	Sample No.	Depth (ft)	Water Content	D100	D60	D30	D10	%Gravel	%Sand	%Silt	%Clay	Fines based on % passing No. 4 sieve.
(GD-8	S10	50.0	23.8	4.75	0.131			0.0	58.3	41	.7	41.7

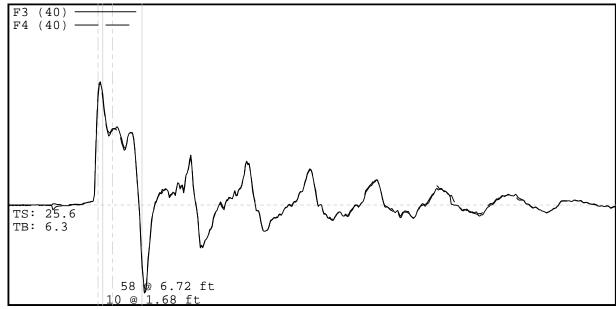
Note: Lower Silty Fine Sand Strata

54 Main Street Windsor, VT 05089 Telephone: (802) 674-2033 Fax: (802) 674-5943


GRAIN SIZE DISTRIBUTION

Project: VTRANS SPT Hammer Efficiency


Location: Windsor, VT Number: 750-05.7


Tested By: VTRANS Reviewed By: VTRANS
Date:2009 Method: ASTM D6913 (Method A)

APPENDIX 6 – EXAMPLE OF SPT ANALYZER FIELD DATA (FORCE – VELOCITY PLOTS)

VTRANS RSCH011-703 GD-2

Project Information

PROJECT: VTRANS RSCH011-703

PILE NAME: GD-2

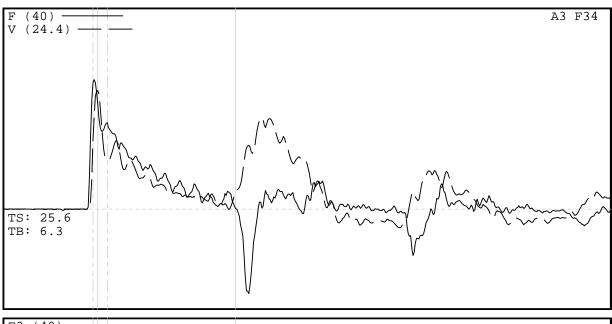
DESCR: 2 INCH SS; CME-45C; VTRANS

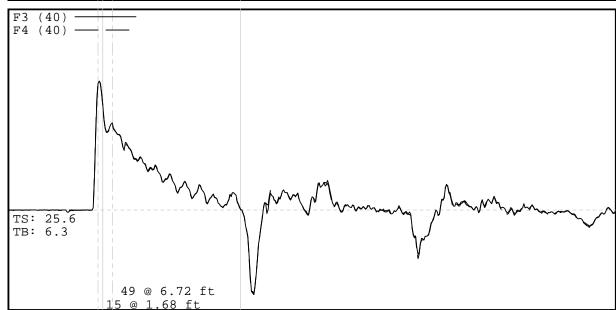
OPERATOR: SPK FILE: GD-2ALL

9/23/2008 1:22:40 PM

Blow Number 1

Pile Properties


LE 13.83 ft AR 0.92 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.7 f/s EA/C 1.6 ksec/ft 2L/C 1.65 ms JC 0.00 [] LP 10.00 ft


Quantity Results

EMX 0.2 k-ft
EF2 0.3 k-ft
ER 0.4 k-ft
ETR 57.0 (%)
FMX 24 kips
VMX 15.5 f/s
DMX 1.89 in
DFN 1.89 in
BPM 0.0 bpm

Sensors

F3: [F1] 220.2 (1) F4: [F2] 219.66 (1) A3: [A1] 330 mv/5000g's (1) CLIP: OK F3/F4: OK 1.04 V1/V2: USE 2 ACCELS VTRANS RSCH011-703 GD-2

Project Information

PROJECT: VTRANS RSCH011-703

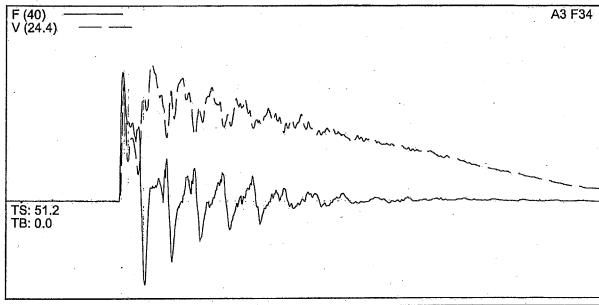
PILE NAME: GD-2

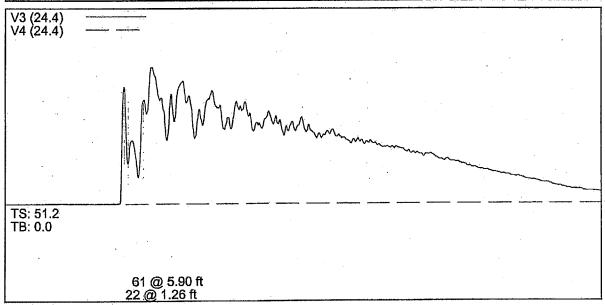
DESCR: 2 INCH SS; CME-45C; VTRANS

OPERATOR: SPK FILE: GD-2ALL

9/24/2008 11:38:39 AM Blow Number 23/186

Pile Properties


LE 48.83 ft AR 0.92 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.7 f/s EA/C 1.6 ksec/ft 2L/C 5.81 ms JC 0.00 [] LP 46.50 ft


Quantity Results

EMX 0.3 k-ft
EF2 0.4 k-ft
ER 0.4 k-ft
ETR 79.2 (%)
FMX 26 kips
VMX 14.3 f/s
DMX 0.73 in
DFN 0.73 in
BPM 57.7 bpm

Sensors

F3: [F1] 220.2 (1) F4: [F2] 219.66 (1) A3: [A1] 330 mv/5000g's (1) CLIP: OK F3/F4: OK 1.01 V1/V2: USE 2 ACCELS VRANS RSCH001-703

Project Information

PROJECT: VRANS RSCH001-703

PILE NAME: GD-5

DESCR: 2 INCH SS; CME75 TRACK; TRANSTECH ER

OPERATOR: SPK FILE: GD-5ALLMod 9/25/2008 10:02:58 AM Blow Number 1

Pile Properties

LE 13.71 ft AF(u.92 in^2

30000 ksi EΜ SP 0.492 k/ft3

WS 16807.7 f/s 1.6 ksec/ft EA/C 2L/C 1.63 ms

JC 0.00[] LP 13.12 ft Quantity Results

EMX 0.2 k-ft

EF2 0.3 k-ft

0.4 k-ft

ETR 63.6 (%)

FMX 26 kips

VMX 17.0 f/s

DMX 3.66 in

DFN 3,66 in

BPM 0.0 bpm

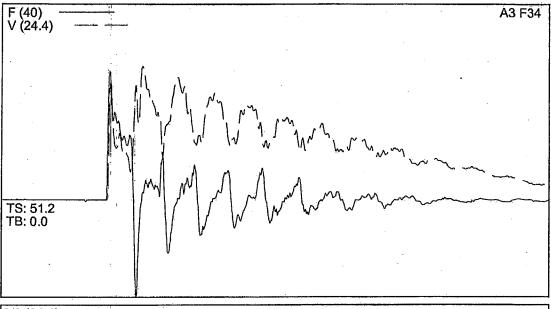
<u>Sensors</u>

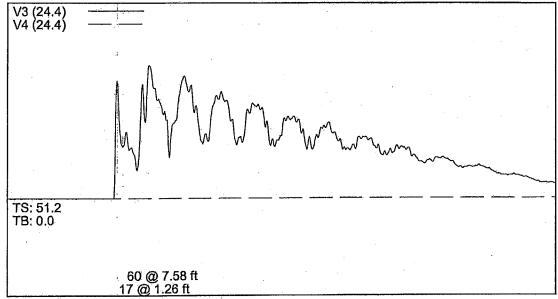
F3: [F1] 220.2 (1)

F4: [F2] 219.66 (1)

A3: [A1] 330 mv/5000g's (1)

CLIP: OK


F3/F4: OK 0.99


V1/V2: USE 2 ACCELS

VRANS RSCH001-703

GD-5

Project Information

PROJECT: VRANS RSCH001-703

PILE NAME: GD-5

DESCR: 2 INCH SS; CME75 TRACK; TRANSTECH ER

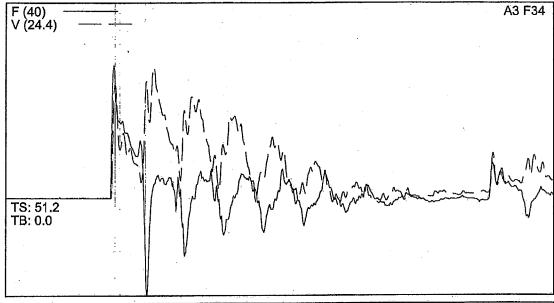
OPERATOR: SPK FILE: GD-5ALLMod 9/25/2008 10:16:52 AM Blow Number 1/7

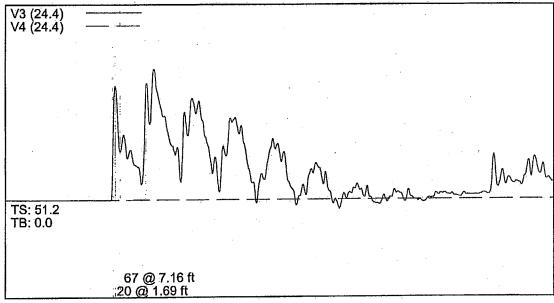
Pile Properties

LE 18.71 ft บ.ระ in^2 AR-EM 30000 ksi SP 0.492 k/ft3 WS 16807.7 f/s EA/C 1.6 ksec/ft 2.22 ms 2L/C [] 00.0 JC LP 15.00 ft

Quantity Results

EMX 0.3 k-ft
EF2 0.4 k-ft
ER 0.4 k-ft
ETR 78.3 (%)
FMX 26 kips
VMX 16.6 f/s
DMX 3.51 in
DFN 3.51 in
BPM 0.0 bpm


<u>Sensors</u>


F3: [F1] 220.2 (1) F4: [F2] 219.66 (1) A3: [A1] 330 mv/5000g's (1) CLIP: OK F3/F4: OK 1.03 V1/V2: USE 2 ACCELS

VRANS RSCH001-703

GD-5

Project Information

PROJECT: VRANS RSCH001-703

PILE NAME: GD-5

DESCR: 2 INCH SS; CME75 TRACK; TRANSTECH ER

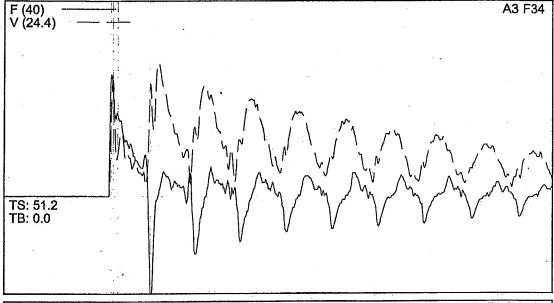
OPERATOR: SPK FILE: GD-5ALLMod 9/25/2008 10:28:53 AM Blow Number 2/29

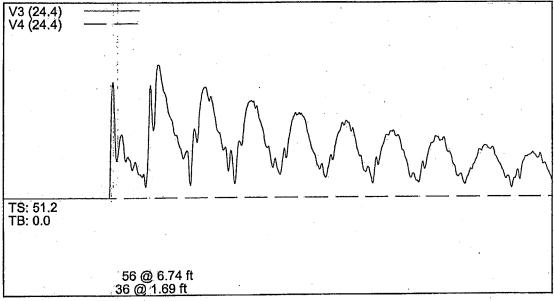
Pile Properties

LE 23.75 ft 0.92 in^2 AR EM 30000 ksi 0.492 k/ft3 SP WS 16807.7 f/s EA/C 1.6 ksec/ft 2.81 ms 2L/C 0.00 [] JĊ LP 20.50 ft

Quantity Results

EMX 0.3 k-ft
EF2 0.4 k-ft
ER 0.4 k-ft
ETR 83.8 (%)
FMX 27 kips
VMX 16.2 f/s
DMX 1.78 in
DFN 1.78 in
BPM 43.9 bpm


<u>Sensors</u>


F3: [F1] 220.2 (1) F4: [F2] 219.66 (1) A3: [A1] 330 mv/5000g's (1) CLIP: OK F3/F4: OK 1.00 V1/V2: USE 2 ACCELS

VRANS RSCH001-703

GD-5

Project Information

PROJECT: VRANS RSCH001-703

PILE NAME: GD-5

DESCR: 2 INCH SS; CME75 TRACK; TRANSTECH ER

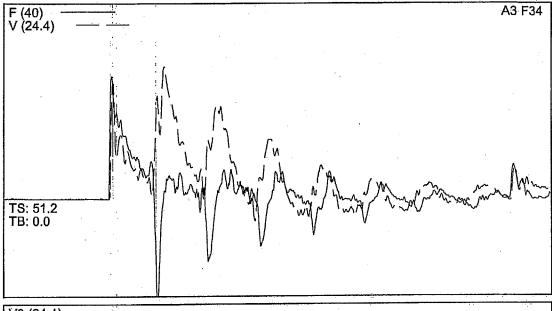
OPERATOR: SPK FILE: GD-5ALLMod 9/25/2008 10:40:30 AM Blow Number 1/47

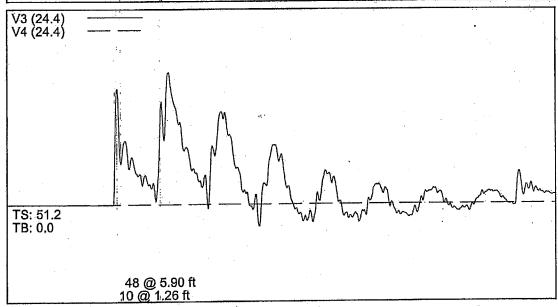
Pile Properties

LE 28.71 ft ΔR 0,92 in^2 EΜ 30000 ksi 0.492 k/ft3 SP WS 16807.7 f/s EA/C 1.6 ksec/ft 2L/C 3.41 ms JC 0.00[] 25,00 ft LP

Quantity Results

EMX 0.3 k-ft
EF2 0.3 k-ft
ER 0.4 k-ft
ETR 74.0 (%)
FMX 25 kips
VMX 16.6 f/s
DMX 3.11 in
DFN 3.11 in
BPM 0.0 bpm


<u>Sensors</u>


F3: [F1] 220.2 (1)
F4: [F2] 219.66 (1)
A3: [A1] 330 mv/5000g's (1)
CLIP: OK
F3/F4: OK 0.98
V1/V2: USE 2 ACCELS

VRANS RSCH001-703

GD-5

Project Information

PROJECT: VRANS RSCH001-703

PILE NAME: GD-5

DESCR: 2 INCH SS; CME75 TRACK; TRANSTECH ER

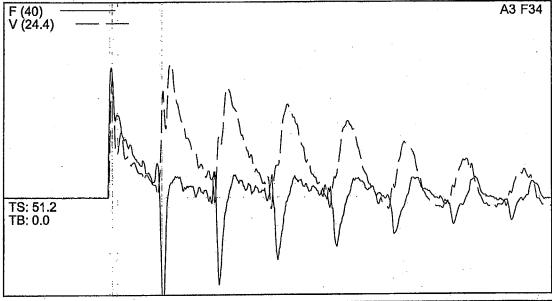
OPERATOR: SPK FILE: GD-5ALLMod 9/25/2008 10:52:39 AM Blow Number 1/55

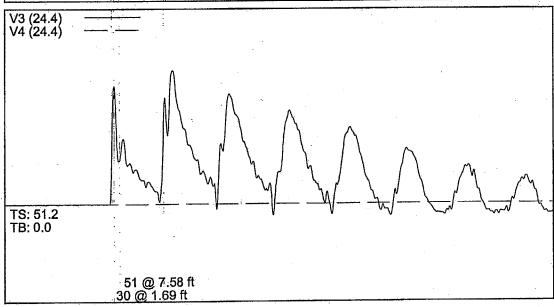
Pile Properties

LE 33.71 代 AR 0:92 in^2 EΜ 30000 ksi 0.492 k/ft3 SP WS 16807.7 f/s 1.6 ksec/ft EA/C 2L/C 4.00 ms 0.00[] JC LP 30.00 ft

Quantity Results

EMX 0.3 k-ft
EF2 0.4 k-ft
ER 0.4 k-ft
ETR 77.8 (%)
FMX 25 kips
VMX 16.4 f/s
DMX 1.22 in
DFN 1.22 in
BPM 0.0 bpm


<u>Sensors</u>


F3: [F1] 220.2 (1)
F4: [F2] 219.66 (1)
A3: [A1] 330 mv/5000g's (1)
CLIP: OK
F3/F4: OK 1.01
V1/V2: USE 2 ACCELS

VRANS RSCH001-703

GD-5

Project Information

PROJECT: VRANS RSCH001-703

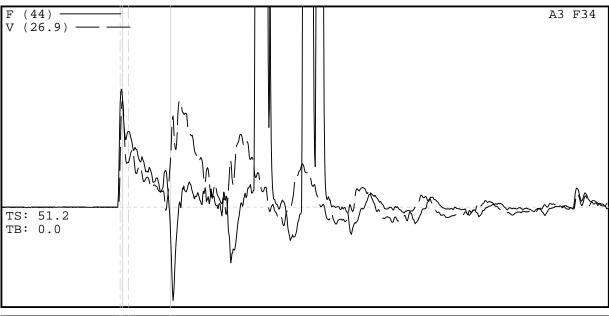
PILE NAME: GD-5

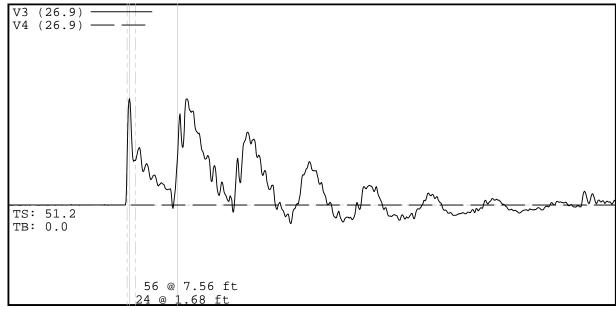
DESCR: 2 INCH SS; CME75 TRACK; TRANSTECH ER

OPERATOR: SPK FILE: GD-5ALLMod 9/25/2008 11:06:22 AM Blow Number 1/89

Pile Properties

LE 38.70 ft AR. -6.92 in^2 ΕM 30000 ksi 0.492 k/ft3 SP WS 16807.7 f/s 1.6 ksec/ft EA/C 2L/C 4.59 ms JC 0.00[] LP 35.00 ft


Quantity Results


EMX 0.3 k-ft
EF2 0.4 k-ft
ER 0.4 k-ft
ETR 84.8 (%)
FMX 27 kips
VMX 16.6 f/s
DMX 1.96 in
DFN 1.94 in
BPM 0.0 bpm

<u>Sensors</u>

F3: [F1] 220.2 (1)
F4: [F2] 219.66 (1)
A3: [A1] 330 mv/5000g's (1)
CLIP: OK
F3/F4: OK 0.99
V1/V2: USE 2 ACCELS

Project Information

PROJECT: VTRANS RSCH011-703

PILE NAME: GD-2

DESCR: 2 INCH SS; CME-45C; VTRANS

OPERATOR: SPK FILE: GD-2ALL 9/24/2008 9:36:26 AM Blow Number 6/100

Pile Properties

LE 33.83 ft AR 0.92 in^2 ΕM 30000 ksi SP 0.492 k/ft3 WS 16807.7 f/s EA/C 1.6 ksec/ft 2L/C 4.03 ms JC 0.00 [] LP 30.50 ft

Quantity Results

EMX 0.8 k-ft FMX 72 kips DMX 0.92 in DFN 0.86 in CSX 78.7 ksi CSB 58.6 ksi RX5 kips RX6 kips RX7 kips

<u>Sensors</u>

F3: [F1] 220.2 (1) F4: [F2] 219.66 (1) A3: [A1] 330 mv/5000g's (1) CLIP: F3 F3/F4: OK 1.00 V1/V2: USE 2 ACCELS

GeoDesign, Inc.

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	ВРМ	Recorded hammer blows	Analyzed hammer blows	N	C _E	N60	60 A	ETR Average	C _E Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)							(%)		(ft)	
											All	Average Std.Dev.	0.297 0.017	0.377 0.032	0.350 0.000	85.0 4.9	27.4 0.3	52.6 3.2	257	215	14	1.4	20)				
											depths	Maximum	0.331	0.423	0.350	94.5	28.2	53.8	45	45	22	1.6	35		85.0	1.4	43.8	cohesionless soil
								Miller				Minimum Average	0.222	0.281	0.350	63.6 71.2	26.5 27.1	26.7 52.8	13 13	13 13	5 5	1.1	6					
Automatic Hammer -	CME 55 -	356675	AWJ	4 inch HW	Vtrans	Glenn Porter	Shawn	Construction	9/23/2008 10:00	GD-1	10'-12'	Std.Dev.	0.014	0.002	0.000	4.1	0.2	0.2										Fine to Medium Sand and Gravel
CME	Track			Casing	1		Kelley	Yard, Windsor, VT	0,20,2000 10100		-0 .2	Maximum Minimum	0.272 0.222	0.288 0.281	0.350 0.350	77.7 63.6	27.5 26.8	53.0 52.5	13 13	13 13	<u>5</u>	1.3 1.1	6 5	_				Time to incularit cand and craver
												Average	0.278	0.332	0.350	79.3	27.4	52.9	18	18	9	1.3	12	2				
											15'-17'	Std.Dev. Maximum	0.013 0.292	0.002 0.337	0.000	3.8 83.5	0.2 27.8	0.1 53.1	18	18	9	1.4	13	3				Fine to Medium Sand and Gravel
												Minimum	0.254	0.328	0.350	72.6	26.7	52.7	18	18	9	1.2	11	_				
											20'-22'	Average Std.Dev.	0.299 0.010	0.360 0.004	0.350	85.3 2.7	27.1 0.2	53.4 0.2	30	30	18	1.4	26	0				Fine to Medium Sand and Gravel
											20-22	Maximum Minimum	0.319 0.277	0.370 0.352	0.350 0.350	91.1 79.2	27.4 26.7	53.7 53.1	30 30	30 30	18 18	1.5 1.3	27 24					Tille to Medium Sand and Graver
												Average	0.296	0.384	0.350	84.6	27.2	53.1	18	18	6	1.4	8	_				
				spin and							∦ ⊦	Std.Dev.	0.011	0.007	0.000	3.0	0.1	0.2								ETR		
				wash ahead with roller bit							25'-27'															Average		Silty Fine Sand
				with roller bit								Maximum Minimum	0.330 0.286	0.407 0.376	0.350 0.350	94.2 81.8	27.6 26.9	53.3 52.8	18 18	18 18	<u>6</u>	1.6 1.4	9			(>30') (%)		
												Average	0.300	0.398	0.350	85.8	27.6	53.1	30	31	15	1.4	21			(,-,		
											30'-32'	Std.Dev. Maximum	0.004	0.005 0.408	0.000	1.1 88.3	0.2 27.9	0.1 53.3	30	31	15	1.5	22	2				Silty Fine Sand
											<u> </u>	Minimum	0.294	0.389	0.350	84.1	27.1	52.7	30	31	15	1.4	21	1		87.5		
												Average Std.Dev.	0.312	0.408 0.007	0.350	89.2 1.2	27.6 0.2	49.6 9.3	37	18	19	1.5	28	3				
											35'-37'	Maximum	0.320	0.423	0.350	91.3	28.2	53.8	37	18	19	1.5	29					Silty Fine Sand
												Minimum Average	0.305 0.316	0.398	0.350	87.1 90.1	27.2 27.5	26.7 53.2	37 26	18 25	19 11	1.5 1.5	28 17	_				
											40'-42'	Std.Dev.	0.005	0.014	0.000	1.4	0.1	0.2										Silty Fine Sand
												Maximum Minimum	0.331	0.416 0.361	0.350 0.350	94.5 87.1	27.8 27.1	53.6 52.8	26 26	25 25	11 11	1.6 1.5	17 16					J, J
												Average	0.305	0.389	0.350	87.3	27.3	50.7	40	17	20	1.5	29	9				
											45'-47'	Std.Dev. Maximum	0.005 0.313	0.010 0.411	0.000	1.4 89.5	0.3 27.7	6.5 53.7	40	17	20	1.5	30)				Fine Sand
												Minimum	0.295	0.373	0.350	84.3	26.7	30.4	40	17	20	1.4	28	3				
											501 501	Average Std.Dev.	0.298	0.391 0.006	0.350	85.2 1.5	27.4 0.3	52.8 0.2	45	45	22	1.4	31	1				501
											50'-52'	Maximum Minimum	0.310 0.286	0.404 0.372	0.350 0.350	88.4 81.7	27.9 26.5	53.2 52.3	45 45	45 45	22 22	1.5 1.4	32 30					Fine Sand
												Average	0.271	0.372	0.350	77.4	25.5	59.8	245	211	14	1.3	18					
											All	Std.Dev. Maximum	0.018 0.302	0.026 0.399	0.000 0.350	5.0 86.4	0.5 26.8	1.8 63.6	35	34	20	1.4	29	2	77.4	1.3	47.0	cohesionless soil
											depths	Minimum	0.302	0.399	0.350	60.6	22.9	55.8	14	12	7	1.0	7					
Automatic	CME 45C			3 1/4" HSA		Howard	Shawn	Miller Construction			-	Average	0.237 0.023	0.287 0.006	0.350	67.7 6.5	25.4 0.3	59.3 1.1	20	13	9	1.1	10)				
Hammer - CME	skid rig on trailer	277564	AWJ	with auger plug	Vtrans	Howard Garrow	Kelley	Yard, Windsor,	9/23/2008 12:25	GD-2	10'-12'	Std.Dev. Maximum	0.023	0.299	0.350	82.9	25.8	60.5	20	13	9	1.4	12	2				Fine to Medium Sand and Gravel
CIVIL	trailer			plug				VT				Minimum Average	0.212 0.250	0.280	0.350	60.6 71.3	24.7 25.9	55.9 62.1	20 32	13 29	9 18	1.0	9 21	_				
											15'-17'	Std.Dev.	0.006	0.005	0.000	1.8	0.2	0.2	32	29	10	1.2	21	<u>'</u>				Fine to Medium Sand and Gravel
											13-17	Maximum Minimum	0.264 0.239	0.335 0.312	0.350 0.350	75.3 68.1	26.2 25.3	62.6 61.8	32 32	29 29	18 18	1.3 1.1	23 20					Time to Medium Sand and Graver
												Average	0.278	0.351	0.350	79.5	25.8	61.9	31	28	16	1.3	21					
											20'-22'	Std.Dev. Maximum	0.011	0.006 0.369	0.000	3.2 85.4	0.4 26.8	0.3 62.8	31	28	16	1.4	23	3				Fine to Medium Sand and Gravel
											-	Minimum	0.259	0.339	0.350	74.0	25.2	61.3	31	28	16	1.2	20					
												Average Std.Dev.	0.269	0.360 0.008	0.350	76.9 2.0	26.0 0.3	61.1 0.5	14	12	7	1.3	9	1				
				n/a							25'-27'	Maximum	0.288	0.376	0.350	82.3	26.5	62.3	14	12	7	1.4	10					Silty Fine Sand
				11/4								Minimum	0.262	0.353	0.350	74.7	25.5	60.3	14	12	7	1.2	9	_		ETR		
																	·									Average		
											30'-32'	Average Std.Dev.	0.270 0.004	0.370 0.005	0.350	77.1 1.0	25.8 0.3	60.3 1.4	28	15	14	1.3	18	3		(>30') (%)		Silty Fine Sand
												Maximum	0.277	0.383	0.350	79.2	26.1	62.2	28	15	14	1.3	18					
											 	Minimum Average	0.265 0.288	0.363	0.350	75.8 82.2	25.2 24.9	55.8 59.2	28 27	15 26	14 15	1.3	18 21	_		79.6		
											35'-37'	Std.Dev.	0.006	0.004	0.000	1.6	0.5	0.3										Silty Fine Sand
												Maximum Minimum	0.298 0.278	0.381 0.361	0.350 0.350	85.3 79.4	25.7 23.9	60.1 58.8	27 27	26 26	15 15	1.4	21 20					- ,
											<u> </u>	Average	0.283	0.378	0.350	80.9	25.5	60.2	24	23	8	1.3	11					
											40'-42'	Std.Dev. Maximum	0.006 0.302	0.007 0.399	0.000	1.7 86.4	0.3 26.2	0.5 61.5	24	23	8	1.4	12	2				Silty Fine Sand
											<u> </u>	Minimum	0.274	0.367	0.350	78.4	24.9	59.4	24	23	8	1.3	10)				
											<u> </u>	Average Std.Dev.	0.277	0.363 0.006	0.350	79.2 1.6	25.8 0.3	57.8 0.6	34	31	18	1.3	24	4				<u>_</u>
											45'-47'	Maximum	0.291	0.380	0.350	83.3	26.6	60.4	34	31	18	1.4	25					Fine Sand
											 	Minimum Average	0.269 0.275	0.355 0.362	0.350	76.8 78.6	25.3 25.3	57.1 57.4	34 35	31 34	18 20	1.3	23 26					
											50'-52'	Std.Dev.	0.005	0.006	0.000	1.3	0.3	0.6										Fine Sand
											· · · -	Maximum Minimum	0.286 0.265	0.376 0.346	0.350 0.350	81.7 75.8	25.8 24.7	59.0 56.1	35 35	34 34	20	1.4	27 25					
		<u> </u>	<u> </u>				<u> </u>	<u> </u>			<u> </u>	Minimum	0.265	0.346	0.350	75.8	24.7	56.1	35	34	20	1.3	25	5				<u> </u>

1 of 6

Printed on: 1/10/10

GeoDesign, Inc.

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	ВРМ	Recorded hammer blows	Analyzed hammer blows	N	C _E	N60	ETR Average	C _E Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)						(%)		(ft)	
											()	Average	0.306	0.364	0.350	87.4	42.2	53.6	212	205	15	1.5	21	(**/		()	
											All depths	Std.Dev. Maximum	0.019	0.031 0.420	0.000	5.4 94.9	2.3 47.1	0.2 53.9	51	44	25	1.6	40	87.4	1.5	none	cohesionless soil
											deptilis	Minimum	0.332	0.420	0.350	64.4	39.0	53.0	8	8	4	1.1	40				
Automatic								Miller				Average	0.248	0.280	0.350	70.8	40.7	53.2	8	8	4	1.2	5				
Hammer -	CME 55 - Track	356675	NWJ	4 inch HW Casing	Vtrans	Glennn Porter	Shawn Kelley	Construction Yard, Windsor,	9/24/2008 9:45	GD-3	5'-7'	Std.Dev. Maximum	0.018 0.274	0.004 0.284	0.000 0.350	5.2 78.3	0.4 41.4	0.1 53.3	8	8	4	1.3	5				Fine Sand
CME	Hack			Casing		Foitei	Reliey	VT				Minimum	0.225	0.270	0.350	64.4	40.2	53.0	8	8	4	1.1	4	1			
												Average	0.284	0.319	0.350	81.2	41.3	53.5	23	23	13	1.4	18	1			
											10'-12'	Std.Dev. Maximum	0.015 0.327	0.006 0.332	0.000 0.350	4.3 93.5	0.6 42.3	0.1 53.7	23	23	13	1.6	20				Fine to Medium Sand and Gravel
												Minimum	0.266	0.332	0.350	76.1	39.9	53.3	23	23	13	1.3	16	1			
												Average	0.304	0.349	0.350	86.8	41.8	53.5	33	34	16	1.4	23				
											15'-17'	Std.Dev. Maximum	0.008	0.006 0.370	0.000 0.350	2.2 93.4	0.6 43.1	0.2 53.8	33	34	16	1.6	25	-			Fine to Medium Sand and Grave
												Minimum	0.282	0.338	0.350	80.5	40.5	53.2	33	34	16	1.3	21	1			
				spin and								Average	0.308	0.363	0.350	88.0	39.8	53.6	34	33	17	1.5	25				
				wash ahead							20'-22'	Std.Dev. Maximum	0.009	0.006 0.372	0.000 0.350	2.5 94.6	0.6 41.3	0.1 53.9	34	33	17	1.6	27				Fine to Medium Sand and Grave
				with roller bit								Minimum	0.293	0.372	0.350	83.7	39.0	53.3	34	33	17	1.4	24	1			
												Average	0.307	0.374	0.350	87.8	41.6	53.7	22	22	8	1.5	12				
											25'-27'	Std.Dev. Maximum	0.005 0.317	0.009	0.000 0.350	1.5 90.6	1.0 43.3	0.1 53.9	22	22	8	1.5	12				Silty Fine Sand
												Minimum	0.297	0.358	0.350	85.0	39.6	53.4	22	22	8	1.4	11				
																								1	ETR		
												Δυοτοσο	0.307	0.371	0.350	87.7	41.0	53.6	44	41	19	1.5	28		Average		
											30'-32'	Average Std.Dev.	0.307	0.371	0.000	2.5	41.0 0.5	0.2	41	41	19	1.3	∠6	1	(>30') (%)		Silty Fine Sand
												Maximum	0.329	0.384	0.350	94.1	42.2	53.9	41	41	19	1.6	30				
												Minimum	0.290	0.333	0.350	82.9	39.8	53.2	41	41	19	1.4	26		90.5		
												Average Std.Dev.	0.327	0.404	0.350	93.3 0.9	46.3 0.5	53.5 0.1	51	44	25	1.6	39				
											32'-34'	Maximum	0.332	0.420	0.350	94.9	47.1	53.8	51	44	25	1.6	40				Silty Fine Sand
												Minimum	0.318	0.383	0.350	90.8	44.6	53.4	51	44	25	1.5	38		1	1	
											All	Average Std.Dev.	0.232	0.267 0.049	0.350	66.3 7.7	19.2 1.3	31.1 3.4	292	289	16	1.1	17	-			
											depths	Maximum	0.288	0.357	0.350	82.4	21.8	39.1	44	44	24	1.4	33	66.3	1.1	42.0	cohesionless soil
								NA:U				Minimum	0.140	0.128	0.350	40.0	15.0	19.4	9	5	4	0.7	3				
Safety	CME 45C			3 1/4" HSA	1.6	Howard	Shawn	Miller Construction	0/04/0000 40 00	05.4		Average Std.Dev.	0.204	0.165 0.012	0.350	58.3 9.4	18.5 0.8	30.1 1.8	10	10	4	1.0	4	1			- · ·
Hammer	skid rig on trailer	277564	AWJ	with auger plug	Vtrans	Garrow	Kelley	Yard, Windsor,	9/24/2008 13:30	GD-4	5'-7'	Maximum	0.273	0.184	0.350	78.0	19.8	32.9	10	10	4	1.3	5	1			Fine Sand
	tranoi			piug				VT				Minimum	0.158	0.144	0.350	45.0	17.1 16.9	27.5	10	10	14	0.8	3	4			
											401.401	Average Std.Dev.	0.194 0.019	0.173 0.019	0.350	55.5 5.6	0.9	20.2 0.6	25	25	14	0.9	13				Fig. 1. Ma Fig. Oct. Land Oct.
											10'-12'	Maximum	0.224	0.205	0.350	64.1	18.2	20.8	25	25	14	1.1	15	1			Fine to Medium Sand and Grave
												Minimum	0.140 0.199	0.128	0.350 0.350	40.0 56.8	15.0 19.1	19.4 24.8	25 9	25 5	14	0.7	9 5				
												Average Std.Dev.	0.199	0.237 0.021	0.000	5.4	0.9	24.6	9	5	5	0.9	3				
											15'-17'	Maximum	0.220	0.263	0.350	63.0	20.1	27.0	9	5	5	1.0	5	1			Fine to Medium Sand and Grave
												Minimum	0.174 0.216	0.209	0.350	49.6	17.7	21.2	9 40	5 40	5	0.8	4	4			
				,								Average Std.Dev.	0.216	0.237 0.018	0.350	61.7 5.2	18.2 0.7	29.6 2.9	40	40	21	1.0	22	1			
				n/a							20'-22'	Maximum	0.252	0.280	0.350	72.1	19.8	34.0	40	40	21	1.2	25	1			Fine to Medium Sand and Grave
												Minimum	0.172		0.350 0.350	49.2 66.0	16.9 18.9	19.5 34.9	40 30	40 30	21 16	0.8 1.1	17	4			
											051.071	Average Std.Dev.	0.231	0.255 0.024	0.000	6.3	1.0	1.7	30	30	10	1.1	18				011/251220221
											25'-27'	Maximum	0.281	0.300	0.350	80.3	20.9	39.1	30	30	16	1.3	21	1			Silty Fine Sand
												Minimum	0.190	0.208	0.350	54.3	16.9	31.7	30	30	16	0.9	14	4	۸	1	
												Average	0.237	0.278	0.350	67.7	18.9	31.0	34	35	18	1.1	20		Average (>30')		
											30'-32'	Std.Dev.	0.025	0.027	0.000	7.1	0.9	2.7						1	(%)		Silty Fine Sand
												Maximum Minimum	0.279	0.329 0.220	0.350 0.350	79.7 54.4	20.6 16.4	36.5 22.3	34 34	35 35	18 18	1.3 0.9	24 16	1	60.2		
												Average	0.190	0.220	0.350	70.3	19.8	30.5	37	37	23	1.2	27	1	69.2	ı	
											35'-37'	Std.Dev.	0.016	0.018	0.000	4.6	0.6	4.0						1			Silty Fine Sand
											30.07	Maximum Minimum	0.280 0.206	0.335 0.243	0.350 0.350	80.1 58.9	20.9 17.9	36.0 19.7	37 37	37 37	23 23	1.3	31 23	1			City i ino Sand
												Average	0.206	0.243	0.350	65.7	17.9	32.2	25	25	11	1.1	12	1			
											40'-42'	Std.Dev.	0.021	0.024	0.000	5.9	0.8	3.2						1			Silty Fine Sand
												Maximum Minimum	0.288 0.193	0.342	0.350 0.350	82.4 55.2	21.1 17.8	35.7 24.7	25 25	25 25	11 11	1.4 0.9	15 10	1			Sity i life Sand
												Average	0.193	0.236 0.305	0.350	70.9	204.0	31.0	44	44	24	1.2	28	1			
											45'-47'	Std.Dev.	0.020	0.028	0.000	5.8	0.9	2.3						1			Fine Sand
											75.747	Maximum Minimum	0.286	0.357	0.350	81.8 47.1	21.8	35.7	44 44	44 44	24	1.4	33	1			i ilie Gallu
												Average	0.165 0.251	0.201	0.350 0.350	71.6	16.3 20.4	22.4 31.1	38	38	24 21	0.8 1.2	19 25	1			
											50'-52'	Std.Dev.	0.016	0.021	0.000	4.7	0.7	2.6						1			Fine Sand
											30-32	Maximum Minimum	0.279	0.351 0.272	0.350 0.350	79.7 61.8	21.7	34.2	38	38	21 21	1.3 1.0	28 22	4			i ilie Saliu
II.	l.											iviiriittiutti	U.Z.10	0.272	0.350	01.0	19.0	23.2	38	38	- 21	1.0	- 22				

2 of 6 Printed on: 1/10/10

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	ВРМ	Recorded hammer blows	Analyzed hammer blows	N	C _E	N60	ETR Average	C _E Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)						(%)		(ft)	
												Average	0.294	0.388	0.350	84.0	26.6	51.3	169	173	10	1.4	14	. ,			
											All depths	Std.Dev. Maximum	0.018	0.027 0.437	0.000 0.350	5.3 95.4	0.7 27.8	5.9 58.6	32	34	16	1.6	25	84.0	1.4	48.0	cohesionless soil
												Minimum	0.213	0.296	0.350	60.9	24.8	33.4	6	6	3	1.0	3				
Automatic	CME 75 -			4 1/4" HSA		John	Shawn	Miller Construction				Average Std.Dev.	0.249	0.307	0.350	71.1 6.6	26.1 0.3	45.9 1.0	10	6	5	1.2	6	4			
Hammer - CME	track	200587	AWJ	with auger plug	Transtech	Leonhardt	Kelley	Yard, Windsor,	9/25/2008 9:50	GD-5	10'-12'	Maximum	0.276	0.312	0.350	78.8	26.4	47.2	10	6	5	1.3	7	1			Fine Sand
02				piag				VT				Minimum Average	0.213	0.296	0.350 0.350	60.9 86.3	25.4 26.6	44.3 55.7	10 15	6 21	<u>5</u>	1.0	5 10	4			
											15'-17'	Std.Dev.	0.019	0.012	0.000	5.4	0.4	1.3	10	21	,	1.4	10				Fine Sand
											10 17	Maximum Minimum	0.334 0.256	0.382 0.337	0.350 0.350	95.4 73.2	27.4 25.7	56.7 51.8	15 15	21 21	7	1.6 1.2	11 9	4			Tillo Galla
												Average	0.291	0.380	0.350	83.1	27.4	53.4	20	18	12	1.4	17	1			
											20'-22'	Std.Dev. Maximum	0.012	0.011	0.000	3.4	0.5 27.8	2.4	20	40	40	4.5	40				Fine to Medium Sand and Gravel
												Minimum	0.317 0.260	0.392 0.341	0.350 0.350	90.4 74.2	25.7	54.5 43.9	20 20	18 18	12 12	1.5 1.2	18 15				
												Average	0.276	0.375	0.350	79.0	25.7	47.1	6	8	3	1.3	4]			
											25'-27'	Std.Dev. Maximum	0.011 0.286	0.016 0.392	0.000 0.350	3.0 81.7	0.6 26.6	6.6 52.7	6	8	3	1.4	4				Silty Fine Sand
				n/a								Minimum	0.259	0.347	0.350	74.0	24.8	33.4	6	8	3	1.2	4				
																									ETR Average		
											30'-32'	Average	0.275	0.371	0.350	78.6	25.9	42.0	32	34	16	1.3	21		(>30')		Silty Fine Sand
											30-32	Std.Dev. Maximum	0.005 0.289	0.007	0.000	1.5 82.5	0.3 26.5	3.4 45.7	32	34	16	1.4	22	_	(%)		Only I life Garia
												Minimum	0.262	0.352	0.350	74.8	25.0	37.4	32	34	16	1.2	20	1	85.6		
												Average	0.302	0.406		86.3	26.0	51.8	24	24	12	1.4	17	1			
											35'-37'	Std.Dev. Maximum	0.004	0.005 0.413	0.000 0.350	1.2 88.5	0.5 27.0	0.3 52.5	24	24	12	1.5	18	-			Silty Fine Sand
												Minimum	0.291	0.395	0.350	83.2	25.3	51.1	24	24	12	1.4	17]			
												Average Std.Dev.	0.311	0.420	0.350	88.7 1.9	27.2 0.2	57.7 0.4	26	26	13	1.5	19	1			
											40'-42'	Maximum	0.322	0.431	0.350	92.1	27.6	58.6	26	26	13	1.5	20				Silty Fine Sand
												Minimum Average	0.295	0.402	0.350	84.3 85.9	26.8 27.0	57.0 53.2	26 25	26 25	13 13	1.4	18 19	4			
											45'-47'	Std.Dev.	0.004	0.005	0.000	1.2	0.2	1.0		23	10	1.4	13				Fine Sand
											43-47	Maximum Minimum	0.315 0.294	0.411	0.350 0.350	89.9 83.9	27.5 26.4	54.1 50.5	25 25	25 25	13 13	1.5 1.4	20 18	_			Tille Salid
												Average	0.310	0.418		88.6	26.9	53.7	11	11	6	1.5	9	1			
											50'-52'	Std.Dev.	0.006	0.009	0.000	1.7	0.4	1.3	44	44		4.5					Fine Sand
												Maximum Minimum	0.324 0.301	0.437 0.403	0.350 0.350	92.6 85.9	27.3 26.0	54.7 50.6	11 11	11 11	6	1.5 1.4	9				
												Average	0.211	0.244		60.3	21.9	55.7	146	143	15	1.0	15				
											All depths	Std.Dev. Maximum	0.038	0.049	0.000 0.350	10.9 94.6	1.7 24.8	2.3 61.7	50	46	27	1.6	43	60.3	1.0	none	cohesionless soil
												Minimum	0.120	0.139	0.350	34.3	16.5	48.7	16	16	8	0.6	5	1			
Safety	CME 75 -			3 1/4" HSA		John	Shawn	Miller Construction				Average Std.Dev.	0.200	0.187 0.020	0.350	57.3 6.5	22.3 1.0	54.4 1.8	16	16	8	1.0	8	4			
Hammer	track	200587	AWJ	with auger plug	Transtech	Leonhardt	Kelley	Yard, Windsor,	9/25/2008 13:40	GD-6	5'-7'	Maximum	0.235	0.218	0.350	67.2	23.8	57.1	16	16	8	1.1	9				Fine Sand
				piag				VT				Minimum Average	0.158	0.156 0.235	0.350	45.2 66.4	20.2	50.7 55.7	16 25	16 25	13	0.8	14	4			
											10'-12'	Std.Dev.	0.233	0.023	0.000	11.3	1.1	1.7	23	23	13	1.1	14	1			Fine Sand
											10-12	Maximum Minimum	0.331 0.161	0.281 0.163	0.350 0.350	94.6 46.1	24.7 19.4	58.8 51.6	25 25	25 25	13 13	1.6 0.8	20 10	1			Fille Sallu
												Average	0.185	+	•	52.8	20.6	57.4	50	46	27	0.8	24	1			
											15'-17'	Std.Dev.	0.039	0.044	0.000	11.2	1.9	2.4						1			Fine to Medium Sand and Gravel
												Maximum Minimum	0.281 0.120	0.321	0.350 0.350	80.2 34.3	24.8 16.5	61.7 48.7	50 50	46 46	27 27	1.3 0.6	36 15	1			
												Average	0.226	0.283	0.350	64.6	22.6	55.0	32	34	18	1.1	19]			
											20'-22'	Std.Dev. Maximum	0.024 0.262	0.029 0.322		6.9 74.7	1.2 24.3	1.0 56.5	32	34	18	1.2	22	-			Fine to Medium Sand and Gravel
												Minimum	0.159	0.203	0.350	45.3	19.5	51.4	32	34	18	0.8	14	1			
												Average Std.Dev.	0.227 0.025	0.290	0.350 0.000	64.8 7.0	22.8 1.3	54.1 2.1	23	22	9	1.1	10	-			
											25'-27'	Maximum	0.255	0.329	0.350	73.0	24.1	61.2	23	22	9	1.2	11	1			Silty Fine Sand
												Minimum	0.138	0.173	0.350	39.4	18.0	50.4	23	22	9	0.7	6]			

3 of 6 Printed on: 1/10/10

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	ВРМ	Recorded hammer blows	Analyzed hammer blows	N	C _E	N60	ETR Average	C _E Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)						(%)		(ft)	
						1						Average	0.282	0.351	0.350	80.6	25.0	53.5	248	240	14	1.3	19		i		1
											All	Std.Dev.	0.014	0.019	0.000	3.9	0.9	1.9	2.0	2.0		1.0		1			
											depths	Maximum	0.323	0.391	0.350	92.4	26.5	55.0	41	41	22	1.5	34	80.6	1.3	50.0	cohesionless soil
												Minimum	0.230	0.282	0.350	65.6	22.8	26.7	14	6	7	1.1	8	1			
								Miller				Average	0.257	0.302	0.350	73.5	25.8	53.6	14	6	7	1.2	9	Ì			
Automatic	CME 45C			3 1/4" HSA			Shawn	Construction	0/00/0000		401.401	Std.Dev.	0.018	0.011	0.000	5.2	0.4	0.8						1			
Hammer - CME	Track	306614	AWJ	with auger	Vtrans	Glenn Porter	Kelley	Yard, Windsor,	9/26/2008 9:00	GD-7	10'-12'	Maximum	0.283	0.318	0.350	81.0	26.4	54.5	14	6	7	1.3	9	1			Fine to Medium Sand and Gravel
CME				plug			,	VT				Minimum	0.230	0.282	0.350	65.6	25.0	52.3	14	6	7	1.1	8				
												Average	0.292	0.324	0.350	83.4	25.1	52.8	41	41	22	1.4	31	1			
											451 471	Std.Dev.	0.010	0.007	0.000	2.8	0.6	4.3						1			Fig. 4. Ma Fig. 0 and and 0 and
											15'-17'	Maximum	0.313	0.340	0.350	89.4	26.2	55.0	41	41	22	1.5	33	1			Fine to Medium Sand and Gravel
												Minimum	0.267	0.309	0.350	76.3	23.8	26.7	41	41	22	1.3	28				
												Average	0.295	0.354	0.350	84.3	24.1	53.5	33	32	16	1.4	22	1			
											201 221	Std.Dev.	0.015	0.006	0.000	4.2	1.0	0.8									Fine to Madisum Cond and Consul
											20'-22'	Maximum	0.323	0.368	0.350	92.4	26.2	54.2	33	32	16	1.5	25				Fine to Medium Sand and Gravel
												Minimum	0.270	0.342	0.350	77.0	22.9	49.7	33	32	16	1.3	21				
												Average	0.271	0.361	0.350	77.5	25.7	53.7	33	32	20	1.3	26				
											25'-27'	Std.Dev.	0.006	0.006	0.000	1.6	0.4	0.3						1			Fine to Medium Sand and Gravel
											25-27	Maximum	0.280	0.375	0.350	80.0	26.4	54.5	33	32	20	1.3	27				Fine to Medium Sand and Graver
												Minimum	0.260	0.347	0.350	74.4	25.0	53.2	33	32	20	1.2	25]			
												A	0.075	0.204	0.250	70.0	24.9	F2 C	16	16	8	4.2	10		ETR Average		
											30'-32'	Average Std.Dev.	0.275	0.361 0.007	0.350	78.6 1.8	0.3	53.6 0.4	16	16	8	1.3	10		(>30')		Silty Fine Sand
																			40	40	8	4.4	44	-	(%)		•
												Maximum	0.287 0.263	0.374 0.348	0.350 0.350	81.9 75.0	25.6 24.4	54.1 52.6	16 16	16 16	<u>8</u>	1.4 1.3	11 10	-	00.0		
																								-	80.2		
												Average	0.283	0.369	0.350	80.8	25.7	53.8	21	21	11	1.3	15				
											35'-37'	Std.Dev.	0.005	0.007	0.000 0.350	1.5 84.0	0.4 26.3	0.4 54.6	21	21	11	1.4	15				Silty Fine Sand
												Maximum Minimum	0.294	0.358	0.350	78.0	25.0	53.2	21	21	11	1.4	14				
																			•	;				1			
												Average	0.291	0.376	0.350	83.1 1.5	26.0 0.3	53.8 0.4	18	19	9	1.4	12	-			
											40'-42'	Std.Dev. Maximum	0.005	0.006 0.385	0.350	86.4	26.5	54.5	18	19	9	1.4	13	1			Silty Fine Sand
												Minimum	0.302	0.363	0.350	80.4	25.2	52.7	18	19	9	1.4	12				
											-	Average	0.270	0.345	0.350	77.2	25.2	53.6	36	37	20	1.3	26	1			
												Std.Dev.	0.270	0.009	0.000	2.1	0.5	0.3	30	31	20	1.3	20	-			
											45'-47'	Maximum	0.007	0.009	0.000	81.4	26.2	54.3	36	37	20	1.4	27	-			Silty Fine Sand
												Minimum	0.285	0.300	0.350	73.1	24.3	52.9	36	37	20	1.4	24	1			
											-								36	36			23	1			
												Average Std.Dev.	0.284	0.354	0.350	81.1 2.3	24.1 0.7	53.6 0.5	30	30	17	1.4	23	-			
											50'-52'	Maximum	0.008	0.008	0.350	84.7	25.8	54.6	36	36	17	1.4	24	1			Fine Sand
												Minimum	0.268	0.374	0.350	76.5	22.8	52.7	36	36	17	1.4	22	1			
						11	<u> </u>	11	<u> </u>		l	wiiiiiiiiiiiiiii	0.200	0.550	0.550	70.0	22.0	32.1	30	30	17	1.3	22	1			

4 of 6

Printed on: 1/10/10

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	ВРМ	Recorded hammer blows	Analyzed hammer blows	N	C_{E}	N60	ETR Average	C _E Average	Depth to H ₂ O	Soil Description
				Penetration Method							(feet)		(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	(blows/ minute)						(%)		(ft)	
						Ì					(1001)	Average	0.284	0.338	0.350	81.1	40.3	51.7	265	176	13	1.4	17	(,,,		(1-7)	
											All	Std.Dev.	0.020	0.025	0.000	5.8	0.9	5.1	200	170	10	17	.,,				
											depths	Maximum	0.327	0.372	0.350	93.3	42.7	54.8	45	37	22	1.6	34	81.1	1.4	40.0	cohesionless soil
												Minimum	0.204	0.246	0.350	58.4	37.6	26.8	9	2	5	1.0	5				
A				3 1/4" HSA				Miller				Average	0.238	0.254	0.350	67.9	39.6	52.3	9	9	5	1.1	6				
Automatic Hammer -	CME 45C	306614	NWJ	with auger	Vtrans	Glenn Porter	Shawn	Construction	9/26/2008 12:05	GD-8	5'-7'	Std.Dev.	0.031	0.006	0.000	8.8	0.8	0.3									Fine Sand
CME	Track	300014	14443	plug	viiaiis	Gleriii Forter	Kelley	Yard, Windsor,	9/20/2000 12.03	GD-0	3-7	Maximum	0.299	0.267	0.350	85.3	40.6	52.7	9	9	5	1.4	7				Tille Salid
OIVIL				piag				VT				Minimum	0.204	0.246	0.350	58.4	38.0	51.6	9	9	5	1.0	5				
												Average	0.254	0.312	0.350	72.7	40.7	53.8	17	14	9	1.2	11				
											10'-12'	Std.Dev.	0.012	0.005	0.000	3.3	0.5	0.4									Fine to Medium Sand and Gray
												Maximum	0.281	0.323	0.350	80.2	41.6	54.4	17	14	9	1.3	12				This to inculant cana and crai
												Minimum	0.243	0.303	0.350	69.3	39.9	53.2	17	14	9	1.2	10				
												Average	0.292	0.329	0.350	83.6	39.9	51.8	33	32	17	1.4	24				
											15'-17'	Std.Dev.	0.016	0.008	0.000	4.7	0.9	2.4									Fine to Medium Sand and Gra
												Maximum	0.327	0.348	0.350	93.3	41.8	52.8	33	32	17	1.6	26				
												Minimum	0.269	0.312	0.350	76.9	37.6	40.1	33	32	17	1.3	22				
												Average	0.279	0.345	0.350	79.7	39.9	53.5	37	37	18	1.3	24				
											20'-22'	Std.Dev.	0.006	0.008	0.000	1.8	0.7	0.4	07	07	40	- 4 4					Fine to Medium Sand and Grav
												Maximum Minimum	0.300 0.268	0.367 0.323	0.350 0.350	85.6 76.7	40.9 38.2	54.2 52.6	37 37	37 37	18 18	1.4	26 23	-			
																		40.9						1			
												Average Std.Dev.	0.292	0.338	0.350	83.3	40.2	10.0	45	18	22	1.4	31	-			
											25'-27'	Maximum	0.006	0.010 0.357	0.000 0.350	1.8 87.8	0.8 41.9	54.8	45	18	22	1.5	32				Fine to Medium Sand and Grav
												Minimum	0.307	0.321	0.350	79.7	38.4	26.8	45	18	22	1.3	29	•			
												William	0.213	0.521	0.550	13.1	30.4	20.0	73	10	22	1.0	23	1	ETR	1	
																									Average		
												Average	0.299	0.354	0.350	85.4	41.3	53.9	20	20	9	1.4	13		(>30')		
											30'-32'	Std.Dev.	0.004	0.008	0.000	1.2	0.7	0.3		20					(%)		Silty Fine Sand
												Maximum	0.308	0.369	0.350	88.1	42.7	54.3	20	20	9	1.5	13		(/*/		
												Minimum	0.288	0.335	0.350	82.2	39.4	53.4	20	20	9	1.4	12		84.2		
												Average	0.295	0.355	0.350	84.2	40.5	51.5	20	20	10	1.4	14		01.2		
												Std.Dev.	0.004	0.003	0.000	1.1	0.6	3.3									
											35'-37'	Maximum	0.301	0.361	0.350	86.0	41.5	52.7	20	20	10	1.4	14	1			Silty Fine Sand
												Minimum	0.286	0.350	0.350	81.8	39.3	37.4	20	20	10	1.4	14				
												Average	0.290	0.357	0.350	82.9	40.6	53.5	24	24	10	1.4	14	1			
											401.401	Std.Dev.	0.013	0.007	0.000	3.7	1.0	0.2						1			0111 - 511 - 0 1
											40'-42'	Maximum	0.319	0.372	0.350	91.2	42.0	54.0	24	24	10	1.5	15				Silty Fine Sand
												Minimum	0.260	0.349	0.350	74.2	39.1	53.1	24	24	10	1.2	12				
											45'-47' **	Average	0.238	0.346	0.350	68.2	40.6	52.5	31	2	16	1.1	18	1			
												Std.Dev.	0.011	0.004	0.000	3.3	0.1	0.0		2							Fine Sand
											only 2 blows	Maximum	0.250	0.350	0.350	71.5	40.8	52.5	31		16	1.2	19				Fille Saliu
											DIOWS	Minimum	0.227	0.342	0.350	64.9	40.5	52.5	31		16	1.1	17				
												Average			0.350				29		15						
											50'-52' **	Std.Dev.			0.000												Fine Sand
											30-32	Maximum			0.350				29		15						Fille Sallu
								I			l	Minimum	1		0.350		1	1	29		15	· ·	l	I			I

5 of 6 Printed on: 1/10/10

VTrans # RSCH012-703 Geo**Design** # 750-5.7 GeoDesign, Inc. VTrans Evaluation of SPT Hammer Variability

Hammer Type	Drill Rig	Serial #	Rod type	Borehole Type	Owner	Hammer Operator	Testing Engineer	Location of Boring	Date and Start Time	Boring	Sample Depth		EMX	EF2	ER	ETR	FMX	BPM	Recorded hammer blows	Analyzed hammer blows	N	C _E	N60	ETR Average	C _E Average	Depth to H ₂ O	Soil Description
				Penetration							"		4 . 6	# F F	a : 6)	(0.1)		(blows/						(01)		(5.)	
			1	Method							(feet)	A	(kip-ft)	(kip-ft)	(kip-ft)	(%)	(kips)	minute)	450	054	0.5	0.0	00	(%)		(ft)	1
											All	Average Std.Dev.	0.168 0.020	0.197 0.028	0.350	48.1 5.7	18.3 0.9	46.1 2.7	459	354	25	0.8	20				
											depths	Maximum	0.020	0.026	0.350	62.9	20.6	53.3	85	81	52	1.0	54	48.1	8.0	50.0	cohesionless soil
											асрию	Minimum	0.112	0.109	0.350	32.0	15.2	38.3	16	6	9	0.5	5	1			
Safety								Miller				Average	0.135	0.120	0.350	38.5	17.0	41.7	16	14	9	0.6	6			.!	
Driver	Simco			4 1/4" HSA	Specialty		Shawn	Construction	0/00/0000 0 45			Std.Dev.	0.014	0.009	0.000	4.0	1.0	2.3						1			
Hammer -	2800		AWJ	with auger	Drilling &	Chris Aldrich	Kelley	Yard, Windsor,	9/29/2008 9:45	GD-9	5'-7'	Maximum	0.167	0.145	0.350	47.6	19.5	45.4	16	14	9	0.8	7				Fine Sand
Mobile				plug	Investigation		-	VT				Minimum	0.112	0.109	0.350	32.0	15.7	38.3	16	14	9	0.5	5				
												Average	0.162	0.156	0.350	46.4	18.1	45.1	20	20	9	0.8	7				
											10'-12'	Std.Dev.	0.026	0.013	0.000	7.5	0.7	1.5									Fine Sand
											10-12	Maximum	0.218	0.176	0.350	62.4	19.3	48.5	20	20	9	1.0	9				Tille Salid
												Minimum	0.115	0.131	0.350	33.0	17.1	42.5	20	20	9	0.5	5				
												Average	0.182	0.177	0.350	51.9	18.2	44.0	56	58	29	0.9	25	1			
											15'-17'	Std.Dev.	0.018	0.016	0.000	5.0	1.2	2.0									Fine to Medium Sand and Grav
												Maximum	0.211	0.208	0.350	60.2	20.3	48.2	56	58	29	1.0	29				
												Minimum	0.145	0.140	0.350	41.5	15.2	39.9	56	58	29	0.7	20	Į.			
												Average	0.170	0.203	0.350	48.4	18.6	47.7	56	57	31	0.8	25				
											20'-22'	Std.Dev.	0.017	0.017	0.000	4.8	1.0	1.8	50		24	4.0	20	-			Fine to Medium Sand and Grav
												Maximum Minimum	0.204 0.127	0.239 0.159	0.350 0.350	58.4 36.2	20.6 16.5	53.3 44.4	56 56	57 57	31 31	1.0 0.6	30	-			
																							19	4			
												Average Std.Dev.	0.156 0.012	0.196 0.012	0.350	44.5 3.4	18.1 0.6	48.6 1.8	85	81	52	0.7	39				
											25'-27'	Maximum	0.012	0.012	0.350	56.3	19.4	52.0	85	81	52	0.9	49				Fine to Medium Sand and Grav
												Minimum	0.128	0.163	0.350	36.6	16.8	44.8	85	81	52	0.6	32	1			
													0.120	0.100	0.000	00.0	10.0		- 55	0.		0.0		1	ETR	7	
																									Average		
											001.001	Average	0.181	0.224	0.350	51.6	18.8	43.7	28	27	14	0.9	12		(>30')		O'lles E'les Ossel
											30'-32'	Std.Dev.	0.017	0.012	0.000	4.8	0.6	1.9							(%)		Silty Fine Sand
												Maximum	0.220	0.249	0.350	62.9	20.0	46.8	28	27	14	1.0	15				
												Minimum	0.156	0.202	0.350	44.6	17.3	39.6	28	27	14	0.7	10		51.0		
												Average	0.174	0.221	0.350	49.9	18.3	47.3	39	39	22	8.0	18			_	
											35'-37'	Std.Dev.	0.010	0.012	0.000	3.0	0.7	1.7									Silty Fine Sand
											33-37	Maximum	0.203	0.246	0.350	58.0	19.7	51.9	39	39	22	1.0	21	1			Only I life Sand
												Minimum	0.156	0.194	0.350	44.6	16.4	43.9	39	39	22	0.7	16				
												Average	0.169	0.215	0.350	48.2	18.2	44.9	51	52	27	0.8	22				
											40'-42'	Std.Dev.	0.017	0.020	0.000	4.7	0.9	1.8									Silty Fine Sand
												Maximum	0.219	0.255	0.350	62.6	19.8	49.8	51	52	27	1.0	28	4			
											 	Minimum	0.131	0.168	0.350	37.5	16.2	39.9	51	52	27	0.6	17	ŀ			
											45'-47' **	Average	0.191	0.231	0.350	54.4	18.9	47.0	55	6	32	0.9	29	ł			
											only 6	Std.Dev. Maximum	0.024 0.219	0.009 0.244	0.000 0.350	6.8 62.6	0.5 19.5	1.5 49.6	55	6	32	1.0	33	ł			Silty Fine Sand
											blows	Minimum	0.219	0.244	0.350	40.5	18.0	45.3	55 55	6	32	0.7	22	ł			
											 	Average	0.142	0.210	0.350	40.5	10.0	40.0	53	U	26	0.7		1			
												Std.Dev.	 		0.000		}	-	აა		20		1	ł			
											50'-52' **	Maximum	-		0.350		 	+	53		26	 	 	i			Silty Fine Sand
												Minimum	 		0.350	1	l	1	53		26		<u> </u>	1			
ogond:	EMAY /lain 6	4 4 4 4 4 4 4		hu tha hamm	or to the top of	the drill etring	oo dotormir	ned by the EMX n	nothod		** Accolor	ation data erra	tic		. 0.000							1		-			·

EMX (kip-ft) = the energy delivered by the hammer to the top of the drill string as determined by the EMX method

EF2 (kip-ft) = the energy delivered by the hammer to the top of the drill string as determined by the F-squared method

ER (kip-ft) = 0.35 kip-ft, the theoretical free hall hammer energy for the SPT hammers

ETR (%) = EMX/ER, energy transfer ratio, the efficiency of the hammer as calculated by the SPT Analyzer

FMX (kips) = the force delivered by the hammer

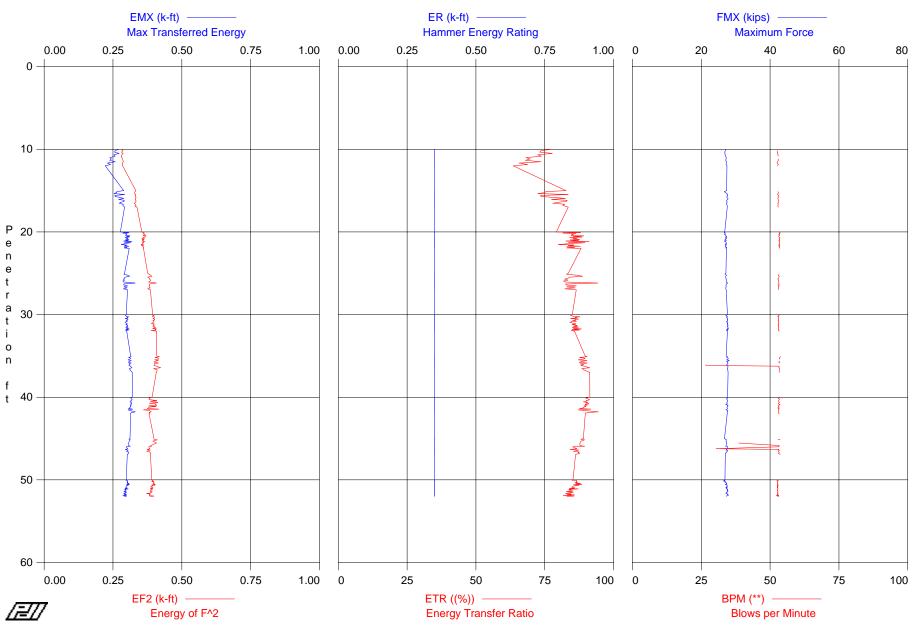
BPM (blows / minute) = the operating rate of the hammer in blows per minute

N = the number of blow counts required to drive the SPT sampler over the depth interval of 6 inches to 18 inches for an 24-inch sampling episode

N₆₀ = {(N x EMX) / (0.60 x ER)} = {(N/0.60) x ETR}, the N-value adjusted to a hammer efficiency of 60 percent

 $C_{\eta} = \{(\text{ETR / 0.60})\} = \{\text{EMX / (0.60 x ER)}\} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by which the N-value should be multiplied in order to obtain } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00} = \{(N_{00} / N) \text{ x 60}\}, \text{ the adjustment factor by } N_{00}$

total blows


6 of 6 Printed on: 1/10/10

Test date: 23-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VTRANS RSCH011-703 - GD-1

OP: SPK

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 2-Apr-2009

2 INCH SS; CME-55 AUTO; VTRANS

Test date: 23-Sep-2008
SP: 0.492 k/ft3
EM: 30.000 ksi

<u> </u>	
AR: 0.92 in^2	SP: 0.492 k/ft3
LE: 53.75 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

FMX: Maximum Force Statistics for entire file (215 blow

stics for entire file	e (215 blows))							
	EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in	DFN in	BPM **
Average	0.297	0.377	0.350	85.0	27.4	16.1	0.99	0.93	52.6
Std. Dev.	0.017	0.032	0.001	4.9	0.3	8.0	0.43	0.51	3.2
Maximum	0.331	0.423	0.350	94.5	28.2	18.3	2.31	2.31	53.8
@ Blow#	155	126	1	155	117	15	69	69	112
Minimum	0.222	0.281	0.350	63.6	26.5	14.5	0.48	-0.81	26.7
@ Blow#	13	3	1	13	187	186	179	171	122

Time Summary

	···· ,	
Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM `
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230
T. L. I. C	100 00 001 (D.1.1. 10 00 0.41 - 01 - 11	00.00.501

0.92 in^2

53.75 ft

OP: SPK

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 2-Apr-2009

2 INCH SS;CME-55 AUTO;VTRANS Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi

WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

	Energy Tran Maximum Fo								BPM: Blov	vs per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	10.00	6	0.270	0.282	0.350	77.2	27.0	16.3	1.36	1.36	0.0
2	10.17	6	0.258	0.286	0.350	73.6	27.0	15.0	0.88	0.54	52.5
3	10.33	6	0.256	0.281	0.350	73.2	26.8	15.4	1.03	0.90	52.7
4	10.50	6	0.272	0.287	0.350	77.7	26.9	16.3	1.25	1.23	52.6
5	10.67	6	0.253	0.282	0.350	72.4	26.9	16.2	1.25	1.06	52.9
6	10.83	6	0.258	0.281	0.350	73.8	27.1	15.8	1.67	1.67	52.9
7	11.00	6	0.239	0.282	0.350	68.2	27.2	16.3	1.63	1.56	0.0
8	11.17	6	0.244	0.285	0.350	69.7	27.2	16.6	1.93	1.92	53.0
9	11.33	6	0.238	0.286	0.350	68.0	27.1	17.0	2.26	2.26	52.9
10	11.50	6	0.258	0.288	0.350	73.6	27.3	16.9	2.09	2.09	52.8
11	11.67	6	0.230	0.284	0.350	65.8	27.3	17.1	1.99	1.99	52.5
12	11.83	6	0.241	0.285	0.350	68.7	27.2	16.6	1.95	1.95	53.0
13	12.00	6	0.222	0.285	0.350	63.6	27.5	16.6	2.03	2.03	52.7
		Average	0.249	0.284	0.350	71.2	27.1	16.3	1.64	1.58	52.8
	;	Std. Dev.	0.014	0.002	0.000	4.1	0.2	0.6	0.43	0.51	0.2
	N	Maximum	0.272	0.288	0.350	77.7	27.5	17.1	2.26	2.26	53.0
		@ Blow#	4	10	1	4	13	11	9	9	8
		Minimum	0.222	0.281	0.350	63.6	26.8	15.0	0.88	0.54	52.5

Total number of blows analyzed: 13

13

Time Summary

Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM `
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230
Total time	100-20-201 - (D-h-h 10-00-241 - 04 10	20.20.503

Total time [22:36:33] = (Driving [0:06:34] + Stop [22:29:59])

@ Blow#

13

VTRANS RSCH011-703 - GD-1 OP: SPK

0.92 in^2

53.75 ft

AR: LE:

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 2-Apr-2009

2 INCH SS;CME-55 AUTO;VTRANS Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi

WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

FMX:	Maximum F	orce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
14	15.00	0	0.289	0.333	0.350	82.7	27.4	16.9	1.54	1.54	0.0
15	15.12	9	0.264	0.330	0.350	75.3	26.7	18.3	1.86	1.86	52.8
16	15.24	9	0.263	0.329	0.350	75.0	27.0	18.0	1.71	1.71	53.0
17	15.35	9	0.254	0.329	0.350	72.6	27.5	17.9	1.74	1.73	52.9
18	15.47	9	0.292	0.333	0.350	83.5	27.6	17.8	2.11	2.11	52.7
19	15.59	9	0.257	0.330	0.350	73.5	27.7	17.7	1.57	1.57	53.1
20	15.71	9	0.258	0.332	0.350	73.7	27.5	18.0	1.56	1.53	52.9
21	15.82	9	0.275	0.334	0.350	78.5	27.4	18.0	1.64	1.64	52.9
22	15.94	9	0.289	0.331	0.350	82.5	27.8	17.7	1.49	1.49	52.9
23	16.06	9	0.271	0.331	0.350	77.5	27.7	17.6	1.30	1.30	52.9
24	16.18	9	0.291	0.333	0.350	83.2	27.4	18.2	1.41	1.41	53.0
25	16.29	9	0.290	0.334	0.350	82.7	27.4	17.8	1.49	1.49	53.1
26	16.41	9	0.279	0.332	0.350	79.8	27.6	17.0	1.00	0.99	53.0
27	16.53	9	0.273	0.328	0.350	78.0	27.3	17.1	1.03	1.03	52.8
28	16.65	9	0.288	0.331	0.350	82.2	27.4	17.1	1.08	1.08	53.0
29	16.76	9	0.285	0.334	0.350	81.5	27.5	17.7	1.21	1.21	52.8
30	16.88	9	0.289	0.330	0.350	82.5	27.5	17.2	1.22	1.22	52.9
31	17.00	9	0.292	0.337	0.350	83.5	27.6	17.7	1.17	1.15	52.9
		Average	0.278	0.332	0.350	79.3	27.4	17.6	1.45	1.45	52.9
		Std. Dev.	0.013	0.002	0.000	3.8	0.2	0.4	0.29	0.30	0.1
		Maximum	0.292	0.337	0.350	83.5	27.8	18.3	2.11	2.11	53.1
		@ Blow#	18	31	14	31	22	15	18	18	19
		Minimum	0.254	0.328	0.350	72.6	26.7	16.9	1.00	0.99	52.7
		@ Blow#	17	27	14	17	15	14	26	26	18
	Total number of blows analyzed: 18										

Time Summary

Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230
T-4-14 1	00-00-001 (Duit-i10-00-041100	-00-503\

OP: SPK

AR: 0.92 in^2 LE: 53.75 ft WS: 16,807.7 f/s 2 INCH SS;CME-55 AUTO;VTRANS Test date: 23-Sep-2008

> SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

FMX:	Maximum F	orce								•	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
32	20.00	0	0.277	0.355	0.350	79.2	26.8	18.1	2.25	2.25	0.0
33	20.07	15	0.308	0.359	0.350	88.0	26.7	18.0	1.45	1.45	53.7
34	20.14	15	0.286	0.364	0.350	81.6	27.0	17.2	0.99	0.94	53.3
35	20.21	15	0.302	0.360	0.350	86.3	26.9	16.8	1.07	1.07	53.6
36	20.28	15	0.297	0.362	0.350	84.8	26.7	16.9	1.09	1.09	53.1
37	20.34	15	0.299	0.367	0.350	85.3	27.0	16.9	0.90	0.90	53.5
38	20.41	15	0.296	0.360	0.350	84.5	27.2	16.8	1.14	1.14	53.5
39	20.48	15	0.312	0.370	0.350	89.1	27.0	17.0	1.00	1.00	53.2
40	20.55	15	0.299	0.366	0.350	85.3	27.4	16.9	0.80	0.80	53.2
41	20.62	15	0.309	0.367	0.350	88.4	27.4	16.7	0.99	0.99	53.3
42	20.69	15	0.294	0.359	0.350	84.1	27.0	16.6	0.73	0.63	53.5
43	20.76	15	0.304	0.364	0.350	86.7	27.4	16.6	0.80	0.80	53.3
44	20.83	15	0.299	0.354	0.350	85.3	27.1	16.6	0.91	0.91	53.6
45	20.90	15	0.307	0.363	0.350	87.6	26.9	16.8	0.90	0.90	53.3
46	20.97	15	0.295	0.356	0.350	84.3	27.2	16.5	0.76	0.76	53.4
47	21.03	15	0.306	0.361	0.350	87.3	27.3	16.6	0.96	0.96	53.2
48	21.10	15	0.289	0.358	0.350	82.7	26.7	16.9	0.72	0.55	53.5
49	21.17	15	0.319	0.365	0.350	91.1	27.1	16.9	1.24	1.24	53.4
50	21.24	15	0.292	0.356	0.350	83.5	27.2	16.7	0.72	0.59	53.4
51	21.31	15	0.314	0.361	0.350	89.6	27.2	16.8	1.13 1.14	1.13 1.1 4	53.4 53.3
52	21.38	15	0.297	0.359	0.350	85.0	27.1	16.9		0.61	
53	21.45	15	0.290	0.358	0.350	82.8	27.4	16.4	0.76	0.95	53.4
54	21.52	15	0.280	0.352	0.350	79.9	27.0 27.3	16.8 16.7	0.95 0.85	0.95 0.77	53.2 53.6
55	21.59	15	0.299	0.362	0.350 0.350	85.5 83.5	27.3 27.1	16.7	1.05	1.05	53.6
56	21.66	15	0.292	0.354			27.1	16.7	1.12	1.05	53.5
57	21.72 21.79	15 15	0.308 0.291	0.360 0.359	0.350 0.350	87.9 83.0	27.2 27.0	16.7	0.90	0.90	53.5
58 59	21.7 9 21.86	15 15	0.291	0.359	0.350	85.9	27.0 27.4	16.6	0.90	0.90	53.4
	21.00	15	0.301	0.360	0.350	83.0	27.4	16.8	0.83	0.77	53.5
60 61	22.00	15	0.291	0.361	0.350	88.2	27.1	16.6	1.16	1.16	53.5
01	22.00		*******		0.350	85.3	27.1	16.8	1.01	0.98	53.4
		Average	0.299	0.360		65.3 2.7	0.2	0.4	0.29	0.90	0.2
		Std. Dev.	0.010	0.004	0.000 0.350	2.7 91.1	27.4	18.1	2.25	2.25	53.7
		Maximum	0.319	0.370 39	0.350 32	91.1 49	27.4 41	32	32	32	33.7
		@ Blow#	49 0.277	0.352	0.350	79.2	26.7	3∠ 16.4	0.72	0.55	53.1
		Minimum @ Blow#	32	0.35∠ 54	0.350 32	79.2 32	33	53	48	48	36
		@ DIOW#	32	34		عد ber of blow!			70	, 70	50
					i otar iluri	Del OI DIOW	analyzeu.	55			

Time Summary

Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230

OP: SPK
AR: 0.92 in^2
LE: 53.75 ft

WS: 16,807.7 f/s

2 INCH SS;CME-55 AUTO;VTRANS Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio

VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

FMX:	Maximum	Force								•	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
62	25.00	0	0.292	0.376	0.350	83.5	27.2	16.0	0.95	0.92	0.0
63	25.12	9	0.290	0.382	0.350	82.9	26.9	16.7	0.82	0.74	52.9
64	25.24	9	0.303	0.387	0.350	86.6	27.3	16.4	0.94	0.94	53.0
65	25.35	9	0.311	0.391	0.350	88.8	27.1	16.8	1.03	1.03	53.3
66	25.47	9	0.294	0.376	0.350	83.9	27.1	16.4	1.13	1.13	53.2
67	25.59	9	0.292	0.382	0.350	83.5	27.2	16.4	1.28	1.28	53.0
68	25.71	9	0.288	0.383	0.350	82.2	27.2	16.2	2.16	2.16	52.8
69	25.82	9	0.292	0.387	0.350	83.4	27.2	16.9	2.31	2.31	53.1
70	25.94	9	0.286	0.385	0.350	81.8	27.3	16.2	1.70	1.68	53.1
71	26.06	9	0.289	0.380	0.350	82.5	27.3	16.3	2.07	2.07	53.1
72	26.18	9	0.330	0.407	0.350	94.2	27.6	16.3	1.96	1.95	53.1
73	26.29	9	0.289	0.384	0.350	82.6	27.3	16.4	2.01	2.01	53.3
74	26.41	9	0.290	0.382	0.350	82.9	27.3	16.4	1.54	1.54	52.8
75	26.53	9	0.303	0.383	0.350	86.4	27.1	16.3	1.48	1.48	53.3
76	26.65	9	0.290	0.381	0.350	82.9	27.2	16.4	1.47	1.47	53.0
77	26.76	9	0.301	0.385	0.350	86.0	27.1	16.5	1.52	1.52	53.1
78	26.88	9	0.288	0.376	0.350	82.3	27.1	16.4	1.41	1.41	53.1
79	27.00	9	0.303	0.386	0.350	86.4	27.3	16.3	1.40	1.40	53.1
		Average	0.296	0.384	0.350	84.6	27.2	16.4	1.51	1.50	53.1
		Std. Dev.	0.011	0.007	0.000	3.0	0.1	0.2	0.44	0.45	0.2
		Maximum	0.330	0.407	0.350	94.2	27.6	16.9	2.31	2.31	53.3
		@ Blow#	72	72	62	72	72	69	69	69	65
		Minimum	0.286	0.376	0.350	81.8	26.9	16.0	0.82	0.74	52.8
		@ Blow#	70	62	62	70	63	62	63	63	68
					Total num	ber of blows	s analyzed:	18			

Time Summary

Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230
Total time	[22:36:33] = (Driving [0:06:34] + Stop [2	22-29-591)

OP: SPK

2 INCH SS;CME-55 AUTO;VTRANS Test date: 23-Sep-2008

AR: 0.92 in^2 53.75 ft LE:

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

WS: 16,807.7 f/s EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

ETR:	Energy Trans	sfer Ratio						BPM: Blows per Minute				
FMX:	Maximum Fo	rce										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM	
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**	
80	30.00	0	0.298	0.394	0.350	85.0	27.6	16.0	0.86	0.84	0.0	
81	30.07	15	0.295	0.394	0.350	84.3	27.1	16.1	0.99	0.98	53.1	
82	30.13	15	0.297	0.400	0.350	84.8	27.3	16.3	0.76	0.69	53.3	
83	30.20	15	0.298	0.393	0.350	85.2	27.6	16.0	0.88	0.86	52.7	
84	30.27	15	0.307	0.399	0.350	87.8	27.4	16.2	0.98	0.97	53.1	
85	30.33	15	0.301	0.399	0.350	86.1	27.3	16.3	0.99	0.98	53.2	
86	30.40	15	0.303	0.401	0.350	86.5	27.6	15.9	0.80	0.75	53.1	
87	30.47	15	0.295	0.395	0.350	84.4	27.6	16.0	1.07	1.07	53.0	
88	30.53	15	0.305	0.400	0.350	87.2	27.6	16.2	1.02	1.02	53.1	
89	30.60	15	0.301	0.402	0.350	85.9	27.7	16.1	1.15	1.15	53.0	
90	30.67	15	0.302	0.400	0.350	86.2	27.6	16.2	0.90	0.90	52.9	
91	30.73	15	0.298	0.395	0.350	85.1	27.7	16.0	0.88	0.87	53.1	
92	30.80	15	0.303	0.399	0.350	86.5	27.6	16.0	0.81	0.79	53.0	
93	30.87	15	0.297	0.398	0.350	84.7	27.3	16.3	0.85	0.84	53.1	
94	30.93	15	0.294	0.396	0.350	84.1	27.6	15.8	0.71	0.43	53.1	
95	31.00	15	0.297	0.394	0.350	84.9	27.6	16.1	0.96	0.96	53.2	
96	31.07	15	0.300	0.390	0.350	85.8	27.5	15.8	0.81	0.79	53.2	
97	31.13	15	0.302	0.400	0.350	86.3	27.8	16.2	0.99	0.99	52.9	
98	31.20	15	0.297	0.396	0.350	84.9	27.6	16.2	0.80	0.78	53.1	
99	31.27	15	0.302	0.397	0.350	86.2	27.6	16.2	0.99	0.99	53.0	
100	31.33	15	0.303	0.400	0.350	86.7	27.8	16.1	0.84	0.83	53.1	
101	31.40	15	0.299	0.395	0.350	85.3	27.6	16.3	0.80	0.78	52.9	
102	31.47	15	0.304	0.401	0.350	87.0	27.6	16.1	0.82	0.81	53.1	
103	31.53	15	0.297	0.398	0.350	85.0	27.7	16.0	0.72	0.69	53.0	
104	31.60	15	0.305	0.406	0.350	87.1	27.9	16.1	0.82	0.82	53.2	
105	31.67	15	0.299	0.394	0.350	85.5	27.6	16.2	0.81	0.81	53.1	
106	31.73	15	0.309	0.408	0.350	88.3	27.9	16.2	0.84	0.84	52.9	
107	31.80	15	0.297	0.403	0.350	85.0	27.4	16.4	0.77	0.77	53.0	
108	31.87	15	0.306	0.406	0.350	87.5	27.7	16.4	0.77	0.77	53.1	
109	31.93	15	0.296	0.389	0.350	84.7	27.3	16.1	0.76	0.76	53.3	
110	32.00	15	0.300	0.408	0.350	85.8	27.6	16.2	0.75	0.75	53.0	
		Average	0.300	0.398	0.350	85.8	27.6	16.1	0.87	0.85	53.1	
		Std. Dev.	0.004	0.005	0.000	1,1	0.2	0.2	0.11	0.13	0.1	
		laximum	0.309	0.408	0.350	88.3	27.9	16.4	1.15	1.15	53.3	
		@ Blow#	106	106	80	106	106	107	89	89	82	
		<i>l</i> inimum	0.294	0.389	0.350	84.1	27.1	15.8	0.71	0.43	52.7	
	(@ Blow#	94	109	80	94	.81	94	94	94	83	
	,				Total num	ber of blows	s analyzed:	31				

Time Summary

Time Our	iiiaiy	
Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230

VTRANS RSCH011-703 - GD-1 OP: SPK

0.92 in^2

AR:

PDIPLOT Ver. 2008.2 - Printed: 2-Apr-2009

2 INCH SS:CME-55 AUTO:VTRANS

	Test date: 23-Sep-2008	
	Took date: 22 Cam 2000	
. 111011 00,	DIVILE-33 AGTO, VITA-ING	

SP:	0.492	k/ft3
EM:	30,000	ksi
10.	0.00	

741. 0.02 H Z	01: 0:402 1010
LE: 53.75 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F ²	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

ETR:	Energy Tran									vs per Minu	
	Maximum Fo									·	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
111	35.00	0	0.314	0.409	0.350	89.7	27.2	17.0	1.05	0.85	0.0
112	35.10	11	0.316	0.419	0.350	90.4	27.6	17.1	1.21	1.21	53.8
113	35.19	11	0.307	0.403	0.350	87.7	27.4	16.8	1.08	0.97	53.5
114	35.29	11	0.314	0.415	0.350	89.7	27.9	17.1	1.15	1.15	53.4
115	35.38	11	0.312	0.415	0.350	89.2	27.8	17.1	0.91	0.88	53.5
116	35.48	11	0.305	0.402	0.350	87.1	27.4	16.7	0.69	0.29	0.0
117	35.57	11	0.316	0.414	0.350	90.3	28.2	17.0	1.02	1.02	0.0
118	35.67	11	0.309	0.401	0.350	88.4	27.4	16.5	0.66	0.65	53.6
119	35.76	11	0.306	0.401	0.350	87.5	27.6	16.6	0.61	-0.02	53.1
120	35.86	11	0.316	0.415	0.350	90.4	27.8	16.9	0.67	0.64	53.5
121	35.95	11	0.308	0.400	0.350	87.9	27.7	16.4	0.62	0.21	0.0
122	36.05	11	0.312	0.400	0.350	89.1	27.4	16.3	0.93	0.93	26.7
123	36.14	11	0.308	0.399	0.350	88.1	27.5	16.4	0.66	0.56	26.7
124	36.24	11	0.313	0.408	0.350	89.3	27.8	16.3	0.76	0.76	53.3
126	36.43	11	0.319	0.423	0.350	91.3	27.7	16.9	0.73	0.73	53.2
127	36.52	11	0.310	0.398	0.350	88.5	27.6	16.1	0.71	0.71	53.4
129	36.71	11	0.313	0.411	0.350	89.4	27.7	16.7	0.68	0.68	53.3
132	37.00	11	0.320	0.407	0.350	91.3	27.8	16.5	1.00	1.00	53.3
		Average	0.312	0.408	0.350	89.2	27.6	16.7	0.84	0.73	49.6
		Std. Dev.	0.004	0.007	0.000	1.2	0.2	0.3	0.20	0.31	9.3
	ľ	Maximum	0.320	0.423	0.350	91.3	28.2	17.1	1.21	1.21	53.8
		@ Blow#	132	126	111	132	117	112	112	112	112
		Minimum.	0.305	0.398	0.350	87.1	27.2	16.1	0.61	-0.02	26.7
		@ Blow#	116	127	111	116	111	127	119	119	122

Total number of blows analyzed: 18

Time	Summary
------	---------

Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230
Total times I	22:26:221 - (Driving [0:06:24] + Cton [2	22.20.501\

Total time [22:36:33] = (Driving [0:06:34] + Stop [22:29:59])

26.7 BPM 33.4

OP: SPK
AR: 0.92 in^2
LE: 53.75 ft

LE: 53.75 ft WS: 16,807.7 f/s

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio FMX: Maximum Force 2 INCH SS;CME-55 AUTO;VTRANS

Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

FMX:	Maximum F	orce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
133	40.00	0	0.320	0.392	0.350	91.4	27.7	15.7	1.28	1.27	0.0
134	40.08	13	0.315	0.383	0.350	89.9	27.4	15.7	1.19	1.16	53.4
135	40.16	13	0.316	0.384	0.350	90.3	27.6	15.7	1.48	1.48	53.0
136	40.24	13	0.318	0.380	0.350	9 1.0	27.4	15.6	1.27	1.26	53.4
137	40.32	13	0.320	0.388	0.350	91.3	27.5	15.8	1.54	1.54	53.3
138	40.40	13	0.315	0.409	0.350	90.0	27.6	16.0	1.38	1.37	53.1
139	40.48	13	0.316	0.385	0.350	90.3	27.5	15.6	1.35	1.33	53.2
140	40.56	13	0.312	0.406	0.350	89.1	27.6	15.8	1.42	1.40	53.1
141	40.64	13	0.317	0.413	0.350	90.6	27.5	15.9	1.53	1.53	53.4
142	40.72	13	0.315	0.382	0.350	89.9	27.5	15.6	1.37	1.37	53.1
143	40.80	13	0.319	0.406	0.350	91.0	27.5	15.9	1.71	1.71	52.9
144	40.88	13	0.314	0.404	0.350	89.7	27.1	16.0	1.32	1.32	53.6
145	40.96	13	0.316	0.409	0.350	90.4	27.8	15.9	0.65	0.59	53.3
146	41.04	13	0.313	0.380	0.350	89.3	27.5	15.8	0.74	0.73	53.0
147	41.12	13	0.315	0.407	0.350	89.9	27.6	16.1	1.03	1.03	53.0
148	41.20	13	0.312	0.380	0.350	89.2	27.5	15.8	0.69	0.57	53.3
149	41.28	13	0.312	0.381	0.350	89.1	27.5	15.7	0.67	0.51	52.8
150	41.36	13	0.307	0.375	0.350	87.7	27.6	15.8	0.69	0.63	53.3
151	41.44	13	0.321	0.416	0.350	91.6	27.5	15.9	1.11	1.11	53.0
152	41.52	13	0.305	0.361	0.350	87.1	27.2	15.8	1.15	1.15	53.2
153	41.60	13	0.312	0.382	0.350	89.2	27.8	15.7	0.62	0.16	53.1
155	41.76	13	0.331	0.389	0.350	94.5	27.6	15.9	0.98	0.98	53.1
156	41.84	13	0.319	0.381	0.350	91.1	27.5	15.7	0.65	0.61	53.1
157	41.92	13	0.314	0.384	0.350	89.7	27.5	15.7	0.61	0.53	53.3
158	42.00	13	0.314	0.381	0.350	89.7	27.5	15.8	0.66	0.66	53.1
		Average	0.316	0.390	0.350	90.1	27.5	15.8	1.08	1.04	53.2
		Std. Dev.	0.005	0.014	0.000	1.4	0.1	0.1	0.35	0.41	0.2
		Maximum	0.331	0.416	0.350	94.5	27.8	16.1	1.71	1.71	53.6
		@ Blow#	155	151	133	155	145	147	143	143	144
		Minimum	0.305	0.361	0.350	87.1	27.1	15.6	0.61	0.16	52.8
		@ Blow#	152	152	133	152	144	136	157	153	149
					Total num	ber of blows	s analyzed:	25			

Time Summary

Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230

0.92 in^2

OP: SPK

AR:

PDIPLOT Ver. 2008.2 - Printed: 2-Apr-2009

2 INCH SS;CME-55 AUTO;VTRANS

Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi

LE: 53.75 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

	Maximum Fo								2	no por mino	
BL#		BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
159	45.00	0	0.312	0.399	0.350	89.0	26.7	15.4	2.17	2.17	0.0
160	45.08	13	0.308	0.399	0.350	88.1	27.1	15.3	1.28	1.28	52.9
161	45.15	13	0.313	0.411	0.350	89.4	27.3	14.9	0.96	0.96	53.7
163	45.31	13	0.309	0.395	0.350	88.2	27.2	15.2	0.64	0.55	0.0
166	45.54	13	0.307	0.408	0.350	87.8	27.3	15.4	0.55	0.50	38.6
170	45.85	13	0.307	0.387	0.350	87.8	27.2	15.0	0.53	-0.13	53.3
171	45.92	13	0.313	0.390	0.350	89.5	27.1	15.3	0.49	-0.81	53.2
172	46.00	13	0.298	0.380	0.350	85.2	27.7	14.8	0.50	-0.07	53.2
175	46.23	13	0.303	0.384	0.350	86.7	27.5	14.9	0.50	0.40	30.4
176	46.31	13	0.295	0.374	0.350	84.3	27.4	15.1	0.48	0.07	53.2
177	46.38	13	0.305	0.385	0.350	87.3	27.2	15.2	0.49	0.32	52.9
178	46.46	13	0.303	0.378	0.350	86.6	27.7	14.7	0.49	0.31	53.3
179	46.54	13	0.299	0.373	0.350	85.4	27.5	14.7	0.48	0.03	53.1
180	46.62	13	0.306	0.384	0.350	87.5	27.4	15.0	0.50	0.39	53.2
181	46.69	13	0.305	0.385	0.350	87.1	27.3	14.9	0.49	0.35	53.3
182	46.77	13	0.307	0.387	0.350	87.7	27.0	15.3	0.51	0.48	53.0
184	46.92	13	0.302	0.386	0.350	86.2	27.0	15.1	0.49	0.40	53.7
		Average	0.305	0.389	0.350	87.3	27.3	15.1	0.68	0.42	50.7
		Std. Dev.	0.005	0.010	0.000	1.4	0.3	0.2	0.43	0.62	6.5
	N	laximum	0.313	0.411	0.350	89.5	27.7	15.4	2.17	2.17	53.7
	(@ Blow#	161	161	159	171	178	159	159	159	161
		/linimum	0.295	0.373	0.350	84.3	26.7	14.7	0.48	-0.81	30.4

	Q 2	Total number of blows analyzed: 1	7
Time Summary			

@ Blow#

176

Drive	2 minutes 12 seconds	10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13
Stop	15 minutes 45 seconds	10:12:51 AM - 10:28:36 AM
Drive	19 seconds	10:28:36 AM - 10:28:55 AM BN 14 - 31
Stop	24 minutes 21 seconds	10:28:55 AM - 10:53:16 AM
Drive	32 seconds	10:53:16 AM - 10:53:48 AM BN 32 - 61
Stop	17 minutes 39 seconds	10:53:48 AM - 11:11:27 AM
Drive	19 seconds	11:11:27 AM - 11:11:46 AM BN 62 - 79
Stop	23 minutes 58 seconds	11:11:46 AM - 11:35:44 AM
Drive	33 seconds	11:35:44 AM - 11:36:17 AM BN 80 - 110
Stop	59 minutes 44 seconds	11:36:17 AM - 12:36:01 PM
Drive	40 seconds	12:36:01 PM - 12:36:41 PM BN 111 - 132
Stop	21 minutes 42 seconds	12:36:41 PM - 12:58:23 PM
Drive	27 seconds	12:58:23 PM - 12:58:50 PM BN 133 - 158
Stop	31 minutes 23 seconds	12:58:50 PM - 1:30:13 PM
Drive	43 seconds	1:30:13 PM - 1:30:56 PM BN 159 - 185
Stop	19 hours 15 minutes 27 seconds	1:30:56 PM - 8:46:23 AM
Drive	49 seconds	8:46:23 AM - 8:47:12 AM BN 186 - 230

179

159

176

Total time [22:36:33] = (Driving [0:06:34] + Stop [22:29:59])

Remove and 38.2 BPMANC 53.7

175

171

178

159

179

2 INCH SS;CME-55 AUTO;VTRANS Test date: 23-Sep-2008

OP: SPK
AR: 0.92 in^2

SP: 0.492 k/ft3

LE: 53.75 ft WS: 16,807.7 f/s

EM: 30,000 ksi JC: 0.00 VMX: Maximum Velocity

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio

DMX: Maximum Displacement
DFN: Final Displacement
RPM: Rlows per Minute

	Energy Tra Maximum I								BPM: Blov	ws per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
<i>D</i>	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
186	50.00	0	0.298	0.391	0.350	(%) 85,2	26.9	14.5	0.80	0.59	0.0
187	50.05	22	0.297	0.392	0.350	84.9	26.5	14.8	0.58	0.38	52.4
188	50.09	22	0.303	0.393	0.350	86.6	26.9	15.2	0.68	0.68	53.0
189	50.14	22	0.303	0.397	0.350	86.6	26.5	15.3	0.53	0.26	52.7
190	50.18	22	0.303	0.391	0.350	86.6	26.6	15.3	0.58	0.58	52.8
191	50.23	22	0.303	0.398	0.350	86.7	27.1	15.2	0.54	0.50	52.8
192	50.27	22	0.302	0.399	0.350	86.4	26.9	15.2	0.53	0.44	52.6
193	50.32	22	0.304	0.397	0.350	86.9	27.1	15.4	0.55	0.53	52.8
194	50.36	22	0.301	0.399	0.350	85.9	27.3	15.0	0.54	0.49	52.7
195	50.41	22	0.306	0.399	0.350	87.5	27.4	15.2	0.56	0.44	52.8
196	50.45	22	0.308	0.396	0.350	88.0	27.2	15.5	0.88	0.88	52.8
197	50.50	22	0.302	0.399	0.350	86.3	27.4	15.1	0.60	0.60	52.7
198	50.55	22	0.310	0.404	0.350	88.4	27.0	14.9	0.72	0.72	52.9
199	50.59	22	0.299	0.391	0.350	85.5	27.3	15.3	0.57	0.42	52.6
200	50.64	22	0.306	0.403	0.350	87.4	27.5	15.0	0.69	0.69	52.8
201	50.68	22	0.303	0.391	0.350	86.7	27.5	15.2	0.82	0.82	52.6
202	50.73	22	0.300	0.394	0.350	85.7	27.6	15.1	0.55	0.38	52.9
203	50.77	22	0.298	0.391	0.350	85.3	27.6	15.1	0.57	0.55	52.6
204	50.82	22	0.298	0.387	0.350	85.2	27.4	15.2	0.69	0.69	52.9
205	50.86	22	0.297	0.388	0.350	85.0	27.5	15.2	0.71	0.71	52.6
206	50.91	22	0.297	0.393	0.350	84.8	27.2	15.2	0.54	0.41	52.8
207	50.95	22	0.301	0.395	0.350	85.9	27.5	15.1	0.68	0.68	52.6
208	51.00	22	0.299	0.393	0.350	85.6	27.5	15.1 15.1	0.58	0.55	52.8
209	51.05	22 22	0.294	0.386	0.350	84.0	27.3	15.1	0.56	0.39	52.8
210	51.09	22	0.305	0.395	0.350	87.1	27.4	15.0	0.89	0.89	52.8
211	51.14	22	0.293	0.390	0.350	83.7	27.6	15.1	0.59	0.46	52.7
212	51.18	22 22	0.296	0.388	0.350	84.6	27.6	15.1	0.65	0.65	52.7
213	51.23	22	0.293	0.387	0.350	83.8	27.6	15.2	0.60	0.41	52.7
214	51.27	22	0.295	0.388	0.350	84.2	27.7	15.1	0.75	0.75	52.7
215	51.32	22 22	0.297	0.387	0.350	84.9	27.6	15.1	0.74	0.74	52.7
216	51.36	22	0.298	0.393	0.350	85.2	27.8	15.1	0.62	0.57	52.8
217	51.41	22	0.290	0.386	0.350	82.9	27.6	15.1	0.57	0.35	52.9
218	51.45	22	0.294	0.387	0.350	84.0	27.5	15.2	0.76	0.76	52.8
219	51.50	22	0.299	0.390	0.350	85.4	27.5	15.0	0.62	0.62	52.7
220	51.55	22	0.295	0.389	0.350	84.3	27.4	15.2	0.56	0.55	52.8
221	51.59	22	0.293	0.385	0.350	83.7	27.2	15.1	0.57	0.56	52.7
222	51.64	22	0.289	0.372	0.350 0.350	82.6 84.5	27.2 27.7	15.2 15.3	0.61 0.64	0.49 0.61	52.9 52.7
223	51.68	22	0.296	0.382			27.7 27.5	15.3	0.65	0.63	52.7 52.9
224	51.73	22 22	0.296	0.386 0.382	0.350 0.350	84.6 83.1	27.5 27.7	15.1	0.63	0.63	52.9 52.6
225 226	51.77 51.82	22 22	0.291 0.300	0.384	0.350	85.8	27.7 27.9	15.5	0.63	-0.06	52.5 52.5
227	51.86	22	0.300	0.383	0.350	81.7	27. 9 27.9	15.1	0.54	0.20	53.2
228	51.91	22	0.294	0.383	0.350	83.9	27.4	15.2	0.52	-0.45	52.3
229	51.95	22	0.294	0.399	0.350	85.5	27.3	15.1	0.52	0.41	53.2
230	52.00	22	0.299	0.384	0.350	83.0	27.4	15.0	0.52	0.29	52.7
	32.00					85.2	27.4	15.1	0.63	0.52	52.8
		Average Std. Dev.	0.298 0.005	0.391 0.006	0.350 0.000	85.2 1.5	0.3	0.2	0.63	0.52	52.8 0.2
			0.005	0.404	0.350	88.4	27.9	15.5	0.10	0.23	53.2
		Maximum Rlou#	198	198	186	00. 4 198	27.9	196	210	210	227
		@ Blow# Minimum	0.286	0.372	0.350	81.7	26.5	14.5	0.51	-0.45	52.3
		@ Blow#	227	222	186	227	187	186	230	228	228
		W DIOW#	221	<u> </u>	T-1-1-	441	107	100	230	220	220

Time Summary

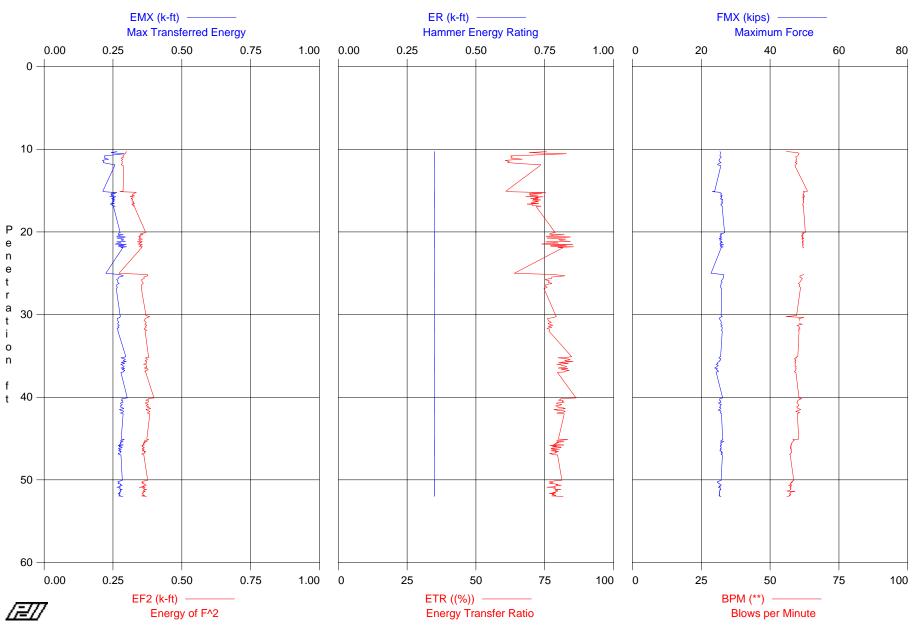
Drive 2 minutes 12 seconds

Stop 15 minutes 45 seconds

Drive 19 seconds

10:10:39 AM - 10:12:51 AM (9/23/2008) BN 1 - 13

Total number of blows analyzed: 45


10:12:51 AM - 10:28:36 AM

10:28:36 AM - 10:28:55 AM BN 14 - 31

Test date: 23-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VTRANS RSCH011-703 - GD-2

Geosciences Testing Case Method Results		Inc				PDIPLO	T Ver. 2008	Pa .2 - Printed: 3-	age 1 of 1 Apr-2009
VTRANS RSCH011- OP: SPK	703 - GD-2							SS;CME-45C; Test date: 23-5	
AR: 0.92 in^2 LE: 53.83 ft WS: 16,807.7 f/s								EM: 30,	.492 k/ft3 ,000 ksi 0.00
EMX: Max Transferre EF2: Energy of F^2 ER: Hammer Energ ETR: Energy Transfer FMX: Maximum Force	gy Rating er Ratio						DMX: N DFN: F	Maximum Velo Maximum Disp Final Displacen Blows per Minu	lacement nent
Statistics for entire file	e (214 blows))							
	EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in	DFN in	BPM **
Average Std. Dev.	0.271 0.018	0.353 0.026	0.350 0.001	77.4 5.0	25.5 0.5	14.7 0.5	0.95 0.40	0.81 0.71	59.8 1.8
Maximum @ Blow#	0.302 141	0.399 141	0.350 3	86.4 141	26.8 51	17.0 82	3.08 83	3.08 83	63.6 18
Minimum @ Blow#	0.212 11	0.272 81	0.350 3	60.6 11	22.9 81	12.8 19	0.45 155	-4.75 11	55.8 97

Time	Sum	man	,
------	-----	-----	---

	•	
Drive	19 seconds	1:22:40 PM - 1:22:59 PM (9/23/2008) BN 1 - 16
Stop	19 hours 15 minutes 11 seconds	1:22:59 PM - 8:38:10 AM
Drive	31 seconds	8:38:10 AM - 8:38:41 AM BN 17 - 49
Stop	19 minutes 16 seconds	8:38:41 AM - 8:57:57 AM
Drive	28 seconds	8:57:57 AM - 8:58:25 AM BN 50 - 80
Stop	19 minutes 22 seconds	8:58:25 AM - 9:17:47 AM
Drive	12 seconds	9:17:47 AM - 9:17:59 AM BN 81 - 94
Stop	18 minutes 22 seconds	9:17:59 AM - 9:36:21 AM
Drive	26 seconds	9:36:21 AM - 9:36:47 AM BN 95 - 112
Stop	22 minutes 47 seconds	9:36:47 AM - 9:59:34 AM
Drive	26 seconds	9:59:34 AM - 10:00:00 AM BN 113 - 139
Stop	1 hour 6 minutes 37 seconds	10:00:00 AM - 11:06:37 AM
Drive	22 seconds	11:06:37 AM - 11:06:59 AM BN 140 - 163
Stop	31 minutes 18 seconds	11:06:59 AM - 11:38:17 AM
Drive	31 seconds	11:38:17 AM - 11:38:48 AM BN 164 - 195
Stop	25 minutes 49 seconds	11:38:48 AM - 12:04:37 PM
Drive	35 seconds	12:04:37 PM - 12:05:12 PM BN 196 - 230
Total time	[22:42:32] = (Driving [0:03:50] + Stop [3	22-38-421)

Total time [22:42:32] = (Driving [0:03:50] + Stop [22:38:42])

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-2

2 INCH SS;CME-45C;VTRANS Test date: 23-Sep-2008 OP: SPK SP: 0.492 k/ft3 EM: 30,000 ksi AR: 0.92 in^2 LE: 53.83 ft

WS: 16,807.7 f/s JC: 0.00 VMX: Maximum Velocity EMX: Max Transferred Energy EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio DMX: Maximum Displacement
DFN: Final Displacement BPM: Blows per Minute

FMX: Maximum Force

BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
3	10.27	8	0.265	0.299	0.350	75.7	25.4	16.0	2.17	2.17	55.9
4	10.40	8	0.243	0.297	0.350	69.4	25.6	15.7	1. 4 7	1.47	60.1
5	10.53	8	0.290	0.294	0.350	82.9	25.5	15.3	2.43	2.43	60.5
7	10.80	8	0.219	0.285	0.350	62.6	25.4	15.9	1.15	0.72	60.0
8	10.93	8	0.221	0.289	0.350	63.2	25.8	15.2	1.06	0.33	59.3
9	11.07	8	0.219	0.280	0.350	62.7	25.5	15.6	1.08	0.50	59.5
10	11.20	8	0.234	0.285	0.350	66.9	25.3	15.7	1.14	0.64	59.6
11	11.33	8	0.212	0.281	0.350	60.6	25.2	14.9	0.74	-4.75	59.3
12	11.47	8	0.217	0.284	0.350	62.1	25.2	15.1	0.75	-2.37	59.8
13	11.60	8	0.215	0.283	0.350	61.6	25.8	14.9	0.71	-3.68	59.1
14	11.73	8	0.232	0.283	0.350	66.3	25.0	15.1	0.75	-0.74	59.8
15	11.87	8	0.257	0.280	0.350	73.6	24.7	15.0	0.84	0.30	59.3
16	12.00	8	0.256	0.288	0.350	73.2	25.7	15.0	0.82	-0.31	59.0
		Average	0.237	0.287	0.350	67.7	25.4	15.3	1.16	-0.25	59.3
		Std. Dev.	0.023	0.006	0.000	6.5	0.3	0.4	0.53	2.07	1.1
		Maximum	0.290	0.299	0.350	82.9	25.8	16.0	2.43	2.43	60.5
		@ Blow#	5	3	3	5	8	3	5	5	5
		Minimum	0.212	0.280	0.350	60.6	24.7	14.9	0.71	-4.75	55.9
		@ Blow#	11	9	3	11	15	11	13	11	3
		_						40			

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-2

OP: SPK

AR:

LE:

0.92 in^2 53.83 ft WS: 16,807.7 f/s

EMX: Max Transferred Energy EF2: Energy of F^2 Hammer Energy Rating ETR: Energy Transfer Ratio

Minimum

@ Blow#

0.239

28

0.312

28

0.350

JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

2 INCH SS:CME-45C:VTRANS

Test date: 23-Sep-2008

SP: 0.492 k/ft3

EM: 30,000 ksi

FMX: Maximum Force BL# **EMX** EF2 ER **FMX VMX** DMX DFN **BPM** depth **BLC ETR** bl/ft k-ft k-ft (%) f/s ft k-ft kips in 15.19 0.329 0.92 20 16 0.244 0.350 69.7 25.3 14.5 0.92 62.4 25.5 21 15.25 16 0.264 0.335 0.350 75.3 15.4 1.42 1.42 62.3 22 15.31 16 0.243 0.327 0.350 69.4 25.8 14.4 0.73 0.27 62.3 23 25.7 15.38 16 0.259 0.326 0.350 74.0 14.5 1.18 1.18 62.2 24 15.44 16 0.243 0.321 0.350 69.5 25.6 14.7 0.73 0.65 62.2 25 15.50 16 0.244 0.320 0.350 69.7 25.9 14.9 0.96 0.96 61.9 26 15.56 16 0.244 0.321 0.350 69.8 25.7 14.8 0.72 0.63 62.4 27 15.63 16 0.253 0.329 0.350 72.4 26.1 15.1 1.16 1.16 62.0 28 15.69 16 0.239 0.312 0.350 68.1 25.6 14.9 1.16 1.16 61.9 29 15.75 16 0.260 0.321 0.350 74.3 25.9 14.7 1.16 1.16 62.6 30 15.81 0.250 71.5 25.9 14.5 0.68 0.35 16 0.323 0.350 61.8 31 15.88 0.350 25.9 14.7 0.73 0.73 16 0.254 0.323 72.6 62.2 32 15.94 0.350 25.7 0.66 16 0.245 0.316 69.9 14.7 0.57 62.0 33 16.00 16 0.254 0.319 0.350 72.5 25.6 14.9 1.08 1.08 62.3 34 16.06 16 0.248 0.321 0.350 70.8 26.2 14.7 0.67 0.38 62.0 35 16.13 0.257 0.350 26.0 14.8 1.03 1.03 16 0.319 73.5 62.2 36 16.19 16 0.252 0.320 0.350 26.1 15.0 0.97 0.97 62.0 72.0 37 16.25 16 0.247 0.321 0.350 70.6 26.1 0.74 0.74 62.0 14.9 38 16.31 16 25.9 0.87 0.87 0.254 0.323 0.350 72.7 14.7 62.2 39 16.38 0.250 0.326 0.350 71.5 26.1 15.2 0.73 0.49 62.1 16 40 0.96 16.44 16 0.247 0.322 0.350 70.5 26.0 15.1 0.96 62.0 41 16.50 16 0.245 0.325 0.350 70.0 26.2 15.0 0.72 0.43 62.1 42 16.56 26.0 0.99 16 0.255 0.328 72.7 0.99 62.0 0.350 15.1 43 16.63 16 0.240 0.318 0.350 68.6 25.8 15.0 0.94 0.94 61.8 44 16.69 70.6 25.7 0.74 16 0.247 0.350 0.74 0.321 15.1 62.0 45 16.75 16 0.247 0.328 0.350 70.6 25.9 15.1 0.72 0.72 62.0 46 16.81 16 0.247 0.322 0.350 70.6 26.0 14.9 1.07 1.07 61.9 47 16.88 16 0.258 0.327 0.350 73.7 26.0 15.3 0.92 0.92 62.1 48 16.94 16 0.252 0.328 0.350 719 26.1 154 0.66 0.53 62.1 Average 0.250 0.323 0.350 71.3 25.9 14.9 0.90 0.83 62.1 Std. Dev. 0.006 0.005 0.000 1.8 0.2 0.3 0.20 0.29 0.2 0.264 0.335 0.350 75.3 26.2 15.4 1.42 1.42 62.6 Maximum @ Blow# 21 21 20 21 41 48 21 21 29

68.1 20 28 20 Total number of blows analyzed: 29

25.3

14.4

22

0.66

32

0.27

22

61.8

30

OP: SPK

2 INCH SS;CME-45C;VTRANS Test date: 23-Sep-2008

AR: 0.92 in^2 LE: 53.83 ft WS: 16,807.7 f/s SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

	Maximum Fo										(e
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
51	20.07	15	0.276	0.369	0.350	78.8	26.8	15.1	1.76	1.76	62.8
52	20.13	15	0.272	0.362	0.350	77.7	26.6	14.8	1.29	1.16	61.6
53	20.20	15	0.270	0.352	0.350	77.0	25.8	14.3	1.37	1.37	62.3
54	20.27	15	0.269	0.349	0.350	76.7	25.5	13.9	1.07	1.05	61.9
55	20.33	15	0.287	0.359	0.350	82.0	26.0	14.1	1.55	1.55	61.6
56	20.40	15	0.272	0.350	0.350	77.6	25.7	14.3	0.92	0.92	62.0
57	20.47	15	0.272	0.348	0.350	77.7	25.6	14.0	0.91	0.91	61.3
58	20.53	15	0.264	0.343	0.350	75.5	25.4	14.4	0.78	0.72	61.8
59	20.60	15	0.295	0.351	0.350	84.2	26.0	13.9	1.54	1.54	61.7
60	20.67	15	0.287	0.346	0.350	82.1	25.6	13.8	0.90	0.90	62.0
61	20.73	15	0.265	0.348	0.350	75.8	25.7	14.4	0.66	0.07	61.6
62	20.80	15	0.276	0.346	0.350	78.8	25.2	14.1	0.93	0.93	62.2
63	20.87	15	0.289	0.357	0.350	82.5	26.0	14.1	0.89	0.89	61.6
64	20.93	15	0.280	0.343	0.350	80.1	25.3	14.0	0.95	0.95	61.7
66	21.07	15	0.284	0.349	0.350	81.3	25.5	14.0	0.63	0.38	62.1
67	21.13	15	0.295	0.356	0.350	84.2	25.9	14.1	0.93	0.93	61.7
68	21.20	15	0.264	0.339	0.350	75.5	25.6	14.5	0.57	-0.02	62.1
69	21.27	15	0.275	0.353	0.350	78.7	26.2	14.4	0.59	0.47	61.7
70	21.33	15	0.280	0.348	0.350	79.9	25.5	14.2	1.06	1.06	61.9
71	21.40	15	0.265	0.348	0.350	75.7	25.6	14.2	0.57	0.30	62.0
72	21.47	15	0.259	0.342	0.350	74.0	25.4	14.4	0.56	0.47	61.7
73	21.53	15	0.298	0.357	0.350	85.1	26.5	14.2	1.08	1.08	62.1
74	21.60	15	0.270	0.350	0.350	77.0	25.6	14.4	0.57	0.38	61.9
75	21.67	15	0.290	0.352	0.350	82.8	25.9	14.3	0.99	0.99	61.8
76	21.73	15	0.270	0.345	0.350	77.2	25.5	14.2	0.56	0.26	62.0
77	21.80	15	0.299	0.357	0.350	85.4	26.4	14.2	1.19	1.19	61.9
78	21.87	15	0.279	0.353	0.350	79.8	25.7	14.3	0.56	0.21	62.1
79	21.93	15	0.285	0.353	0.350	81.5	25.8	14.2	0.96	0.96	61.8
		Average	0.278	0.351	0.350	79.5	25.8	14.2	0.94	0.83	61.9
		Std. Dev.	0.011	0.006	0.000	3.2	0.4	0.3	0.33	0.45	0.3
		laximum	0.299	0.369	0.350	85.4	26.8	15.1	1.76	1.76	62.8
		@ Blow#	77	51	51	77	51	51	51	51	51
		/linimum	0.259	0.339	0.350	74.0	25.2	13.8	0.56	-0.02	61.3
	(@ Blow#	72	68	51	72	62	60	72	68	57
					i otal num	ber of blows	s analyzed:	28			

0.92 in^2 53.83 ft

EMX: Max Transferred Energy

OP: SPK

WS: 16,807.7 f/s

AR:

LE:

Page 1 of 1

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME-45C;VTRANS Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

VMX: Maximum Velocity DMX: Maximum Displacement

EF2: ER: ETR: FMX:	Energy of Hammer Energy Tra	inergy Rating ansfer Ratio							DMX: Max DFN: Fina	imum Displ il Displacen vs per Minu	lacement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
82	25.15	7	0.275	0.375	0.350	78. 6	26.4	17.0	2.82	2.82	62.3
83	25.31	7	0.288	0.376	0.350	82.3	26.5	16.6	3.08	3.08	60.9
84	25.46	7	0.272	0.362	0.350	77.6	26.5	16.0	1.99	1.94	60.8
85	25.62	7	0.271	0.364	0.350	77.5	26.4	15.0	1.92	1.92	61.7
86	25.77	7	0.263	0.354	0.350	75.0	26.1	14.9	1.52	1.52	61.5
87	25.92	7	0.268	0.355	0.350	76.7	25.8	14.7	1.56	1.56	61.1
88	26.08	7	0.267	0.358	0.350	76.2	26.1	14.6	1.34	1.18	60.8
89	26.23	7	0.272	0.360	0.350	77.6	25.7	14.7	1.45	1.45	60.3
90	26.38	7	0.264	0.354	0.350	75.4	25.8	14.4	1.22	1.16	60.8
91	26.54	7	0.263	0.354	0.350	75.1	25.5	14.5	1.13	0.95	60.6
92	26.69	7	0.266	0.354	0.350	75.9	25.6	14.6	1.49	1.49	61.0
93	26.85	7	0.262	0.353	0.350	74.7	25.9	14.1	0.98	0.81	61.0
		Average	0.269	0.360	0.350	76.9	26.0	15.1	1.71	1.66	61.1
		Std. Dev.	0.007	0.008	0.000	2.0	0.3	0.9	0.62	0.67	0.5
		Maximum	0.288	0.376	0.350	82.3	26.5	17.0	3.08	3.08	62.3
		@ Blow#	83	83	82	83	84	82	83	83	82
		Minimum	0.262	0.353	0.350	74.7	25.5	14.1	0.98	0.81	60.3
		@ Blow#	93	93	82	93	91	93	93	93	89
					Total num	ber of blows	s analyzed:	12			

OP: SPK AR:

LE:

Page 1 of 1

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME-45C;VTRANS Test date: 23-Sep-2008

0.92 in^2 SP: 0.492 k/ft3 53.83 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F² ER: Hammer Energy Rating ETR: Energy Transfer Ratio FMX: Maximum Force DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
96	30.12	9	0.276	0.370	0.350	79.Ó	25.8	16.3	1.47	1.47	59.6
97	30.24	9	0.277	0.383	0.350	79.2	26.1	15.1	0.99	0.89	55.8
98	30.35	9	0.274	0.375	0.350	78.3	25.4	15.8	1.14	1.14	62.2
99	30.47	9	0.266	0.368	0.350	76.0	25.2	15.5	0.95	0.93	60.5
101	30.71	9	0.267	0.363	0.350	76.3	25.6	14.7	1.07	1.07	60.6
103	30.94	9	0.271	0.371	0.350	77.3	25.8	14.3	0.91	0.91	0.0
104	31.06	9	0.267	0.369	0.350	76.2	25.7	14.2	0.72	0.60	60.5
105	31.18	9	0.268	0.366	0.350	76.7	25.7	14.2	0.71	0.68	61.7
106	31.29	9	0.273	0.373	0.350	78.0	26.1	14.1	0.71	0.61	59.8
107	31.41	9	0.267	0.368	0.350	76.3	25.7	14.3	0.72	0.68	60.4
108	31.53	9	0.272	0.371	0.350	77.6	26 .1	14.1	0.70	0.61	60.7
109	31.65	9	0.265	0.366	0.350	75.8	26.1	14.3	0.69	0.63	60.4
110	31.76	9	0.268	0.363	0.350	76.7	26.0	14.5	0.80	0.78	60.9
111	31.88	9	0.268	0.373	0.350	76.6	25.8	14.4	0.75	0.73	60.2
112	32.00	9	0.268	0.367	0.350	76.5	26.1	13.8	0.67	0.51	60.5
		Average	0.270	0.370	0.350	77.1	25.8	14.7	0.87	0.81	60.3
		Std. Dev.	0.004	0.005	0.000	1.0	0.3	0.7	0.22	0.25	1.4
		Maximum	0.277	0.383	0.350	79.2	26.1	16.3	1.47	1.47	62.2
		@ Blow#	97	97	96	97	106	96	96	96	98
		Minimum	0.265	0.363	0.350	75.8	25.2	13.8	0.67	0.51	55.8
		@ Blow#	109	101	96	109	99	112	112	112	97

OP: SPK

2 INCH SS;CME-45C;VTRANS

AR: 0.92 in^2 LE: 53.83 ft WS: 16,807.7 f/s

Test date: 23-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2
ER: Hammer Energy Rating ETR: Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

BPM: Blows per Minute

	Maximum For								Brivi. Blows per ivilituti					
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM			
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**			
114	35.08	13	0.297	0.379	0.350	84.7	25.6	16.7	1.44	1,44	60.1			
115	35.15	13	0.292	0.381	0.350	83.4	25.3	14.9	0.93	0.72	59.3			
116	35.23	13	0.279	0.368	0.350	79.8	25.1	14.2	0.90	0.79	59.6			
117	35.31	13	0.287	0.370	0.350	82.1	25.5	14.3	1.14	1.14	58.9			
118	35.38	13	0.293	0.374	0.350	83.7	25.7	14.5	1.35	1.35	59.1			
119	35.46	13	0.295	0.375	0.350	84.2	25.5	14.5	0.89	0.82	59.0			
120	35.54	13	0.288	0.368	0.350	82.3	25.5	14.5	1.10	1.10	59.4			
121	35.62	13	0.289	0.368	0.350	82.5	25.2	14.4	1.04	1.04	59.1			
122	35.69	13	0.298	0.373	0.350	85.3	25.2	14.6	1.15	1.15	58.9			
123	35.77	13	0.280	0.371	0.350	80.1	24.8	14.5	0.72	0.57	59.4			
124	35.85	13	0.288	0.371	0.350	82.2	24.8	14.6	1.05	1.05	59.1			
125	35.92	13	0.292	0.371	0.350	83.5	24.8	14.6	1.22	1.22	59.1			
126	36.00	13	0.278	0.361	0.350	79.4	24.3	14.6	1.26	1.26	59.1			
127	36.08	13	0.283	0.371	0.350	80.8	24.6	14.8	0.78	0.61	59.1			
128	36.15	13	0.284	0.371	0.350	81.2	24.9	14.9	0.96	0.96	59.1			
129	36.23	13	0.288	0.370	0.350	82.4	24.6	14.6	1.24	1.24	59.1			
130	36.31	13	0.291	0.373	0.350	83.0	24.6	14.7	1.04	1.04	59.5			
131	36.38	13	0.287	0.372	0.350	82.0	24.2	15.1	0.89	0.87	59.4			
132	36.46	13	0.280	0.364	0.350	79.9	23.9	14.9	1.09	1.09	59.3			
133	36.54	13	0.292	0.374	0.350	83.4	24.7	14.9	1.21	1.21	59.5			
134	36.62	13	0.283	0.378	0.350	81.0	24.4	15.2	0.80	0.80	59.3			
135	36.69	13	0.290	0.375	0.350	82.8	24.5	14.8	0.96	0.96	59.4			
136	36.77	13	0.293	0.371	0.350	83.8	24.7	14.6	1.16	1.16	59.2			
137	36.85	13	0.288	0.366	0.350	82.4	25.1	14.7	0.77	0.71	59.0			
138	36.92	13	0.288	0.369	0.350	82.3	24.6	14.9	1.16	1.16	58.8			
139	37.00	13	0.279	0.369	0.350	79.6	24.3	15.2	0.68	0.49	59.4			
	/	Average	0.288	0.371	0.350	82.2	24.9	14.8	1.04	1.00	59.2			
	S	td. Dev.	0.006	0.004	0.000	1.6	0.5	0.4	0.20	0.24	0.3			
	M	aximum	0.298	0.381	0.350	85.3	25.7	16.7	1.44	1.44	60.1			
	@	Blow#	122	115	114	122	118	114	114	114	114			
	N	linimum	0.278	0.361	0.350	79.4	23.9	14.2	0.68	0.49	58.8			
	@	Blow#	126	126	114	126	132	116	139	139	138			
					Total num	ber of blows	analyzed:	26						

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-2

OP: SPK

2 INCH SS;CME-45C;VTRANS Test date: 23-Sep-2008

AR: 0.92 in^2 53.83 ft LE: WS: 16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

FINX:	Max I ransferred Energy
EF2:	Energy of F^2
ER:	Hammer Energy Rating
ETR:	Energy Transfer Ratio
C1 437	NA

VMX: Maximum Velocity DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

ft bl/ft k-ft k-ft k-ft 141 40.09 12 0.302 0.399 0.350 8 142 40.17 12 0.283 0.379 0.350 8 143 40.26 12 0.283 0.379 0.350 8 144 40.35 12 0.280 0.369 0.350 8	ETR FMX VMX DMX DFN BP (%) kips f/s in in 86.4 26.2 15.9 1.66 1.65 60 80.8 25.4 15.3 1.63 1.63 61 80.8 25.4 14.9 1.60 1.60 60 80.0 25.3 14.9 1.83 1.83 60 81.7 25.6 15.3 2.17 2.17 60 81.4 25.5 14.5 1.32 1.23 59 82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60 81.1 25.8 14.6 0.99 0.94 60
ft bl/ft k-ft k-ft k-ft 141 40.09 12 0.302 0.399 0.350 8 142 40.17 12 0.283 0.379 0.350 8 143 40.26 12 0.283 0.379 0.350 8 144 40.35 12 0.280 0.369 0.350 8	86.4 26.2 15.9 1.66 1.65 60 80.8 25.4 15.3 1.63 1.63 61 80.8 25.4 14.9 1.60 1.60 60 80.0 25.3 14.9 1.83 1.83 60 81.7 25.6 15.3 2.17 2.17 60 81.4 25.5 14.5 1.32 1.23 59 82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60
141 40.09 12 0.302 0.399 0.350 8 142 40.17 12 0.283 0.379 0.350 8 143 40.26 12 0.283 0.379 0.350 8 144 40.35 12 0.280 0.369 0.350 8	86.4 26.2 15.9 1.66 1.65 60 80.8 25.4 15.3 1.63 1.63 61 80.8 25.4 14.9 1.60 1.60 60 80.0 25.3 14.9 1.83 1.83 60 81.7 25.6 15.3 2.17 2.17 60 81.4 25.5 14.5 1.32 1.23 59 82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60
143 40.26 12 0.283 0.379 0.350 8 144 40.35 12 0.280 0.369 0.350 8	80.8 25.4 14.9 1.60 1.60 60 80.0 25.3 14.9 1.83 1.83 60 81.7 25.6 15.3 2.17 2.17 60 81.4 25.5 14.5 1.32 1.23 59 82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60
144 40.35 12 0.280 0.369 0.350 8	80.0 25.3 14.9 1.83 1.83 60 81.7 25.6 15.3 2.17 2.17 60 81.4 25.5 14.5 1.32 1.23 59 82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60
	81.7 25.6 15.3 2.17 2.17 60 81.4 25.5 14.5 1.32 1.23 59 82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60
145 40.43 12 0.286 0.379 0.350 8	81.4 25.5 14.5 1.32 1.23 59 82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60
	82.0 25.7 14.5 1.49 1.49 59 79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60.
	79.3 25.0 14.4 1.54 1.54 60 79.4 25.4 14.3 0.99 0.99 60
	79.4 25.4 14.3 0.99 0.99 60
	81.1 25.8 14.6 0.99 0.94 60
	80.6 25.6 14.3 1.03 1.03 60.
	79.0 25.4 14.4 0.69 0.69 60.
	79.8 25.5 14.6 0.46 0.24 59.
	79.8 25.3 14.2 0.45 0.24 59.
	81.9 25.7 14.6 0.45 0.37 59.
	82.5 25.7 14.7 0.49 0.49 60.
	78.4 25.2 14.6 0.58 0.58 61.
	79.4 24.9 14.4 0.48 0.21 60.
	82.0 25.7 14.3 0.50 0.48 59.
	82.4 25.7 14.3 0.50 0.36 59.
	81.5 25.6 14.5 0.92 0.92 60.
	79.4 25.6 14.5 0.59 0.59 60.
	<u>82.1 25.9 14.3 0.66 0.66 59.</u>
	80.9 25.5 14.6 1.00 0.95 60.
Std. Dev. 0.006 0.007 0.000	1.7 0.3 0.4 0.53 0.57 0.
	86.4 26.2 15.9 2.17 2.17 61.
	141 141 141 145 145 14
	78.4 24.9 14.2 0.45 0.21 59.
@ Blow# 157 148 _ 141	157 158 154 155 158 16

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-2

OP: SPK

0.92 in^2 53.83 ft

WS: 16,807.7 f/s

AR:

LE:

2 INCH SS:CME-45C:VTRANS Test date: 23-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi 0.00 JC:

EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2 Hammer Energy Rating ETR: Energy Transfer Ratio

DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

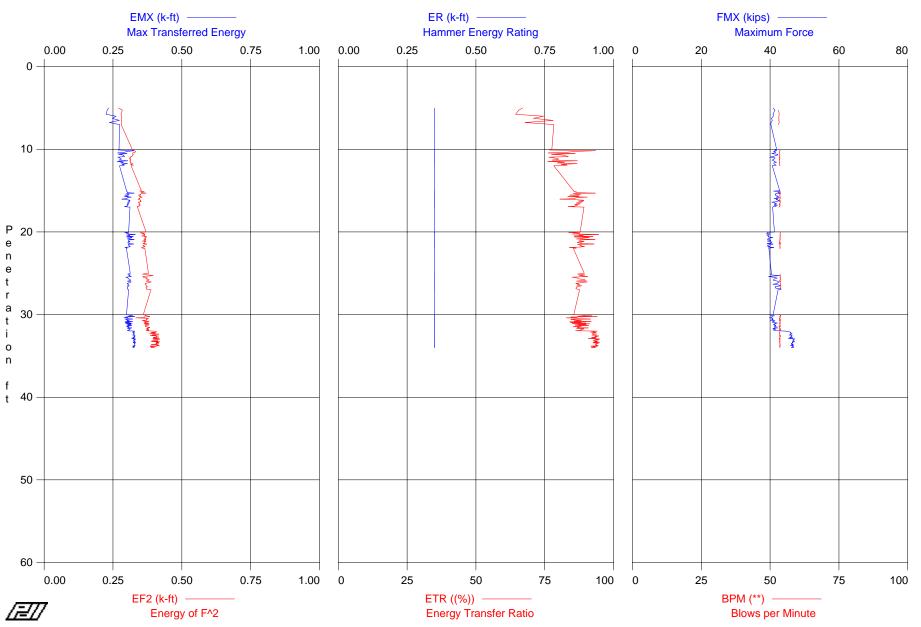
FMX: Maximum Force BL# depth BLC **EMX** EF2 ER **ETR FMX** VMX DMX DFN врм bl/ft k-ft k-ft (%) ft k-ft kips f/s in in 165 45.06 16 0.280 0.373 0.350 80.0 26.2 14.4 1.21 60.4 1.21 0.380 166 45.13 16 0.291 0.350 83.3 26.3 14.5 1.26 1.26 58.3 167 45.19 16 0.283 0.374 0.350 80.8 26.0 14.4 0.98 0.94 58.8 168 45.26 16 0.278 0.365 0.350 79.3 25.7 14.5 1.00 0.99 58.5 169 45.32 16 0.278 0.364 0.350 79.5 25.6 14.5 0.98 0.98 58.3 170 45.39 16 0.287 0.374 0.350 26.6 82.0 14.7 0.79 0.67 58.3 45.45 171 16 0.277 0.361 0.350 79.2 25.7 14.4 0.87 0.87 58.1 172 45.52 16 0.280 0.366 0.350 80.0 25.8 14.7 0.74 0.63 57.9 173 45.58 16 0.276 0.361 0.350 78.9 25.6 14.7 0.80 0.80 57.7 174 45.65 16 0.277 0.363 0.350 79.0 25.8 14.6 0.74 0.64 57.6 175 45.71 16 0.274 0.359 0.350 78.2 25.7 14.8 0.75 0.75 57.8 176 45.77 16 0.287 0.364 0.350 81.9 25.9 14.6 0.85 0.85 57.9 45.84 0.269 177 16 0.355 0.350 76.9 25.6 14.6 0.71 0.67 57.5 178 45.90 16 0.277 0.358 0.350 79.2 25.6 14.5 0.78 0.78 57.5 179 45.97 16 0.272 0.356 0.350 77.8 25.5 14.7 0.72 0.72 57.4 180 46.03 16 0.283 0.361 0.350 80.8 25.8 14.6 0.79 0.79 57.7 181 46.10 16 0.283 0.364 0.350 80.9 25.8 14.5 0.80 0.80 57.4 182 46.16 16 0.359 0.350 0.271 77.3 25.7 14.6 0.64 0.49 57.7 183 46.23 16 0.271 0.357 0.350 77.4 25.6 14.5 0.74 0.74 57.4 184 46.29 16 0.281 0.364 0.350 80.3 25.8 14.4 0.88 0.88 57.8 185 46.35 16 0.272 0.357 0.350 25.5 0.60 77.6 14.6 0.56 57.5 186 46.42 16 0.277 0.362 0.350 25.7 79.2 14.3 0.73 0.73 57.7 46 48 187 16 0.270 0.356 0.350 77.3 25.3 14.6 0.63 0.63 57.6 188 46.55 16 0.280 0.369 0.350 80.0 25.8 14.5 0.63 0.63 57.8 189 46.61 0.364 16 0.276 0.350 78.8 26.0 0.57 14.6 0.53 57.9 190 46.68 16 0.277 0.364 0.350 79.3 25.8 0.73 14.5 0.73 57.8 191 46.74 16 0.276 0.367 0.350 78.9 26.2 14.9 0.49 0.35 57.6 192 46.81 16 0.269 0.360 0.350 76.8 25.9 14.9 0.47 0.34 57.5 193 46.87 16 0.271 0.355 0.350 25.7 0.55 0.55 77.5 14.8 57.4 194 46.94 16 0.272 0.358 0.350 77.8 25.9 0.49 14.9 0.46 57.1 195 47.00 16 79.7 0.279 0.362 0.350 26.2 14.7 0.74 0.74 57.3 Average 0.277 0.363 0.350 79.2 25.8 0.76 0.73 14.6 57.8 Std. Dev. 0.005 0.006 0.000 1.6 0.3 0.1 0.18 0.21 0.6 Maximum 0.291 0.380 0.350 83.3 26.6 14 9 1.26 60.4 1.26 @ Blow# 166 166 165 166 170 194 166 166 165 Minimum 0.269 0.355 0.350 76.8 25.3 14.3 0.47 0.34 57 1 @ Blow# 177 177 165 192 187 186 192 192 194

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-2

2 INCH SS;CME-45C;VTRANS Test date: 23-Sep-2008

OP: SPK AR: SP: 0.492 k/ft3 EM: 30,000 ksi 0.92 in^2 53.83 ft LE: WS: 16,807.7 f/s


JC: 0.00 EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio DMX: Maximum Displacement
DFN: Final Displacement BPM: Blows per Minute

	Maximum For								te		
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
197	50.06	17	0.284	0.376	0.350	81.3	25.8	14.8	0.86	0.82	58.6
198	50.12	17	0.276	0.365	0.350	78.8	25.3	14.7	0.77	0.71	58.3
199	50.18	17	0.271	0.358	0.350	77.4	25.1	14.6	0.76	0.72	57.9
200	50.24	17	0.268	0.357	0.350	76.6	24.7	14.2	0.71	0.62	58.2
201	50.29	17	0.270	0.354	0.350	77.2	24.7	13.8	0.75	0.75	57.6
202	50.35	17	0.273	0.361	0.350	78.0	24.9	14.8	0.72	0.72	57.8
203	50.41	17	0.268	0.356	0.350	76.7	25.0	14.4	0.66	0.52	57.3
204	50.47	17	0.273	0.364	0.350	78.1	25.3	14.0	0.69	0.66	57.6
205	50.53	17	0.279	0.366	0.350	79.7	25.4	14.4	0.68	0.61	57.6
206	50.59	17	0.277	0.367	0.350	79.1	25.7	14.7	0.66	0.45	57.6
207	50.65	17	0.283	0.371	0.350	81.0	25.8	14.9	0.70	0.69	56.7
208	50.71	17	0.276	0.363	0.350	79.0	25.5	14.6	0.80	0.80	57.9
209	50.76	17	0.275	0.358	0.350	78.7	25.2	14.8	0.68	0.68	57.4
210	50.82	17	0.276	0.364	0.350	78.8	25.5	14.3	0.65	0.63	57.6
211	50.88	17	0.265	0.346	0.350	75.8	24.9	14.6	0.61	0.54	57.3
212	50.94	17	0.276	0.367	0.350	78.9	25.5	14.9	0.64	0.64	57.2
213	51.00	17	0.274	0.359	0.350	78.2	25.6	14.7	0.63	0.50	57.6
214	51.06	17	0.276	0.364	0.350	78.9	25.5	14.9	0.74	0.74	57.3
215	51.12	17	0.276	0.363	0.350	78.8	25.4	14.4	0.67	0.62	57.4
216	51.18	17	0.283	0.372	0.350	80.8	25.7	14.3	0.59	-0.06	57.4
217	51.24	17	0.275	0.362	0.350	78.7	25.5	14.4	0.72	0.70	57.3
218	51.29	17	0.278	0.363	0.350	79.4	25.4	14.3	0.77	0.77	56.8
219	51.35	17	0.279	0.361	0.350	79.8	25.4	14.7	0.89	0.89	56.1
220	51.41	17	0.276	0.367	0.350	79.0	25.3	14.7	0.69	0.53	59.0
221	51.47	17	0.276	0.359	0.350	78.8	25.4	14.6	0.68	0.57	57.5
222	51.53 54.50	17	0.273	0.361	0.350	77.9	25.3	14.6	0.61	0.56	57.3
223	51.59	17	0.276	0.358	0.350	79.0	25.2	14.8	0.69	0.69	57.2
224 225	51.65	17	0.269	0.356	0.350	76.7	25.3	14.7	0.69	0.69	57.1
226	51.71 51.70	17	0.274	0.359	0.350	78.3	25.4	15.0	0.71	0.66	57.4
227	51.76 51.82	17 17	0.272 0.274	0.360	0.350	77.7	25.2	14.2	0.75	0.68	57.5
228	51.82 51.88	17	0.274	0.359 0.365	0.350 0.350	78.4 79.0	25.4 25.2	14.4	0.80	0.79	57.0 57.0
229	51.66 51.94	17	0.276				25.2 25.2	14.9	0.82	0.82	57.3
230	52.00	17	0.271	0.355 0.372	0.350 0.350	77.5 81.7	25.2 25.8	15.1	0.67	0.58	57.1
230								14.6	0.82	0.82	56.1
		Average	0.275	0.362	0.350	78.6	25.3	14.6	0.71	0.65	57.4
		td. Dev.	0.005	0.006	0.000	1.3	0.3	0.3	0.07	0.16	0.6
		aximum	0.286	0.376	0.350	81.7	25.8	15.1	0.89	0.89	59.0
		Blow#	230	197	197	230	207	229	219	219	220
		linimum	0.265	0.346	0.350	75.8	24.7	13.8	0.59	-0.06	56.1
	Q	Blow#	211	211	197	211	200	201	216	216	219

Test date: 24-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VRANS RSCH001-703 - GD-3

2 INCH SS;CME55 AUTO;VTRANS

OP: SPK	Test date: 24-Sep-2008
AR: 1.45 in^2	SP: 0.492 k/ft3
LE: 37.08 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
	1484 84 1 14

EMX:	Max Transferred Energy	VMX:	Maximum Velocity
EF2:	Energy of F^2	DMX:	Maximum Displacement
ER:	Hammer Energy Rating	DFN:	Final Displacement
ETR:	Energy Transfer Ratio	BPM:	Blows per Minute
FMX:	Maximum Force		

Statistics for entire file (205 blows)

stics for critice in	C (200 DIO#3	,							
	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
Average	0.306	0.364	0.350	87.4	42.2	15.4	0.91	0.86	53.6
Std. Dev.	0.019	0.031	0.001	5.4	2.3	1.2	0.39	0.42	0.2
Maximum	0.332	0.420	0.350	94.9	47.1	17.8	2.72	2.68	53.9
@ Blow#	189	189	1	200	198	16	1	1	69
Minimum	0.225	0.270	0.350	64.4	39.0	13.1	0.48	-0.11	53.0
@ Blow#	4	1	1	4	71	174	161	72	9

Time Summary

Drive	9 seconds	10:57:43 AM - 10:57:52 AM (9/24/2008) BN 1 - 9
Stop	27 minutes 39 seconds	10:57:52 AM - 11:25:31 AM
Drive	26 seconds	11:25:31 AM - 11:25:57 AM BN 10 - 33
Stop	28 minutes 57 seconds	11:25:57 AM - 11:54:54 AM
Drive	36 seconds	11:54:54 AM - 11:55:30 AM BN 34 - 67
Stop	55 minutes 16 seconds	11:55:30 AM - 12:50:46 PM
Drive	36 seconds	12:50:46 PM - 12:51:22 PM BN 68 - 101
Stop	27 minutes 43 seconds	12:51:22 PM - 1:19:05 PM
Drive	23 seconds	1:19:05 PM - 1:19:28 PM BN 102 - 123
Stop	25 minutes 22 seconds	1:19:28 PM - 1:44:50 PM
Drive	44 seconds	1:44:50 PM - 1:45:34 PM BN 124 - 164
Stop	26 minutes 23 seconds	1:45:34 PM - 2:11:57 PM
Drive	56 seconds	2:11:57 PM - 2:12:53 PM BN 165 - 216

Total time [3:15:10] = (Driving [0:03:50] + Stop [3:11:20])

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VRANS RSCH001-703 - GD-3

2 INCH SS;CME55 AUTO;VTRANS

OP: SPK

Test date: 24-Sep-2008

AR: 1.45 in^2 37.08 ft LE: WS: 16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum F	orce								•	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	· in	in	**
1	5.00	4	0.234	0.270	0.350	66.9	40.9	16.8	2.72	2.68	0.0
2	5.25	4	0.229	0.284	0.350	65.6	41.4	16.8	2.32	2.22	53.1
4	5.75	4	0.225	0.279	0.350	64.4	40.9	16.1	2.10	2.10	53.3
5	6.00	4	0.261	0.281	0.350	74.6	40.9	16.3	2.63	2.63	53.2
6	6.25	4	0.248	0.281	0.350	70.9	40.4	15.8	2.42	2.42	53.2
7	6.50	4	0.273	0.281	0.350	78.1	40.7	15.8	2.27	2.27	53.2
8	6.75	4	0.237	0.282	0.350	67.8	40.3	16.0	2.07	2.07	53.3
9	7.00	4	0.274	0.280	0.350	78.3	40.2	15.8	1.93	1.93	53.0
	Average Std. Dev. Maximum @ Blow#		0.248	0.280	0.350	70.8	40.7	16.2	2.31	2.29	53.2
			0.018	0.004	0.000	5.2	0.4	0.4	0.26	0.25	0.1
			0.274	0.284	0.350	78.3	41.4	16.8	2.72	2.68	53.3
			9	2	1	9	2	2	1	1	4
		Minimum	0.225	0.270	0.350	64.4	40.2	15.8	1.93	1.93	53.0
		@ Blow#	4	1	1	4	9	9	9	9	9
					Total nun	number of blows analyzed: 8					

@ Blow#

27

23

10

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VRANS RSCH001-703 - GD-3

OP: SPK

2 INCH SS; CME55 AUTO; VTRANS Test date: 24-Sep-2008

> SP: 0.492 k/ft3 EM: 30,000 ksi

AR: 1.45 in^2 LE: 37.08 ft

WS: 16,807.7 f/s JC: 0.00 EMX: Max Transferred Energy VMX: Maximum Velocity Energy of F^2 DMX: Maximum Displacement DFN: Final Displacement ER: Hammer Energy Rating BPM: Blows per Minute ETR:

Energy Transfer Ratio FMX: Maximum Force BL# depth **BLC EMX** EF2 ER **ETR FMX** VMX DMX DFN **BPM** bl/ft k-ft k-ft k-ft (%) kips f/s in 10 10.00 0 0.272 0.320 0.350 776 41.9 16.8 1.85 1.85 0.0 11 10.09 12 0.269 0.320 0.350 76.9 41.3 17.6 1.01 0.79 53.7 12 10.17 0.328 0.350 41.9 16.8 1.50 1.50 53.5 12 0.327 93.5 13 10.26 12 0.300 0.332 0.350 85.7 41.0 16.7 1.19 1.19 53.4 14 10.35 12 0.292 0.330 0.350 83.3 41.6 16.6 1.23 1.22 53.4 15 10.43 12 0.267 0.322 0.350 76.3 41.2 16.2 1.13 1.09 53.5 16 10.52 12 0.301 0.322 0.350 86.1 40.5 17.8 1.30 1.30 53.5 17 10.61 12 0.271 0.324 0.350 77.5 42.3 16.7 1.10 1.08 53.4 18 10.70 12 0.286 0.321 0.350 81.6 42.1 17.1 1.13 1.12 53.4 40.8 1.00 20 10.87 12 0.292 0.319 0.350 83.5 15.8 1.00 53.4 21 10.96 12 0.268 0.311 0.350 76.4 39.9 15.3 1.11 1.11 53.6 0.91 0.82 22 11.04 12 0.274 0.314 0.350 78.4 41.5 15.6 53.3 23 11.13 12 0.279 0.310 0.350 79.8 41.2 15.6 1.03 1.03 53.6 24 11.22 12 0.280 0.314 0.350 80.0 41.1 15.6 1.02 1.02 53.3 25 40.6 15.7 1.15 11.30 12 0.272 0.311 0.350 77.6 1.15 53.5 41.1 1.21 53.5 26 11.39 12 0.304 0.314 0.350 86.8 15.6 1.21 27 0.350 76.1 41.2 15.6 1.08 1.05 53.4 11.48 12 0.266 0.312 28 0.350 41.8 16.0 1.07 1.05 53.4 11.57 12 0.288 0.315 82.3 29 11.65 12 0.279 0.313 0.350 79.7 41.1 15.9 1.26 1.26 53.6 1.06 30 11.74 12 0.303 0.321 0.350 86.7 41 1 15.8 1.06 53.5 31 0.350 81.0 41.3 15.8 1.18 1.18 53.3 11.83 12 0.283 0.314 0.93 0.324 41.7 0.86 32 11.91 12 0.291 0.350 83.1 15.8 53.5 12.00 0.350 78.3 40.6 1.13 1.13 33 12 0.274 0.316 15.4 53.6 Average 0.284 0.319 0.350 81.2 41.3 16.2 1.15 1.13 53.5 0.1 Std. Dev. 0.015 0.006 0.000 0.6 0.7 0.19 0.22 4.3 0.327 0.332 0.350 93.5 42.3 17.8 1.85 1.85 53.7 Maximum 10 10 @ Blow# 12 17 16 11 12 13 10 Minimum 0.266 0.310 0.350 76.1 39.9 15.3 0.91 0.79 53.3

> 27 Total number of blows analyzed: 23

21

21

22

11

22

OP: SPK

2 INCH SS;CME55 AUTO;VTRANS Test date: 24-Sep-2008

AR: 1.45 in^2 LE: 37.08 ft WS: 16,807.7 f/s SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

	Energy Trans Maximum Fo								BPM: Blov	vs per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
34	15.00	0	0.299	0.353	0.350	85.4	42.8	15.7	1.01	1.01	0.0
35	15.06	17	0.299	0.348	0.350	85.4	41.0	15.5	0.72	0.72	53.8
36	15.12	17	0.302	0.363	0.350	86.4	42.7	16.3	0.65	0.54	53.4
37	15.18	17	0.302	0.352	0.350	86.2	42.2	16.6	0.71	0.70	53.6
38	15.24	17	0.303	0.356	0.350	86.7	42.4	16.2	0.89	0.89	53.6
39	15.30	17	0.327	0.370	0.350	93.4	43.1	16.5	0.76	0.70	53.6
40	15.36	17	0.299	0.352	0.350	85.4	41.8	15.9	0.79	0.77	53.3
41	15.42	17	0.308	0.351	0.350	88.1	41.5	16.1	1.03	1.03	53.6
42	15.48	17	0.305	0.350	0.350	87.1	41.5	16.2	0.83	0.83	53.6
43	15.55	17	0.294	0.343	0.350	84.1	41.6	16.5	0.75	0.74	53.5
44	15.61	17	0.305	0.350	0.350	87.1	41.7	16.8	0.81	0.81	53.5
45	15.67	17	0.306	0.349	0.350	87.5	42.3	16.9	0.92	0.92	53.7
46	15.73	17	0.292	0.346	0.350	83.3	42.4	16.6	0.77	0.67	53.5
47	15.79	17	0.316	0.356	0.350	90.4	41.8	16.9	1.08	1.08	53.6
48	15.85	17	0.304	0.350	0.350	86.8	42.6	16.7	0.97	0.97	53.6
49	15.91	17	0.301	0.346	0.350	86.0	42.3	16.7	0.90	0.90	53.8
50 51	15.97 16.03	17	0.300	0.347	0.350	85.7	41.2	16.2	0.82	0.78	53.5
51 52	16.03	17 17	0.282 0.300	0.341 0.346	0.350 0.350	80.5 85.7	42.2 41.8	16.7 16.1	0.89 0.84	0.89 0.84	53.5
53	16.09	17	0.300	0.346	0.350	88.9	42.3	16.4	0.84	0.84	53.5 53.7
54	16.13	17	0.311	0.351	0.350	89.1	42.3 42.7	16.4	1.00	1.00	53.7 53.3
55	16.27	17	0.305	0.350	0.350	87.2	42.7	16.4	0.77	0.77	53.8 53.8
56	16.33	17	0.303	0.350	0.350	88.9	42.3 41.9	16.4	0.77	0.77	53.6 53.4
57	16.39	17	0.309	0.332	0.350	88.2	40.5	16.2	0.76	0.76	53. 4 53.6
58	16.45	17	0.305	0.345	0.350	87.1	41.4	16.2	0.82	0.82	53.7
59	16.52	17	0.302	0.345	0.350	86.4	41.3	16.2	0.73	0.73	53.7
60	16.58	17	0.308	0.346	0.350	88.0	41.9	16.3	0.87	0.87	53.4
61	16.64	17	0.306	0.344	0.350	87.4	41.3	16.1	0.83	0.83	53.3
62	16.70	17	0.301	0.349	0.350	85.9	41.3	15.8	0.61	0.52	53.7
63	16.76	17	0.304	0.348	0.350	87.0	42.1	16.5	0.67	0.67	53.4
64	16.82	17	0.301	0.344	0.350	86.1	41.2	15.7	0.76	0.76	53.7
65	16.88	17	0.301	0.346	0.350	85.9	41.8	16.6	0.56	0.34	53.5
66	16.94	17	0.292	0.338	0.350	83.5	40.9	15.7	0.78	0.78	53.5
67	17.00	17	0.312	0.339	0.350	89.2	40.7	16.0	0.58	0.56	53.2
		Average	0.304	0.349	0.350	86.8	41.8	16.3	0.82	0.80	53.5
		Std. Dev.	0.008	0.006	0.000	2.2	0.6	0.4	0.13	0.15	0.2
		laximum	0.327	0.370	0.350	93.4	43.1	16.9	1.08	1.08	53.8
	(@ Blow#	39	39	34	39	39	45	47	47	35
	N	Minimum	0.282	0.338	0.350	80.5	40.5	15.5	0.56	0.34	53.2
	(@ Blow#	51	66	34	51	57	35	65	65	67
					Total num	ber of blows	s analyzed:	34			

OP: SPK

2 INCH SS;CME55 AUTO;VTRANS

1.45 in^2 37.08 ft AR: LE: WS: 16,807.7 f/s

Test date: 24-Sep-2008
SP: 0.492 k/ft3
EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F²
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

BPM: Blows per Minute

FMX:	Maximum Fo	rce								•	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
68	20.00	0	0.307	0.370	0.350	87.8	41.3	15.7	1.35	1.07	0.0
69	20.06	17	0.293	0.351	0.350	83.7	39.2	15.2	0.90	0.84	53.9
70	20.12	17	0.307	0.351	0.350	87.7	39.2	15.1	0.79	0.72	53.7
71	20.18	17	0.305	0.364	0.350	87.1	39.0	15.0	0.79	0.36	53.7
72	20.24	17	0.298	0.358	0.350	85.1	39.9	14.9	0.77	-0.11	53.6
73	20.30	17	0.331	0.366	0.350	94.6	39.7	15.0	1.47	1.47	53.7
74	20.36	17	0.306	0.363	0.350	87.5	39.0	14.9	0.89	0.78	53.6
75	20.42	17	0.311	0.365	0.350	89.0	39.4	14.7	1.02	1.02	53.5
76	20.48	17	0.300	0.355	0.350	85.7	39.7	15.2	1.09	1.09	53.8
77	20.55	17	0.324	0.371	0.350	92.5	39.4	15.0	0.94	0.94	53.7
78	20.61	17	0.300	0.365	0.350	85.8	39.5	15.1	0.85	0.83	53.6
79	20.67	17	0.319	0.371	0.350	91.1	40.7	15.2	1.03	1.03	53.6
81	20.79	17	0.308	0.368	0.350	87.9	39.5	15.1	0.78	0.61	53.5
82	20.85	17	0.303	0.362	0.350	86.6	39.3	15.1	0.87	0.87	53.8
83	20.91	17	0.327	0.369	0.350	93.3	39.3	15.0	0.96	0.96	53.6
84	20.97	17	0.307	0.365	0.350	87.8	40.0	15.0	0.81	0.81	53.6
85	21.03	17	0.307	0.368	0.350	87.7.	40.2	15.4	0.80	0.80	53.5
86	21.09	17	0.307	0.358	0.350	87.8	39.2	15.1	1.05	1.05	53.6
87	21.15	17	0.312	0.369	0.350	89.3	39.7	15.3	0.83	0.83	53.6
88	21.21	17	0.305	0.365	0.350	87.2	40.4	15.5	0.66	0.63	53.4
89	21.27	17	0.304	0.364	0.350	86.8	40.4	15.5	0.67	0.67	53.7
90	21.33	17	0.310	0.364	0.350	88.5	40.2	15.3	0.73	0.73	53.3
91	21.39	17	0.307	0.359	0.350	87.8	39.1	15.0	0.61	0.56	53.8
92	21.45	17	0.325	0.372	0.350	92.9	40.9	15.3	0.99	0.99	53.4
93	21.52	17	0.305	0.370	0.350	87.0	40.4	15.2	0.59	0.37	53.7
94	21.58	17	0.307	0.362	0.350	87.8	39.4	15.1	0.66	0.66	53.7
95	21.64	17	0.309	0.359	0.350	88.3	39.4	15.2	0.74	0.74	53.5
96	21.70	17	0.308	0.360	0.350	88.1	39.2	15.1	0.92	0.92	53.5
97	21.76	17	0.313	0.367	0.350	89.4	39.9	15.2	0.58	0.43	53.6
98	21.82	17	0.307	0.362	0.350	87.8	39.5	15.1	0.85	0.85	53.6
99	21.88	17	0.294	0.354	0.350	83.9	41.1	15.7	0.72	0.72	53.5
100	21.94	17	0.302	0.356	0.350	86.4	40.0	15.2	0.66	0.66	53.7
_101	22.00	17	0.299	0.366	0.350	85.4	39.7	15.6	0.57	0.50	53.4
		Average	0.308	0.363	0.350	88.0	39.8	15.2	0.85	0.77	53.6
		Std. Dev.	0.009	0.006	0.000	2.5	0.6	0.2	0.20	0.27	0.1
		laximum	0.331	0.372	0.350	94.6	41.3	15.7	1.47	1.47	53.9
		@ Blow#	73	92	68	73	68	68	73	73	69
		Minimum	0.293	0.351	0.350	83.7	39.0	14.7	0.57	-0.11	53.3
	(@ Blow#	69	69	68	69	.71	75	101	72	90
					lotal num	per of blows	s analyzed:	33			

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VRANS RSCH001-703 - GD-3

OP: SPK

2 INCH SS;CME55 AUTO;VTRANS Test date: 24-Sep-2008

AR:	1.45 in^2
LE:	37.08 ft
WS:	16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX:	Max Transferred Energy
	Energy of F^2
ER:	Hammer Energy Rating
ETR:	Energy Transfer Ratio

@ Blow# Minimum

@ Blow#

106

107

0.297

105

103

0.358

102

0.350

VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

	Maximum For									BPIVI: Blows per Minute		
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM	
<i>D</i>	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in.	in	**	
102	25.00	0	0.313	0.379	0.350	89.4	40.4	15.5	0.88	0.87	0.0	
103	25.10	11	0.304	0.358	0.350	87.0	40.2	15.6	0.65	0.61	53.6	
104	25.19	11	0.313	0.377	0.350	89.6	40.3	15.0	0.72	0.57	53.7	
105	25.29	11	0.307	0.396	0.350	87.6	42.8	15.1	0.72	0.44	53.7	
106	25.38	11	0.317	0.359	0.350	90.6	39.6	15.1	1.29	1.29	53.6	
107	25.48	11	0.297	0.360	0.350	85.0	40.9	15.2	1.27	1.21	53.8	
108	25.57	11	0.304	0.375	0.350	86.9	42.0	15.6	1.75	1.74	53.5	
109	25.67	- 11	0.306	0.370	0.350	87.3	41.4	15.3	1.36	1.30	53.9	
110	25.76	11	0.312	0.381	0.350	89.3	41.0	15.3	1.42	1.42	53.8	
111	25.86	11	0.315	0.380	0.350	90.0	41.0	15.5	1.49	1.46	53.4	
112	25.95	11	0.303	0.371	0.350	86.6	42.1	15.2	1.72	1.72	53.9	
113	26.05	11	0.316	0.389	0.350	90.4	42.7	15.2	1.84	1.84	53.7	
114	26.14	11	0.308	0.378	0.350	88.1	42.2	15.2	1.31	1.27	53.7	
115	26.24	11	0.302	0.368	0.350	86.3	42.0	14.9	1.16	1.12	53.7	
116	26.33	11	0.307	0.368	0.350	87.7	40.8	15.2	1.18	1.18	53.8	
117	26.43	11	0.303	0.371	0.350	86.7	42.5	15.1	1.19	1.19	53.8	
118	26.52	11	0.309	0.370	0.350	88.4	43.0	15.4	1.44	1.44	53.7	
119	26.62	11	0.303	0.375	0.350	86.6	41.4	15.3	0.97	0.90	53.7	
120	26.71	11	0.303	0.370	0.350	86.7	41.6	15.4	0.95	0.93	53.8	
121	26.81	11	0.302	0.371	0.350	86.3	41.7	15.5	1.06	106	53.8	
122	26.91	11	0.303	0.372	0.350	86.7	43.3	16.0	1.00	1.00 😽	53.8	
123	27.00	11	0.307	0.388	0.350	87.6	42.3	16.3	0.86	0.83	53.6	
	,	Average	0.307	0.374	0.350	87.8	41.6	15.4	1.19	1.15	53.7	
	S	itd. Dev.	0.005	0.009	0.000	1.5	1.0	0.3	0.33	0.36	0.1	
	M	aximum	0.317	0.396	0.350	90.6	43.3	16.3	1.84	1.84	53.9	

102 107 106 Total number of blows analyzed: 22

122

39.6

123

14.9

115

113

0.65

103

113

0.44

105

109

53.4

111

106

85.0

OP: SPK

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME55 AUTO;VTRANS

Test date: 24-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi

1.45 in^2 37.08 ft WS: 16,807.7 f/s JC: 0.00 EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2 DMX: Maximum Displacement ER: Hammer Energy Rating
ETR: Energy Transfer Ratio DFN: Final Displacement

BPM: Blows per Minute

FMX:	Maximum F	orce								po:a	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
124	30.00	0	0.299	0.360	0.350	85.5	40.9	16.3	0.78	0.50	0.0
125	30.05	21	0.310	0.369	0.350	88.5	40.0	16.0	1.43	1.43	53.9
126	30.10	21	0.313	0.366	0.350	89.3	40.5	16.5	0.86	0.34	53.6
127	30.15	21	0.322	0.372	0.350	92.1	41.2	16.5	1.14	1.14	53.9
128	30.20	21	0.304	0.381	0.350	86.9	40.6	16.4	0.81	0.78	53.5
129	30.24	21	0.329	0.384	0.350	94.1	40.5	16.3	1.05	1.05	53.7
130	30.29	21	0.296	0.362	0.350	84.5	40.5	16.4	0.86	0.86	53.5
131	30.34	21	0.304	0.365	0.350	86.8	40.5	16.7	0.75	0.75	53.6
132	30.39	21	0.290	0.333	0.350	82.9	39.8	16.5	0.94	0.94	53.8
133	30.44	21	0.304	0.373	0.350	86.8	40.8	16.7	0.65	0.47	53.4
134	30.49	21	0.304	0.379	0.350	86.9	40.8	16.6	0.96	0.96	53.4
135	30.54	21	0.321	0.372	0.350	91.6	40.8	16.5	0.98	0.98	53.6
136	30.59	21	0.296	0.372	0.350	84.5	40.5	16.2	0.70	0.56	53.8
137	30.63	21	0.301	0.374	0.350	85.9	40.9	16.4	0.73	0.61	53.3
138	30.68	21	0.303	0.366	0.350	86.7	40.0	16.2	0.96	0.96	53.8
139	30.73	21	0.309	0.356	0.350	88.3	41.4	16.8	0.84	0.84	53.4
140	30.78	21	0.300	0.371	0.350	85.6	41.0	16.5	0.73	0.71	53.7
141	30.83	21	0.321	0.381	0.350	91.9	41.2	16.2	0.90	0.90	53.7
142	30.88	21	0.294	0.362	0.350	84.1	40.7	16.6	0.69	0.59	53.5
143	30.93	21	0.309	0.370	0.350	88.2	40.6	16.4	0.98	0.98	53.8
144	30.98	21	0.295	0.366	0.350	84.4	41.3	16.5	0.75	0.75	53.5
145 146	31.02	21	0.315	0.378	0.350	89.9	42.1	16.6	0.74	0.74	53.4
147	31.07 31.12	21	0.297	0.364	0.350	85.0	41.4	16.5	0.68	0.67	53.7
148	31.12	21 21	0.320 0.301	0.382 0.365	0.350 0.350	91.3 85.9	41.6	16.3	0.80	0.80	53.5
149	31.17	21	0.301				40.9	16.4	0.84	0.84	53.6
150	31.27	21	0.305	0.379 0.380	0.350 0.350	90.1 87.2	41.3 41.4	16.7	0.72	0.72	53.5
151	31.32	21	0.303	0.368	0.350	90.9	41.4	16.6 16.4	0.65 0.77	0.65	53.6
152	31.32	21	0.310	0.369	0.350	90.9 86.1	41.7	16.4	0.77	0.77 0.59	53.6
153	31.41	21	0.309	0.370	0.350	88.4	41.8	16.7	0.39	0.59	53.6 53.2
154	31.46	21	0.299	0.368	0.350	85.4	41.3	16.7	0.75	0.70	53.2 53.8
155	31.51	21	0.307	0.375	0.350	87.6	41.3	16.8	0.56	0.56	53.4
156	31.56	21	0.304	0.384	0.350	86.9	41.4	16.5	0.61	0.61	53.4 53.5
157	31.61	21	0.318	0.379	0.350	90.8	42.2	17.2	0.79	0.79	53.4
158	31.66	21	0.303	0.373	0.350	86.6	40.8	16.6	0.73	0.79	53.5
159	31.71	21	0.312	0.378	0.350	89.2	41.1	16.5	0.56	0.56	53.8
160	31.76	21	0.312	0.371	0.350	89.0	41.6	17.1	0.89	0.89	53.3
161	31.80	21	0.308	0.380	0.350	88.1	41.2	16.7	0.48	0.20	53.8
162	31.85	21	0.309	0.375	0.350	88.3	40.9	16.4	0.51	0.51	53.5
163	31.90	21	0.308	0.380	0.350	88.0	41.3	16.5	0.52	0.52	53.8
164	31.95	21	0.302	0.370	0.350	86.2	41.5	16.5	0.50	0.50	53.4
		Average	0.307	0.371	0.350	87.7	41.0	16.5	0.77	0.72	53.6
	9	Std. Dev.	0.009	0.009	0.000	2.5	0.5	0.2	0.17	0.72	0.2
		/laximum	0.329	0.384	0.350	94.1	42.2	17.2	1.43	1.43	53.9
		@ Blow#	129	129	124	129	157	157	125	125	125
		Minimum	0.290	0.333	0.350	82.9	39.8	16.0	0.48	0.20	53.2
		@ Blow#	132	132	124	132	132	125	161	161	153
						har of blows					. • •

2 INCH SS;CME55 AUTO;VTRANS

OP: SPK

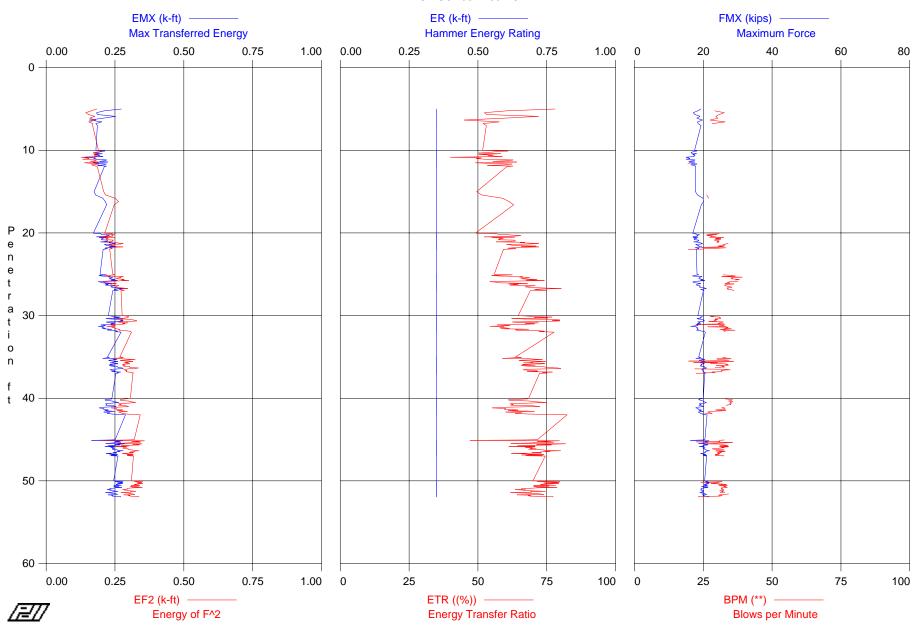
Test date: 24-Sep-2008

1.45 in^2 37.08 ft AR: LE: WS: 16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute


FMX:	Maximum Fo								DI WI. DIO	wa per williu	ıc
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
5 2,,	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
165	32.00	21	0.329	0.398	0.350	94.0	44.6	13.7	0.56	0.24	0.0
167	32.08	26	0.324	0.409	0.350	92.6	45.6	13.3	0.55	0.49	53.5
168	32.12	26	0.321	0.403	0.350	91.7	45.9	13.3	0.58	0.58	53.6
169	32.16	26	0.328	0.388	0.350	93.6	46.1	13.4	0.73	0.73	53.4
171	32.24	26	0.324	0.405	0.350	92.5	45.9	13.4	0.57	0.57	53.4
173	32.31	26	0.324	0.383	0.350	92.5	46.4	13.5	0.73	0.73	53.5
174	32.35	26	0.329	0.417	0.350	93.9	45.9	13.1	0.56	0.07	53.6
175	32.39	26	0.324	0.411	0.350	92.6	46.1	13.2	0.60	0.51	53.5
177	32.47	26	0.322	0.392	0.350	92.1	45.6	13.2	0.65	0.65	53.5
178	32.51	26	0.327	0.407	0.350	93.5	46.3	13.3	0.62	0.60	53.4
179	32.55	26	0.327	0.385	0.350	93.5	46.4	13.3	0.79	0.79	53.8
180	32.59	26	0.331	0.415	0.350	94.6	46.4	13.4	0.75	0.75	53.5
181	32.63	26	0.326	0.407	0.350	93.2	46.1	13.3	0.79	0.79	53.8
183	32.71	26	0.329	0.408	0.350	93.9	46.2	13.4	0.85	0.85	53.5
185	32.78	26	0.322	0.396	0.350	92.0	45.7	13.5	0.55	0.47	53.5
186	32.82	26	0.328	0.416	0.350	93.6	46.7	13.5	0.59	0.56	53.7
187	32.86	26	0.325	0.406	0.350	92.9	45.3	13.3	0.69	0.69	53.4
188	32.90	26	0.318	0.395	0.350	90.8	45.9	13.6	0.58	0.36	53.6
189	32.94	26	0.332	0.420	0.350	94.9	47.1	13.6	0.66	0.66	53.4
190	32.98	26	0.328	0.396	0.350	93.6	47.0	13.7	0.68	0.68	53.6
191	33.02	26	0.326	0.414	0.350	93.2	46.9	13.7	0.57	0.55	53.4
192	33.06	26	0.331	0.415	0.350	94.7	46.6	13.7	0.62	0.62	53.7
193	33.10	26	0.327	0.411	0.350	93.3	46.7	13.7	0.54	0.17	53.5
195	33.18	26	0.324	0.391	0.350	92.5	47.0	13.8	0.52	0.44	53.5
196	33.22	26	0.330	0.413	0.350	94.3	46.6	13.6	0.54	0.42	53.5
197	33.25	26	0.326	0.390	0.350	93.2	46.5	13.5	0.70	0.70	53.7
198	33.29	26	0.329	0.420	0.350	93.9	47.1	13.9	0.53	0.48	53.4
199	33.33	26	0.325	0.408	0.350	92.7	46.4	13.6	0.54	0.51	53.5
200	33.37	26	0.332	0.416	0.350	94.9	46.6	13.6	0.55	0.38	53.5
201	33.41	26	0.324	0.406	0.350	92.6	46.4	13.4	0.57	0.57	53.6
202	33.45	26	0.330	0.417	0.350	94.1	46.6	13.7	0.60	0.60	53.5
203	33.49	26	0.330	0.406	0.350	94.4	46.1	13.4	0.77	0.77	53.6
205	33.57	26	0.327	0.411	0.350	93.4	46.2	13.4	0.68	0.68	53.6
206	33.61	26	0.327	0.389	0.350	93.4	46.7	13.6	0.54	0.42	53.7
207	33.65	26	0.328	0.410	0.350	93.8	46.3	13.5	0.65	0.65	53.6
208	33.69	26	0.327	0.415	0.350	93.5	46.6	13.7	0.53	0.48	53.7
209	33.73	26	0.330	0.409	0.350	94.4	45.9	13.4	0.65	0.65	53.4
210	33.76	26	0.330	0.419	0.350	94.2	46.9	13.5	0.62	0.62	53.6
211	33.80	26	0.321	0.385	0.350	91.7	46.8	13.6	0.55	0.55	53.6
212	33.84	26	0.329	0.406	0.350	94.0	46.8	13.5	0.64	0.64	53.6
213	33.88	26	0.324	0.387	0.350	92.5	46.4	13.7	0.53	0.53	53.5
214	33.92	26	0.326	0.396	0.350	93.2	46.7	13.5	0.54	0.54	53.6
215	33.96	26	0.322	0.388	0.350	91.9	46.1	13.6	0.50	0.10	53.5
216	34.00	26	0.328	0.402	0.350	93.6	47.0	13.6	0.68	0.68	53.6
		Average	0.327	0.404	0.350	93.3	46.3	13.5	0.62	0.56	53.5
		Std. Dev.	0.003	0.011	0.000	0.9	0.5	0.2	0.09	0.17	0.1
		/laximum	0.332	0.420	0.350	94.9	47.1	13.9	0.85	0.85	53.8
		@ Blow#	189	189	165	200	198	198	183	183	179
		Minimum	0.318	0.383	0.350	90.8	44.6	13.1	0.50	0.07	53.4
	(@ Blow#	188	173	165	188	165	174	215	174	169
					Lotal num.	ner of blows	analyzed:	44			

Total number of blows analyzed: 44

Test date: 24-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VRANS RSCH001-703 - GD-4

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS:CME45C SAFETY:VTRANS

2 11NCH 35;CIVIE45C	SALE	:11;V	I KANS
Test	date:	24-Se	n-2008

VRANS RSCH001-703 - GD-4 OP: SPK	2 INCH SS;CME45C SAFETY;VTRANS Test date: 24-Sep-2008				
AR: 0.92 in^2	SP: 0.492 k/ft3				
LE: 53.83 ft	EM: 30,000 ksi				
WS: 16.807.7 f/s	JC: 0.00				

EMX:	Max Transferred Energy	VMX:	Maximum Velocity
EF2:	Energy of F^2	DMX:	Maximum Displacement
ER:	Hammer Energy Rating	DFN:	Final Displacement
ETR:	Energy Transfer Ratio	BPM:	Blows per Minute
FMX:	Maximum Force		

Statistics for entire file (289 blows)

	EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in	DFN in	BPM **
Average	0.232	0.267	0.350	66.3	19.2	12.0	0.92	0.88	31.1
Std. Dev.	0.027	0.049	0.001	7.7	1.3	1.0	0.46	0.48	3.4
Maximum	0.288	0.357	0.350	82.4	21.8	16.4	3.20	3.20	39.1
@ Blow#	208	212	1	208	238	5	5	5	87
Minimum	0.140	0.128	0.350	40.0	15.0	9.2	0.42	0.14	19.4
@ Blow#	21	21	1	21	21	211	69	204	30

Time Summary

	··-··y	
Drive	19 seconds	1:33:10 PM - 1:33:29 PM (9/24/2008) BN 1 - 10
Stop	19 minutes 26 seconds	1:33:29 PM - 1:52:55 PM
Drive	1 minute 42 seconds	1:52:55 PM - 1:54:37 PM BN 11 - 35
Stop	27 minutes 16 seconds	1:54:37 PM - 2:21:53 PM
Drive	36 seconds	2:21:53 PM - 2:22:29 PM BN 36 - 41
Stop	20 minutes 7 seconds	2:22:29 PM - 2:42:36 PM
Drive	1 minute 23 seconds	2:42:36 PM - 2:43:59 PM BN 42 - 81
Stop	14 minutes 31 seconds	2:43:59 PM - 2:58:30 PM
Drive	51 seconds	2:58:30 PM - 2:59:21 PM BN 82 - 111
Stop	15 minutes 11 seconds	2:59:21 PM - 3:14:32 PM
Drive	1 minute 8 seconds	3:14:32 PM - 3:15:40 PM BN 112 - 146
Stop	16 minutes 51 seconds	3:15:40 PM - 3:32:31 PM
Drive	1 minute 16 seconds	3:32:31 PM - 3:33:47 PM BN 147 - 183
Stop	18 minutes 20 seconds	3:33:47 PM - 3:52:07 PM
Drive	57 seconds	3:52:07 PM - 3:53:04 PM BN 184 - 208
Stop	19 minutes 41 seconds	3:53:04 PM - 4:12:45 PM
Drive	3 minutes 4 seconds	4:12:45 PM - 4:15:49 PM BN 209 - 252
Stop	18 minutes 7 seconds	4:15:49 PM - 4:33:56 PM
Drive	1 minute 38 seconds	4:33:56 PM - 4:35:34 PM BN 253 - 291

Total time [3:02:24] = (Driving [0:12:54] + Stop [2:49:30])

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VRANS RSCH001-703 - GD-4

OP: SPK

2 INCH SS;CME45C SAFETY;VTRANS

Test date: 24-Sep-2008

AR: 0.92 in^2 LE: 53.83 ft WS: 16,807.7 f/s SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio

Maximum

@ Blow#

Minimum

@ Blow#

0.273

0.158

0.184

0.144

3

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

3.20

1.77

5

32.9

27.5

8

BPM: Blows per Minute

	Maximum Fo			4			·····		Di W. Diovo per vinitate				
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	вРМ		
	ft	bi/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**		
1	5.00	5	0.273	0.184	0.350	78.0	19.3	16.3	2.14	2.14	0.0		
2	5.22	5	0.211	0.164	0.350	60.4	18.4	14.6	1.79	1.79	29.2		
3	5.44	5	0.183	0.144	0.350	52.4	17.1	13.9	1.77	1.77	32.6		
4	5.67	5	0.186	0.154	0.350	53.2	17.6	14.9	1.88	1.88	30.8		
5	5.89	5	0.252	0.177	0.350	72.0	19.1	16.4	3.20	3.20	29.6		
6	6.11	5	0.207	0.158	0.350	59.2	18.1	15.8	2.97	2.97	30.3		
7	6.33	5	0.158	0.180	0.350	45.0	19.8	15.9	2.53	2.35	27.5		
8	6.56	5	0.202	0.155	0.350	57.7	18.4	15.5	3.10	3.10	32.9		
9	6.78	5	0.181	0.170	0.350	51.8	18.5	14.6	2.50	2.50	28.2		
10	7.00	5	0.186	0.169	0.350	53.0	19.3	15.7	2.64	2.64	0.0		
		Average	0.204	0.165	0.350	58.3	18.5	15.4	2.45	2.43	30.1		
		Std. Dev.	0.033	0.012	0.000	9.4	0.8	0.8	0.51	0.51	1.8		

0.350

0.350

1 7 3 Total number of blows analyzed: 10

19.8

17.1

7

16.4

13.9

5

3

3.20

1.77

5

3

78.0

45.0

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C SAFETY;VTRANS

Tes	t date:	24-Sep-	2008

AR:	0.92 in^2	SP:	0.492 k/ft3
LE:	53.83 ft	EM:	30,000 ksi
WS: 1	6,807.7 f/s	JC:	0.00

EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute
EMV: Mavingum Fares	

FMX:	Maximum Fo								DI 141. DIQ1	ro por minu	i.c
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	·ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
11	10.00	0	0.181	0.190	0.350	5Ì.Ź	17.5	13.9	1.45	1.42	0.0
12	10.08	12	0.213	0.205	0.350	60.9	18.1	13.9	1.93	1.93	0.0
13	10.17	12	0.199	0.192	0.350	56.9	17.2	13.6	1.57	1.56	0.0
14	10.25	12	0.188	0.174	0.350	53.7	16.4	12.7	1.21	1.20	0.0
15	10.33	12	0.176	0.171	0.350	50.2	16.5	12.8	1.02	1.00	0.0
16	10.42	12	0.204	0.191	0.350	58.3	18.0	13.8	1.33	1.33	0.0
17	10.50	12	0.176	0.174	0.350	50.4	16.9	14.1	0.96	0.85	0.0
18	10.58	12	0.194	0.186	0.350	55.5	17.6	13.0	0.96	0.87	0.0
19	10.67	12	0.188	0.174	0.350	53.7	17.3	13.0	1.14	1.14	0.0
20	10.75	12	0.206	0.186	0.350	58.8	17.3	12.6	1.20	1.20	0.0
21	10.83	12	0.140	0.128	0.350	40.0	15.0	11.7	0.68	0.30	20.8
22	10.92	12	0.179	0.151	0.350	51.1	15.7	12.6	1.03	1.03	0.0
23	11.00	12	0.173	0.156	0.350	49.3	16.1	13.2	0.87	0.28	0.0
24	11.08	12	0.185	0.133	0.350	52.8	15.0	12.2	1.43	1.43	0.0
25	11.17	12	0.220	0.182	0.350	62.7	17.6	12.6	1.33	1.33	0.0
26	11.25	12	0.213	0.179	0.350	60.7	17.1	11.7	1.01	1.01	0.0
27	11.33	12	0.194	0.161	0.350	55.4	15.8	12.4	1.07	1.07	0.0
28	11.42	12	0.224	0.190	0.350	64.1	17.6	11.7	0.98	0.98	0.0
29	11.50	12	0.172	0.139	0.350	49.0	16.0	10.2	0.99	0.99	20.3
30	11.58	12	0.190	0.164	0.350	54.2	16.8	11.8	0.92	0.92	19.4
31	11.67	12	0.218	0.192	0.350	62.4	18.2	13.0	1.15	1.14	0.0
32	11.75	12	0.209	0.165	0.350	59.8	16.4	11.8	1.41	1.41	0.0
33	11.83	12	0.187	0.171	0.350	53.4	17.4	12.0	0.96	0.92	0.0
34	11.92	12	0.219	0.181	0.350	62.7	17.7	12.5	1.33	1.33	0.0
35	12.00	12	0.211	0.186	0.350	60.4	17.8	12.5	1.33	1.33	0.0
		Average	0.194	0.173	0.350	55.5	16.9	12.6	1.17	1.12	20.2
		Std. Dev.	0.019	0.019	0.000	5.6	0.9	0.9	0.26	0.34	0.6
		/laximum	0.224	0.205	0.350	64.1	18.2	14.1	1.93	1.93	20.8
		@ Blow#	28	12	11	28	31	17	12	12	21
		Minimum	0.140	0.128	0.350	40.0	15.0	10.2	0.68	0.28	19.4
	(@ Blow#	21	21	11	21	21	29	21	23	30

0.92 in^2

53.83 ft

WS: 16,807.7 f/s

OP: SPK

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS; CME45C SAFETY; VTRANS

Test date: 24-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi

JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement

DFN: Final Displacement BPM: Blows per Minute

EMX: Max Transferred Energy EF2: Energy of F^2 Hammer Energy Rating ETR: Energy Transfer Ratio

FMX: Maximum Force BL# depth BLC EF2 **EMX** ER **ETR FMX VMX** DMX DFN **BPM** bl/ft k-ft k-ft k-ft (%) kips ft f/s in in 36 15.00 0.174 0.209 0.350 49.6 2.03 0 17.7 13.4 1.99 0.0 37 15.40 3 0.180 0.216 0.350 51.3 18.3 13.0 1.82 1.82 26.2 38 15.80 3 0.206 0.251 0.350 59.0 19.9 14.0 2.75 2.75 27.0 39 16.20 3 0.215 0.263 0.350 61.3 20.1 13.4 2.48 2.48 0.0 40 16.60 3 0.220 0.247 0.350 63.0 19.4 13.2 1.63 1.48 21.2 0.199 0.237 0.350 56.8 19.1 Average 13.4 2.14 2.10 24.8 Std. Dev. 0.019 0.021 0.000 5.4 0.9 0.3 0.41 0.46 2.6 Maximum 63.0 20.1 0.220 0.263 0.350 14.0 2.75 2.75 27.0 @ Blow# 40 39 36 40 39 38 38 38 38 0.174 Minimum 0.209 0.350 49.6 17.7 13.0 1.63 1.48 21.2 @ Blow# 36 36 36 36 40 36 37 40 40

2 INCH SS;CME45C SAFETY;VTRANS

Test date: 24-Sep-2008 AR: 0.92 in^2 SP: 0.492 k/ft3

LE: 53.83 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum Fo								DI WI. DIO	wa per wiiru	i.e
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ŕft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
42	20.00	0	0.172	0.213	0.350	49.Ź	17.0	11.6	1.89	1.87	0.0
43	20.05	20	0.174	0.213	0.350	49.8	16.9	11.2	1.62	1.62	0.0
44	20.10	20	0.199	0.242	0.350	56.8	17.9	12.2	1.78	1.78	30.8
45	20.15	20	0.200	0.219	0.350	57.3	17.8	11.3	1.47	1.47	26.2
46	20.21	20	0.212	0.248	0.350	60.7	18.9	11.6	1.33	1.33	29.9
47	20.26	20	0.218	0.238	0.350	62.2	18.5	11.8	1.04	1.04	27.3
48	20.31	20	0.229	0.240	0.350	65.5	18.2	11.3	1.14	1.14	26.3
49	20.36	20	0.225	0.243	0.350	64.4	18.3	11.8	0.95	0.95	28.3
50	20.41	20	0.215	0.232	0.350	61.5	18.1	11.7	0.76	0.74	27.7
51	20.46	20	0.183	0.201	0.350	52.3	17.0	11.0	0.61	0.58	29.5
52	20.51	20	0.222	0.250	0.350	63.4	18.5	12.1	0.68	0.68	27.3
53	20.56	20	0.193	0.200	0.350	55.1	17.1	11.4	0.68	0.68	32.4
54	20.62	20	0.206	0.222	0.350	58.7	17.8	11.7	0.62	0.62	29.6
55	20.67	20	0.207	0.225	0.350	59.2	18.1	11.8	0.55	0.55	31.4
56	20.72	20	0.202	0.217	0.350	57.7	17.3	11.2	0.67	0.67	29.4
57	20.77	20	0.203	0.220	0.350	58.1	17.4	11.0	0.49	0.37	31.3
58	20.82	20	0.201	0.223	0.350	57.4	17.4	11.6	0.51	0.51	29.4
59	20.87	20	0.221	0.244	0.350	63.1	18.7	12.1	0.66	0.66	29.0
60	20.92	20	0.222	0.241	0.350	63.4	18.7	12.0	0.73	0.73	30.0
61	20.97	20	0.223	0.242	0.350	63.6	18.5	11.9	0.73	0.73	30.8
62	21.03	20	0.223	0.237	0.350	61.0	18.2	11.7	0.46	0.43	30.0
63	21.08	20	0.198	0.209	0.350	56.6	17.3	11.1	0.62	0.43	30.6
64	21.13	20	0.130	0.252	0.350	67.0	18.8	12.3	1.07	1.07	30.5
65	21.13	20	0.234	0.256	0.350	65.4	19.0	12.3	0.54	0.54	29.9
66	21.18	20	0.229	0.264	0.350	68.9	19.4	11.6	0.48	0.34	0.0
67	21.28	20	0.252	0.280	0.350	72.1	19.4	11.8	0.46	0.20	
68	21.28	20	0.232	0.280	0.350	68.5	19.8		0.66		34.0
69	21.38	20	0.240	0.270	0.350	60.5	19.3	11.5 11.9	0.49	0.48	33.1
70	21.36	20	0.212	0.226	0.350	61.8	18.0			0.35	32.8
71	21.44	20	0.218	0.235		62.4		12.1	0.51	0.51	32.1
72	21.49	20	0.216		0.350		18.3	12.3	0.43	0.14	32.8
73				0.241	0.350	64.5	18.6	12.2	0.65	0.65	31.3
74	21.59	20	0.249	0.251	0.350	71.1	18.8	12.4	1.23	1.23	30.5
7 4 75	21.64	20	0.230	0.253	0.350	65.7	18.7	12.4	0.44	0.16	32.4
	21.69	20	0.252	0.279	0.350	72.1	19.5	12.6	0.50	0.39	30.2
76	21.74	20	0.227	0.240	0.350	64.8	18.2	12.1	0.60	0.60	24.5
77	21.79	20	0.219	0.231	0.350	62.6	17.6	12.2	0.53	0.53	33.2
78 70	21.85	20	0.213	0.239	0.350	60.9	18.6	11.6	0.44	0.32	30.5
79	21.90	20	0.223	0.240	0.350	63.8	18.7	11.5	0.66	0.66	25.9
80	21.95	20	0.214	0.230	0.350	61.1	18.3	11.8	0.63	0.63	25.0
81	22.00	20	0.207	0.231	0.350	59.2	18.0	12.0	0.43	0.15	19.5
	,	Average	0.216	0.237	0.350	61.7	18.2	11.8	0.76	0.72	29.6
		td. Dev.	0.018	0.018	0.000	5.2	0.7	0.4	0.38	0.42	2.9
		aximum	0.252	0.280	0.350	72.1	19.8	12.6	1.89	1.87	34.0
		Blow#	67	67	42	67	67	75	42	42	67
	N	linimum	0.172	0.200	0.350	49.2	16.9	11.0	0.42	0.14	19.5
	0	Blow#	42	53	42	42	43	51	69	71	81
					Total num	her of blows	analyzed:	40			

OP: SPK AR:

2 INCH SS;CME45C SAFETY;VTRANS

0.92 in^2

Test date: 24-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

JC: 0.00

LE: 53.83 ft WS: 16,807.7 f/s EMX: Max Transferred Energy EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum Fo	orce							DEIVI. DIO	ws per williu	ıe
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
82	25.00	. 0	0.196	0.242	0.350	55.9	18.2	13.6	1.78	1.71	0.0
83	25.07	15	0.219	0.251	0.350	62.5	18.7	11.4	1.14	1.14	32.2
84	25.14	15	0.192	0.223	0.350	55.0	17.5	10.6	0.86	0.86	35.3
85	25.21	15	0.203	0.212	0.350	58.0	16.9	10.2	1.00	1.00	36.6
86	25.28	15	0.232	0.280	0.350	66.2	19.6	12.2	0.81	0.63	31.7
87	25.34	15	0.228	0.267	0.350	65.2	18.9	11.6	0.95	0.95	39.1
88	25.41	15	0.241	0.271	0.350	68.7	19.1	11.8	1.27	1.27	35.2
89	25.48	15	0.234	0.254	0.350	66.8	18.7	11.7	1.03	1.03	35.6
90	25.55	15	0.230	0.261	0.350	65.6	19.0	12.1	0.84	0.84	35.1
91	25.62	15	0.250	0.284	0.350	71.5	19.9	12.5	0.86	0.86	38.1
92	25.69	15	0.236	0.274	0.350	67.5	19.2	12.1	0.69	0.47	36.6
93	25.76	15	0.259	0.300	0.350	74.1	20.4	12.2	1.07	1.01	0.0
94	25.83	15	0.219	0.243	0.350	62.5	18.5	10.9	1.03	1.03	37.7
95	25.90	15	0.190	0.208	0.350	54.3	17.1	10.2	0.78	0.75	35.0
96	25.97	15	0.199	0.210	0.350	57.0	17.0	10.3	0.83	0.83	33.8
97	26.03	15	0.204	0.222	0.350	58.3	17.8	10.9	0.84	0.82	34.5
98	26.10	15	0.238	0.255	0.350	68.0	19.3	11.8	0.99	0.99	32.9
99	26.17	15	0.214	0.237	0.350	61.2	18.6	11.1	0.81	0.75	36.2
100	26.24	15	0.226	0.235	0.350	64.6	18.1	11.0	0.97	0.97	33.4
101	26.31	15	0.216	0.236	0.350	61.7	18.0	10.8	0.87	0.84	32.7
102	26.38	15	0.248	0.264	0.350	70.7	19.0	11.4	1.02	1.02	33.0
103	26.45	. 15	0.239	0.256	0.350	68.2	19.2	11.4	1.06	1.06	34.0
104	26.52	15	0.235	0.254	0.350	67.1	18.9	11.4	0.97	0.97	35.0
105	26.59	15	0.241	0.250	0.350	68.8	19.0	11.4	1.08	1.08	35.4
106	26.66	15	0.258	0.278	0.350	73.6	20.4	12.3	1.01	1.00	33.6
107	26.72	15	0.281	0.297	0.350	80.3	20.9	12.4	1.22	1.22	34.1
108	26.79	15	0.251	0.274	0.350	71.8	19.9	11.7	1.12	1.12	33.8
109	26.86	15	0.247	0.266	0.350	70.6	19.3	11.3	1.17	1.17	35.1
110	26.93	15	0.262	0.284	0.350	74.9	20.2	11.7	1.25	1.25	35.9
111	27.00	15	0.242	0.272	0.350	69.0	20.0	11.5	1.18	1.18	36.1
		Average	0.231	0.255	0.350	66.0	18.9	11.5	1.02	0.99	34.9
		Std. Dev.	0.022	0.024	0.000	6.3	1.0	0.7	0.20	0.22	1.7
		<i>l</i> laximum	0.281	0.300	0.350	80.3	20.9	13.6	1.78	1.71	39.1
		@ Blow#	107	93	82	107	107	82	82	82	87
		Minimum	0.190	0.208	0.350	54.3	16.9	10.2	0.69	0.47	31.7
		@ Blow#	95	95	82	95	85	95	92	92	86
					Total num	ber of blows	analyzed:	30			

OP: SPK

2 INCH SS;CME $_{-}$ 5C SAFETY;VTRANS

Test date: 24-Sep-2008

AR: 0.92 in^2 LE: 53.83 ft WS: 16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

	Maximum F								BPIVI: BIOV	ws per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	. ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
112	30.00	0	0.226	0.276	0.350	64.6	18.4	12.4	1.72	1.72	0.0
113	30.06	17	0.237	0.290	0.350	67.7	19.7	12.7	1.42	1.30	28.8
114	30.12	17	0.244	0.300	0.350	69.6	19.6	12.6	0.94	0.59	27.5
115	30.18	17	0.269	0.298	0.350	76.9	19.6	12.5	1.27	1.27	30.9
116	30.24	17	0.246	0.295	0.350	70.4	19.2	12.2	0.84	0.74	30.9
117	30.29	17	0.264	0.290	0.350	75.4	19.3	12.4	1.18	1.18	31.3
118	30.35	17	0.218	0.255	0.350	62.3	18.2	11.4	0.83	0.83	31.3
119	30.41	17	0.235	0.282	0.350	67.1	18.6	12.0	0.77	0.75	29.3
120	30.47	17	0.273	0.307	0.350	78.1	19.9	12.6	1.12	1.12	30.2
121	30.53	17	0.279	0.318	0.350	79.7	20.2	12.4	1.17	1.17	29.0
122	30.59	17	0.270	0.327	0.350	77.0	20.2	12.4	0.83	0.65	29.2
123	30.65	17	0.279	0.329	0.350	79.7	20.3	12.8	0.92	0.91	29.8
124	30.71	17	0.261	0.305	0.350	74.6	19.8	12.3	0.95	0.94	27.0
125	30.76	17	0.219	0.260	0.350	62.6	18.4	11.2	0.76	0.76	32.3
126	30.82	17	0.225	0.278	0.350	64.2	18.9	11.8	0.72	0.55	31.4
127	30.88	17	0.252	0.297	0.350	71.9	19.1	12.2	0.84	0.84	30.9
128 129	30.94 31.00	17 17	0.235	0.277	0.350	67.1	18.3	11.8	0.71	0.69	30.4
130	31.00	17	0.247 0.234	0.286	0.350	70.6	19.2	12.0	0.79	0.79	32.4
131	31.00	17	0.234	0.271 0.236	0.350 0.350	66.9 57.0	19.3 18.1	11.7 10.7	0.70 0.59	0.47 0.48	22.3
132	31.12	17	0.200	0.238	0.350	61.7	18.5	10.7	0.59	0.48	32.7
133	31.16	17	0.216	0.246	0.350	60.2	17.9	10.9	0.68	0.68	32.4
134	31.29	17	0.211	0.230	0.350	54.4	16.4	10.9	0.66	0.66	30.8 33.4
135	31.35	17	0.190	0.247	0.350	59.4	18.0	10.8	0.74	0.74	26.7
136	31.41	17	0.203	0.238	0.350	58.0	18.0	10.7	0.61	0.50	34.0
137	31.47	17	0.208	0.245	0.350	59.6	18.4	10.7	0.52	0.37	33.9
138	31.53	17	0.215	0.251	0.350	61.3	18.4	11.3	0.60	0.60	32.7
139	31.59	17	0.204	0.252	0.350	58.2	18.2	11.3	0.55	0.43	35.2
140	31.65	17	0.239	0.267	0.350	68.4	18.6	11.8	0.83	0.83	31.0
141	31.71	17	0:223	0.265	0.350	63.6	18.5	11.3	0.61	0.52	31.9
142	31.76	17	0.224	0.265	0.350	63.9	18.0	11.6	0.61	0.61	36.5
143	31.82	17	0.252	0.288	0.350	72.0	19.1	12.0	0.84	0.84	32.2
144	31.88	17	0.259	0.304	0.350	74.1	19.6	12.3	0.73	0.73	33.1
145	31.94	17	0.252	0.306	0.350	72.1	20.3	12.5	0.63	0.48	32.7
146	32.00	17	0.272	0.310	0.350	77.7	20.6	12.3	0.83	0.83	0.0
		Average	0.237	0.278	0.350	67.7	18.9	11.8	0.83	0.78	31.0
		Std. Dev.	0.025	0.027	0.000	7.1	0.9	0.7	0.26	0.28	2.7
	1	Maximum	0.279	0.329	0.350	79.7	20.6	12.8	1.72	1.72	36.5
		@ Blow#	121	123	112	121	146	123	112	112	142
		Minimum	0.190	0.220	0.350	54.4	16.4	10.5	0.52	0.37	22.3
		@ Blow#	134	134	_ 112	134	134	134	137	137	130

VRANS RSCH001-703 - GD-4

2 INCH SS;CME45C SAFETY;VTRANS

OP: SPK

Test date: 24-Sep-2008 SP: 0.492 k/ft3

AR: 0.92 in^2 LE: 53.83 ft WS: 16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio

VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

FMX:	Maximum For	rce	BPM: Blows per Min								
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
147	35.00	0	0.223	0.268	0.350	63.Ź	18.7	11.6	0.62	0.61	0.0
148	35.06	18	0.230	0.280	0.350	65.8	19.2	12.1	0.78	0.78	33.1
149	35.11	18	0.219	0.271	0.350	62.7	18.9	11.6	0.60	0.52	32.0
150	35.17	18	0.206	0.243	0.350	58.9	17.9	10.7	0.68	0.68	35.1
151	35.22	18	0.241	0.278	0.350	68.9	19.8	11.5	0.76	0.76	29.9
152	35.28	18	0.248	0.300	0.350	71.0	19.6	12.2	0.78	0.78	30.1
153	35.33	18	0.257	0.323	0.350	73.4	20.5	12.7	0.67	0.59	31.4
154	35.39	18	0.231	0.278	0.350	66.1	18.8	11.4	0.70	0.70	34.4
155	35.44	18	0.227	0.269	0.350	64.9	19.3	11.3	0.71	0.71	33.1
156 157	35.50	18	0.247	0.304	0.350	70.5	20.1	12.7	0.59	0.53	19.7
158	35.56 35.61	18	0.261	0.315	0.350	74.5	20.5	13.1	0.59	0.40	36.0
159	35.67	18 18	0.242 0.245	0.288 0.299	0.350 0.350	69.2 70.1	19.5	12.3	0.64	0.64	31.4
160	35.72	18	0.243	0.299	0.350	70.1 66.7	19.7 19.3	12.3 12.0	0.58	0.54	21.5
161	35.72 35.78	18	0.259	0.298	0.350	73.9	20.3	11.9	0.58 0.86	0.57 0.86	30.1 27.6
162	35.83	18	0.259	0.290	0.350	74.3	20.3	13.0	0.88	0.86	32.7
163	35.89	18	0.233	0.304	0.350	66.5	19.3	11.5	0.77	0.77	34.1
164	35.94	18	0.231	0.280	0.350	66.1	19.6	11.1	0.57	0.56	33.1
165	36.00	18	0.248	0.287	0.350	70.8	19.6	11.9	0.78	0.78	34.1
166	36.06	18	0.230	0.279	0.350	65.7	19.2	11.5	0.56	0.52	29.7
167	36.11	18	0.239	0.280	0.350	68.3	19.3	11.8	0.63	0.62	32.4
168	36.17	18	0.258	0.304	0.350	73.9	20.3	12.4	0.68	0.67	31.9
169	36.22	18	0.260	0.303	0.350	74.3	20.4	12.0	0.72	0.72	32.8
170	36.28	18	0.262	0.306	0.350	74.8	20.4	12.1	0.85	0.85	29.3
171	36.33	18	0.276	0.335	0.350	78.8	20.9	12.8	0.77	0.77	0.0
172	36.39	18	0.280	0.324	0.350	80.1	20.4	12.8	0.90	0.90	0.0
173	36.44	18	0.264	0.298	0.350	75.5	19.5	12.0	1.02	1.02	21.9
174	36.50	18	0.238	0.293	0.350	67.9	19.9	12.1	0.65	0.54	33.4
175	36.56	18	0.232	0.282	0.350	66.4	19.6	11.9	0.65	0.64	34.7
176	36.61	18	0.240	0.292	0.350	68.6	19.8	12.4	0.76	0.76	31.6
177	36.67	18	0.249	0.289	0.350	71.2	20.0	11.5	0.92	0.92	31.8
178	36.72	18	0.251	0.293	0.350	71.7	20.0	11.6	0.92	0.92	31.8
179	36.78	18	0.238	0.291	0.350	67.9	19.9	11.5	0.64	0.34	31.5
180 181	36.83	18	0.270	0.300	0.350	77.0	20.3	11.8	1.20	1.20	28.2
182	36.89	18	0.257	0.311	0.350	73.4	20.6	12.3	0.68	0.51	29.3
183	36.94 37.00	18 18	0.262	0.317	0.350	74.8	20.7	12.3	0.71	0.71	25.4
103			0.253	0.315	0.350	72.3	20.4	12.2	0.73	0.59	22.4
		Average	0.246	0.293	0.350	70.3	19.8	12.0	0.73	0.69	30.5
		td. Dev.	0.016	0.018	0.000	4.6	0.6	0.5	0.14	0.17	4.0
		aximum	0.280 172	0.335 171	0.350 147	80.1	20.9	13.1	1.20	1.20	36.0
		Blow# linimum	0.206	0.243	0.350	172 58.9	171 17.9	157 10.7	180	180	157
		Blow#	0.206 150	150	0.350 147	58.9 150	17.9	10.7 150	0.56 166	0.34 179	19.7
	Q	S DIOW#	130	100			analyzed:		100	1/9	156
					TOTAL HUITI	Dei OI DIOWS	analyzeu.	31			

OP: SPK

2 INCH SS;CME45C SAFETY;VTRANS

Test date: 24-Sep-2008

AR: 0.92 in^2 LE: 53.83 ft

WS: 16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum Fo								DI 141. DIO1	wa per wiiru	i.c
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	. ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
184	40.00	0	0.239	0.306	0.350	68.4	20.0	12.5	1.57	1.56	0.0
185	40.08	12	0.238	0.286	0.350	68.0	19.1	12.5	1.85	1.85	33.1
186	40.17	12	0.214	0.269	0.350	61.1	18.7	11.2	1.01	0.92	35.5
187	40.25	12	0.215	0.270	0.350	61.3	19.3	11.1	1.12	1.05	35.2
188	40.33	12	0.240	0.299	0.350	68.6	20.0	11.5	1.28	1.24	34.2
189	40.42	12	0.246	0.305	0.350	70.3	20.2	12.3	1.68	1.68	35.7
190	40.50	12	0.263	0.325	0.350	75.0	20.9	12.8	1.71	1.70	34.8
191	40.58	12	0.241	0.301	0.350	68.9	20.5	12.2	1.49	1.48	35.2
192	40.67	12	0.216	0.263	0.350	61.7	18.9	10.7	1.03	1.00	34.6
193	40.75	12	0.220	0.273	0.350	62.8	19.3	10.9	1.23	1.23	35.0
194	40.83	12	0.217	0.263	0.350	61.9	18.8	10.6	1.18	1.18	33.5
195	40.92	12	0.245	0.291	0.350	69.9	19.6	11.1	1.03	1.03	33.6
196	41.00	12	0.254	0.299	0.350	72.5	20.2	12.1	0.91	0.91	0.0
197	41.08	12	0.210	0.258	0.350	60.1	18.2	11.3	0.75	0.65	32.7
198	41.17	12	0.193	0.236	0.350	55.2	17.8	10.2	0.72	0.69	31.7
199	41.25	12	0.210	0.256	0.350	60.1	18.6	10.3	0.68	0.68	32.7
200	41.33	12	0.208	0.254	0.350	59.5	18.5	10.4	0.61	0.57	33.1
201	41.42	12	0.226	0.278	0.350	64.5	19.4	10.7	0.69	0.69	29.5
202	41.50	12	0.213	0.258	0.350	60.9	18.8	10.6	0.55	0.52	33.2
203	41.58	12	0.247	0.295	0.350	70.5	20.1	11.1	0.84	0.84	28.2
204	41.67	12	0.210	0.264	0.350	60.0	18.5	10.9	0.48	0.14	26.6
205	41.75	12	0.231	0.270	0.350	65.9	19.0	10.7	0.87	0.87	27.5
206	41.83	12	0.222	0.278	0.350	63.6	19.2	10.8	0.52	0.31	28.2
207	41.92	12	0.240	0.292	0.350	68.6	19.8	11.5	0.57	0.47	24.7
_208	42.00	12	0.288	0.342	0.350	82.4	21.1	13.1	0.80	0.80	0.0
		Average	0.230	0.281	0.350	65.7	19.4	11.3	1.01	0.96	32.2
		Std. Dev.	0.021	0.024	0.000	5.9	0.8	0.8	0.39	0.44	3.2
		laximum	0.288	0.342	0.350	82.4	21.1	13.1	1.85	1.85	35.7
		D Blow#	208	208	184	208	208	208	185	185	189
		/linimum	0.193	0.236	0.350	55.2	17.8	10.2	0.48	0.14	24.7
	(② Blow#	198	198	184	198	198	198	204	204	207
					i otal num	ber of blows	analyzed:	25			

od Results PDIPLOT Ver. 2008.2 - Printed: 3-Āpr-2009

 VRANS RSCH001-703 - GD-4
 2 INCH SS;CME45C SAFETY;VTRANS

 OP: SPK
 Test date: 24-Sep-2008

AR: 0.92 in^2 SP: 0.492 k/ft3
LE: 53.83 ft EM: 30,000 ksi
WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy

EF2: Energy of F^2

ER: Hammer Energy Rating

ETR: Energy Transfer Ratio

VMX: Maximum Velocity

DMX: Maximum Displacement

DFN: Final Displacement

BPM: Blows per Minute

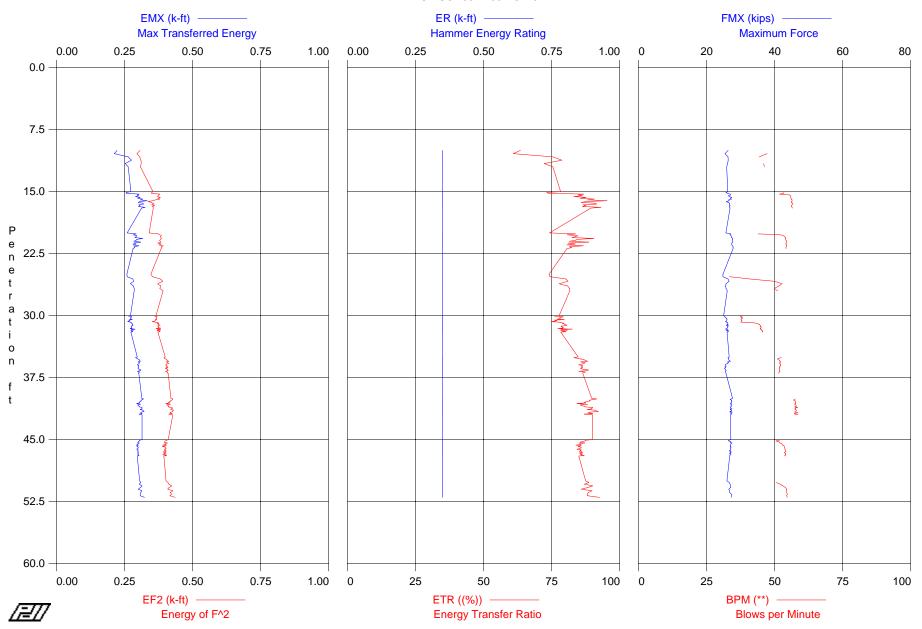
	Maximum F		o brwi. blows per will								te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bi/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	DE 1VI
209	45.00	0	0.251	0.320	0.350	71.6	20.5	13.5	1.03	0.90	0.0
210	45.05	22	0.234	0.298	0.350	67.0	19.9	13.1	0.89	0.85	32.7
211	45.09	22	0.165	0.201	0.350	47.1	16.3	9.2	0.59	0.55	30.8
212	45.14	22	0.279	0.357	0.350	79.6	21.7	13.9	0.96	0.96	0.0
213	45.19	22	0.265	0.341	0.350	75.7	21.0	13.0	0.82	0.82	30.4
214	45.23	22	0.250	0.311	0.350	71.5	20.4	12.2	0.73	0.73	31.0
215	45.28	22	0.266	0.339	0.350	75.9	21.1	12.5	0.71	0.47	22.4
216	45.33	22	0.271	0.342	0.350	77.5	21.4	12.6	0.78	0.78	33.6
217	45.37	22	0.247	0.306	0.350	70.5	20.5	11.7	0.70	0.70	35.7
218	45.42	22	0.242	0.294	0.350	69.1	20.4	11.5	0.90	0.90	31.1
219	45.47	22	0.217	0.260	0.350	62.0	18.7	10.7	0.59	0.52	28.9
220	45.51	22	0.286	0.347	0.350	81.8	21.4	13.0	0.89	0.89	25.4
221	45.56	22	0.269	0.342	0.350	76.8	21.4	12.6	0.68	0.62	32.3
222	45.60	22	0.249	0.314	0.350	71.3	20.3	11.8	0.63	0.63	0.0
223	45.65	22	0.268	0.337	0.350	76.6	21.2	12.4	0.66	0.58	32.4
224	45.70	22	0.250	0.298	0.350	71.5	20.4	11.7	0.83	0.83	33.8
225	45.74	22	0.225	0.273	0.350	64.4	19.9	10.9	0.71	0.71	31.1
226	45.79	22	0.247	0.299	0.350	70.7	20.1	12.0	0.72	0.72	34.2
227	45.84	22	0.214	0.247	0.350	61.2	18.9	10.5	0.87	0.87	30.9
228	45.88	22	0.248	0.289	0.350	70.7	20.2	11.3	0.79	0.79	34.0
229	45.93	22	0.243	0.292	0.350	69.5	20.5	11.4	0.61	0.61	31.6
230	45.98	22	0.235	0.281	0.350	67.2	20.0	11.1	0.55	0.52	32.6
231	46.02	22	0.244	0.278	0.350	69.8	19.9	11.2	0.81	0.81	31.1
232	46.07	22	0.241	0.285	0.350	69.0	20.1	11.3	0.59	0.58	30.0
233	46.12	22	0.249	0.298	0.350	71.1	20.5	11.5	0.56	0.54	28.3
234	46.16	22	0.240	0.297	0.350	68.5	20.4	11.4	0.53	0.20	29.1
235	46.21	22	0.252	0.300	0.350	71.9	20.5	11.7	0.61	0.61	31.0
236	46.26	22	0.259	0.313	0.350	74.0	20.9	12.0	0.61	0.61	32.6
237	46.30	22	0.260	0.321	0.350	74.2	21.1	12.2	0.55	0.46	31.5
238	46.35	22	0.280	0.337	0.350	80.0	21.8	12.4	0.72	0.72	29.9
239	46.40	22	0.261	0.322	0.350	74.5	21.0	12.4	0.54	0.41	29.6
240	46.44	22	0.267	0.322	0.350	76.2	20.7	12.3	0.56	0.56	32.9
241	46.49	22	0.255	0.306	0.350	72.8	20.5	12.0	0.67	0.67	31.4
242	46.53	22	0.255	0.319	0.350	72.9	20.7	11.8	0.54	0.48	30.1
243 244	46.58	22	0.243	0.302	0.350	69.6	20.3	12.2	0.53	0.49	31.6
	46.63	22	0.256	0.314	0.350	73.0	20.4	12.3	0.65	0.65	31.0
245 246	46.67 46.72	22	0.218	0.277	0.350	62.2	19.2	11.5	0.48	0.27	30.3
247	46.72 46.77	22 22	0.235	0.290	0.350	67.2	19.7	11.3	0.55	0.55	30.9
247	46.77 46.81	22 22	0.239	0.298	0.350	68.4	20.1	11.9	0.52	0.46	29.6
249	46.86	22	0.259 0.231	0.316 0.294	0.350 0.350	74.0 65.9	20.8	11.8	0.68	0.68	29.3
250	46.91	22	0.257	0.294	0.350	73.4	20.0 21.0	11.7	0.49	0.30	30.7
250 251	46.95	22 22	0.236	0.315	0.350	73.4 67.3	20.2	12.4 11.8	0.54 0.50	0.51 0.38	29.3 32.4
252	47.00	22	0.261	0.295	0.350	74.5	21.0	12.2			
202	77.00		0.248			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0.57	0.57	32.1
		Average	0.248 0.020	0.305	0.350 0.000	70.9	20.4	11.9	0.67	0.62	31.0
		Std. Dev.	0.020	0.028 0.357		5.8 81.8	0.9	0.8	0.14	0.18	2.3
		Maximum	0.286 220	0.357 212	0.350 209	81.8 220	21.8	13.9 212	1.03	0.96	35.7
		@ Blow#	220 0.165		0.350		238		209	212	217
		Minimum		0.201		47.1 21.1	16.3	9.2	0.48	0.20	22.4
		@ Blow#	211	211	209	211	211	211	245	234	215

OP: SPK

2 INCH SS;CME45C SAFETY;VTRANS

Test date: 24-Sep-2008 0.92 in^2 SP: 0.492 k/ft3

AR: LE: 53.83 ft WS: 16,807.7 f/s EM: 30,000 ksi JC: 0.00 EMX: Max Transferred Energy VMX: Maximum Velocity


EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum Fo								DI 101. DIO	wa per wiiitu	ie
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bi/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
253	50.00	0	0.245	0.310	0.350	70.Ó	20.4	13.9	1.60	1.60	0.0
254	50.05	19	0.279	0.351	0.350	79.7	21.4	12.6	0.97	0.97	31.4
255	50.11	19	0.251	0.322	0.350	71.6	20.7	12.2	0.71	0.56	31.7
256	50.16	19	0.273	0.336	0.350	78.1	21.2	12.3	1.01	1.01	24.1
257	50.21	19	0.278	0.347	0.350	79.5	21.7	12.5	1.06	1.06	30.8
258	50.26	19	0.259	0.331	0.350	74.0	20.7	11.9	0.66	0.41	29.6
259	50.32	19	0.278	0.351	0.350	79.3	21.7	13.1	0.97	0.97	27.8
260	50.37	19	0.262	0.336	0.350	74.8	21.3	12.4	0.67	0.40	31.6
261	50.42	19	0.255	0.320	0.350	72.8	20.3	12.2	0.69	0.64	33.4
262	50.47	19	0.255	0.325	0.350	72.7	20.6	12.1	0.79	0.79	30.5
263	50.53	19	0.274	0.340	0.350	78.3	21.1	12.8	0.81	0.73	33.8
264	50.58	19	0.246	0.309	0.350	70.2	20.3	12.3	0.62	0.57	30.9
265	50.63	19	0.265	0.338	0.350	75.8	21.3	12.7	0.67	0.54	33.3
266	50.68	19	0.246	0.306	0.350	70.3	19.6	11.8	0.63	0.62	32.5
267	50.74	19	0.250	0.313	0.350	71.5	20.0	11.9	0.70	0.70	33.0
268	50.79	19	0.275	0.349	0.350	71.3 78.7	21.4	12.8	0.70	0.75	33.7
269	50.84	19	0.250	0.314	0.350	71.3	20.3	12.0	0.64	0.64	31.6
270	50.89	19	0.242	0.297	0.350	69.1	19.8	11.5	0.82	0.82	31.5
271	50.95	19	0.230	0.294	0.350	65.8	19.4	11.4	0.54	0.39	32.1
272	51.00	19	0.236	0.295	0.350	67.3	19.6	11.4	0.58	0.57	31.5
273	51.05	19	0.222	0.278	0.350	63.5	19.2	11.2	0.64	0.64	32.2
274	51.11	19	0.231	0.286	0.350	66.1	19.4	11.3	0.67	0.67	32.5
275	51.16	19	0.234	0.295	0.350	66.9	19.8	11.6	0.66	0.66	32.3
276	51.21	19	0.244	0.305	0.350	69.6	20.2	12.2	0.67	0.58	31.0
277	51.26	19	0.261	0.326	0.350	74.5	20.1	12.2	0.78	0.78	32.1
278	51.32	19	0.242	0.306	0.350	69.0	19.6	11.8	0.74	0.74	31.8
279	51.37	19	0.243	0.308	0.350	69.5	20.1	12.2	0.73	0.74	32.8
280	51.42	19	0.216	0.272	0.350	61.8	19.0	11.1	0.70	0.70	31.2
281	51.47	19	0.217	0.299	0.350	67.7	19.7	11.5	0.75	0.75	31.2
282	51.53	19	0.247	0.306	0.350	70.7	20.4	11.4	0.73	0.73	0.0
283	51.58	19	0.255	0.315	0.350	70.7 72.7	20.4	11.7	0.72	0.72	34.2
284	51.63	19	0.259	0.322	0.350	73.9	21.0	12.2	0.30	0.67	32.5
285	51.68	19	0.225	0.322	0.350	64.2	19.7	11.2	0.70	0.70	31.0
286	51.74	19	0.243	0.305	0.350	69.3	20.3	12.4	0.70	0.70	30.6
287	51.79	19	0.239	0.299	0.350	68.3	20.1	12.4	0.72	0.72	31.9
288	51.84	19	0.233	0.299	0.350	68.9	20.1	12.3	0.72	0.60	30.9
289	51.89	19	0.270	0.333	0.350	77.3	21.4	12.2	0.72	0.80	23.3
290	51.95	19	0.270	0.338	0.350	77.3 77.3	21.5	12.2	0.98	0.81	23.2
_230			0.251	0.315	0.350	71.6	20.4	12.1	0.76		
		Average td. Dev.	0.231	0.313	0.000	4.7	0.7	0.6		0.73	31.1
		aximum	0.016	0.021		4.7 79.7	21.7	13.9	0.18	0.21	2.6
		Blow#	254	254	0.350 253	79.7 254	21.7 257		1.60	1.60	34.2
	•	•	254 0.216	254 0.272	253 0.350			253	253	253	283
		linimum Blow#	280	280	0.350 253	61.8 280	19.0 280	11.1 280	0.54	0.39	23.2
	Q	y DIOW#	200	200			∠ou s analyzed:		271	271	290

Test date: 25-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VRANS RSCH001-703 - GD-5

				PDIPLOT	Ver. 2008		age 1 of 1 -Apr-2009	
VRANS RSCH001-703 - GD-5 OP: SPK						I SS;CME	75 TRACK;TRA Test date: 25-	
							EM: 30	.492 k/ft3 ,000 ksi 0.00
EF2: Energy of F^2 DMX: Maximum I ER: Hammer Energy Rating DFN: Final Displa					Maximum Disp Final Displacer	lacement ment		
e (173 blows))							
EMX k-ft 0.294 0.018 0.334 18 0.213	EF2 k-ft 0.388 0.027 0.437 174 0.296	ER k-ft 0.350 0.001 0.350 1 0.350	ETR (%) 84.0 5.3 95.4 18 60.9	FMX kips 26.6 0.7 27.8 43 24.8	VMX f/s 15.5 0.6 17.2 53 14.4	DMX in 1.19 0.63 3.66 1 0.56	DFN in 1.14 0.66 3.66 1 0.18	51.3 5.9 58.6 135 33.4 48
	ed Energy gy Rating er Ratio e (173 blows EMX k-ft 0.294 0.018 0.334 18	ed Energy gy Rating er Ratio lee (173 blows) EMX EF2 k-ft k-ft 0.294 0.388 0.018 0.027 0.334 0.437 18 174 0.213 0.296	ed Energy gy Rating er Ratio ee (173 blows) EMX EF2 ER k-ft k-ft k-ft 0.294 0.388 0.350 0.018 0.027 0.001 0.334 0.437 0.350 18 174 1 0.213 0.296 0.350	ed Energy gy Rating er Ratio ee (173 blows) EMX EF2 ER ETR k-ft k-ft k-ft (%) 0.294 0.388 0.350 84.0 0.018 0.027 0.001 5.3 0.334 0.437 0.350 95.4 18 174 1 18 0.213 0.296 0.350 60.9	ed Energy gy Rating er Ratio ee (173 blows) EMX EF2 ER ETR FMX k-ft k-ft k-ft (%) kips 0.294 0.388 0.350 84.0 26.6 0.018 0.027 0.001 5.3 0.7 0.334 0.437 0.350 95.4 27.8 18 174 1 18 43 0.213 0.296 0.350 60.9 24.8	PDIPLOT 23 - GD-5 2 INCH 24 Energy 25 Gy Rating 26 Er Ratio 26 Eve (173 blows) 26 EMX EF2 ER ETR FMX VMX 27 k-ft k-ft (%) kips f/s 27 0.294 0.388 0.350 84.0 26.6 15.5 28 0.018 0.027 0.001 5.3 0.7 0.6 29 0.334 0.437 0.350 95.4 27.8 17.2 20 18 174 1 18 43 53 20 13 0.296 0.350 60.9 24.8 14.4	PDIPLOT Ver. 2008 03 - GD-5 2 INCH SS;CME VMX:	PDIPLOT Ver. 2008.2 - Printed: 10- 03 - GD-5 2 INCH SS;CME75 TRACK;TRA Test date: 25- SP: 0 EM: 30 JC: VMX: Maximum Velo DMX: Maximum Disp DFN: Final Displacer BPM: Blows per Mint EE (173 blows) EMX EF2 ER ETR FMX VMX DMX DFN k-ft k-ft k-ft (%) kips f/s in in 0.294 0.388 0.350 84.0 26.6 15.5 1.19 1.14 0.018 0.027 0.001 5.3 0.7 0.6 0.63 0.66 0.334 0.437 0.350 95.4 27.8 17.2 3.66 3.66

0.92 in^2 53.71 ft

OP: SPK AR:

WS: 16,807.7 f/s

LE:

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 10-Apr-2009

2 INCH SS;CME75 TRACK;TRANSTECH

rest date: 25-Sep-2008
SP: 0.492 k/ft3
EM: 30,000 ksi
JC: 0.00

VMX:	Maximum Velocity
DMX:	Maximum Displacement
DFN:	Final Displacement
RPM:	Blows per Minute

DIVIN.	maximum Displacem
DFN:	Final Displacement
BPM:	Blows per Minute

VVO.	10,007.7 1/5									JO. (7.00
EF2: ER: ETR:	EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio FMX: Maximum Force								DMX: Max DFN: Fina	kimum Veloc kimum Displ al Displacen ws per Minu	acement nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	10.00	3	0.223	0.308	0.350	63.6	26.3	17.0	3.66	3.66	0.0
2	10.40	3	0.213	0.296	0.350	60.9	25.4	15.6	2.68	2.63	47.2
3	10.80	3	0.264	0.306	0.350	75.5	26.3	16.5	2.90	2.90	44.3
4	11.20	3	0.276	0.311	0.350	78.8	26.4	17.2	3.08	3.08	0.0
5	11.60	3	0.253	0.312	0.350	72.3	26.2	16.0	1.82	1.81	46.0
6	12.00	3	0.264	0.309	0.350	75.4	25.9	16.7	2.11	2.11	46.2
		Average	0.249	0.307	0.350	71.1	26.1	16.5	2.71	2.70	45.9
		Std. Dev.	0.023	0.005	0.000	6.6	0.3	0.6	0.61	0.61	1.0
		Maximum	0.276	0.312	0.350	78.8	26.4	17.2	3.66	3.66	47.2
		@ Blow#	4	5	1	4	4	4	1	1	2
		Minimum	0.213	0.296	0.350	60.9	25.4	15.6	1.82	1.81	44.3
		@ Blow#	2	2	1	2	2	2	5	5	3

Total number of blows analyzed: 6

Time Summary

Drive	10 seconds	10:02:58 AM - 10:03:08 AM (9/25/2008) BN 1 - 6
Stop	13 minutes 44 seconds	10:03:08 AM - 10:16:52 AM `
Drive	21 seconds	10:16:52 AM - 10:17:13 AM BN 7 - 27
Stop	11 minutes 38 seconds	10:17:13 AM - 10:28:51 AM
Drive	20 seconds	10:28:51 AM - 10:29:11 AM BN 28 - 46
Stop	11 minutes 19 seconds	10:29:11 AM - 10:40:30 AM
Drive	9 seconds	10:40:30 AM - 10:40:39 AM BN 47 - 54
Stop	12 minutes	10:40:39 AM - 10:52:39 AM
Drive	46 seconds	10:52:39 AM - 10:53:25 AM BN 55 - 88
Stop	12 minutes 57 seconds	10:53:25 AM - 11:06:22 AM
Drive	26 seconds	11:06:22 AM - 11:06:48 AM BN 89 - 112
Stop	13 minutes 24 seconds	11:06:48 AM - 11:20:12 AM
Drive	26 seconds	11:20:12 AM - 11:20:38 AM BN 113 - 138
Stop	11 minutes 49 seconds	11:20:38 AM - 11:32:27 AM
Drive	27 seconds	11:32:27 AM - 11:32:54 AM BN 139 - 163
Stop	10 minutes 26 seconds	11:32:54 AM - 11:43:20 AM
Drive	11 seconds	11:43:20 AM - 11:43:31 AM BN 164 - 174
Total time I	1:40:33] = (Driving [0:03:16] + Stop [1:3]	7:171)

2 INCH SS;CME75 TRACK;TRANSTECH

OP: SPK AR: 0.92 in^2 Test date: 25-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

LE: 53.71 ft WS: 16,807.7 f/s

JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating
ETR: Energy Transfer Ratio ETR: F

Maximum

@ Blow#

Minimum

@ Blow#

0.334

0.256

18

8

0.382

0.337

14

19

0.350

0.350

DFN: Final Displacement
BPM: Blows per Minute

ETR:									BPM: Blov	ws per Minu	te
FMX:	Maximum For	rce		,							
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
7	15.00	0	0.274	0.355	0.350	78.3	26.2	16.6	3.51	3.51	0.0
8	15.10	10	0.256	0.351	0.350	73.2	25.7	16.3	2.88	2.88	53.2
9	15.20	10	0.258	0.349	0.350	73.8	26.1	15.8	2.17	2.10	53.3
10	15.30	10	0.304	0.380	0.350	86.8	26.9	16.2	1.58	1.54	51.8
11	15.40	10	0.297	0.376	0.350	84.7	27.1	14.7	1.08	1.01	55.4
12	15.50	10	0.302	0.374	0.350	86.4	26.4	14.8	1.15	1.15	55.8
13	15.60	10	0.291	0.372	0.350	83.2	26.7	14.8	1.07	1.07	55.9
14	15.70	10	0.307	0.382	0.350	87.6	27.4	14.5	0.96	0.85	56.0
15	15.80	10	0.299	0.372	0.350	85.6	27.0	14.8	0.95	0.89	56.0
16	15.90	10	0.317	0.380	0.350	90.7	27.3	14.6	0.98	0.98	56.1
17	16.00	10	0.309	0.364	0.350	88.2	26.5	15.2	1.05	1.05	56.4
18	16.10	10	0.334	0.353	0.350	95.4	26.7	15.6	1.47	1.47	56.4
19	16.20	10	0.307	0.337	0.350	87.6	25.8	14.7	0.82	0.82	56.3
20	16.30	10	0.301	0.351	0.350	85.9	26.4	15.5	0.67	0.31	56.1
21	16.40	10	0.318	0.353	0.350	90.9	26.8	15.3	1.65	1.65	56.7
22	16.50	10	0.320	0.359	0.350	91.6	26.7	15.3	0.90	0.90	56.5
23	16.60	10	0.303	0.350	0.350	86.6	26.7	15.2	0.64	0.52	56.4
24	16.70	10	0.307	0.361	0.350	87.6	26.9	15.5	0.69	0.69	56.2
25	16.80	10	0.302	0.353	0.350	86.4	26.6	15.6	0.61	0.47	56.2
26	16.90	10	0.326	0.356	0.350	93.1	26.8	15.4	1.19	1.19	56.4
27	17.00	. 10	0.313	0.356	0.350	89.4	26.9	15.4	1.12	1.12	56.5
	,	Average	0.302	0.361	0.350	86.3	26.6	15.3	1.29	1.25	55.7
		td. Dev.	0.019	0.012	0.000	5.4	0.4	0.6	0.72	0.75	1.3
			0.004		0.050	05.4	07.4	40.0	0 = 4	0 = 4	

73.2 8 8 Total number of blows analyzed: 21

95.4

18

27.4

25.7

14

16.6

14.5

14

7

3.51

0.61

25

3.51

0.31

20

56.7

51.8

21

10

VRANS RSCH001-703 - GD-5 OP: SPK 2 INCH SS;CME75 TRACK;TRANSTECH Test date: 25-Sep-2008

AR: 0.92 in^2 LE: 53.71 ft WS: 16,807.7 f/s SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio

VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

	Maximum								BHIVI: BIOV	vs per iviinu	te
BL#		BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
28	20.00	0	0.260	0.341	0.350	74.2	25.7	16.4	1.82	1.70	0.0
29	20.11	9	0.293	0.374	0.350	83.8	27.1	16.2	1.79	1.79	43.9
30	20.22	9	0.283	0.380	0.350	80.8	26.8	15.6	1.25	1.22	52.2
31	20.33	9	0.296	0.386	0.350	84.7	27.2	15.8	1.21	1.21	53.2
32	20.44	9	0.293	0.383	0.350	83.7	27.2	16.3	1.22	1.22	53.7
33	20.56	9	0.289	0.384	0.350	82.5	27.3	15.7	1.03	0.96	54.1
34	20.67	9	0.317	0.386	0.350	90.4	27.7	14.9	1.09	1.09	53.9
35	20.78	9	0.295	0.383	0.350	84.4	27.6	14.8	0.88	0.72	54.1
36	20.89	9	0.293	0.379	0.350	83.7	27.5	15.1	0.98	0.93	54.2
37	21.00	9	0.285	0.382	0.350	81.6	27.7	14.6	0.90	0.55	54.5
38	21.11	9	0.310	0.384	0.350	88.7	27.7	14.8	1.15	1.15	54.5
39	21.22	9	0.284	0.373	0.350	81.1	27.4	15.2	1.26	1.26	54.2
40	21.33	9	0.293	0.385	0.350	83.7	27.5	15.3	1.22	1.21	54.2
41	21.44	9	0.282	0.377	0.350	80.7	27.4	15.6	1.50	1.50	54.4
42	21.56	9	0.303	0.392	0.350	86.7	27.6	16.5	1.77	1.77	54.4
43	21.67	9	0.285	0.385	0.350	81.5	27.8	16.4	1.72	1.72	54.3
44	21.78	9	0.288	0.388	0.350	82.4	27.8	16.6	1.63	1.62	54.1
45	21.89	9	0.282	0.385	0.350	80.7	27.8	16.3	1.44	1.44	54.2
		Average	0.291	0.380	0.350	83.1	27.4	15.7	1.32	1.28	53.4
		Std. Dev.	0.012	0.011	0.000	3.4	0.5	0.6	0.30	0.35	2.4
		Maximum	0.317	0.392	0.350	90.4	27.8	16.6	1.82	1.79	54.5
		@ Blow#	34	42	28	34	43	44	28	29	37
		Minimum	0.260	0.341	0.350	74.2	25.7	14.6	0.88	0.55	43.9
		@ Blow#	28	28	28	28	28	37	35	37	29
					Total num	ber of blows	s analyzed:	18			

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 10-Apr-2009

VRANS RSCH001-703 - GD-5 OP: SPK

2 INCH SS;CME75 TRACK;TRANSTECH Test date: 25-Sep-2008

AR:	0.92 in^2
LE:	53.71 ft
WS:	16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX:	Max Transferred Energy
EF2:	Energy of F^2
ER:	Hammer Energy Rating
ETR:	Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement

ER:	Hammer Energy Rating
ETR:	Energy Transfer Ratio
FMX:	Maximum Force

D	maximum Diopiacoi
DFN:	Final Displacement
BPM:	Blows per Minute

BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
47	25.00	0	0.259	0.347	0.350	74.0	24.8	16.6	3.11	3.11	0.0
48	25.29	4	0.260	0.353	0.350	74.4	24.8	16.9	3.49	3.49	33.4
49	25.57	4	0.281	0.382	0.350	80.3	26.3	16.7	2.55	2.55	41.0
50	25.86	4	0.284	0.391	0.350	81.0	26.6	16.4	2.25	2.25	50.0
51	26.14	4	0.272	0.372	0.350	77.7	25.7	16.5	2.62	2.62	52.7
52	26.43	4	0.283	0.384	0.350	80.9	25.6	17.0	2.87	2.87	51.5
53	26.71	4	0.286	0.380	0.350	81.6	25.7	17.2	2.18	2.18	49.9
54	27.00	4	0.286	0.392	0.350	81.7	26.1	15.5	1.13	1.03	51.1
		Average	0.276	0.375	0.350	79.0	25.7	16.6	2.52	2.51	47.1
		Std. Dev.	0.011	0.016	0.000	3.0	0.6	0.5	0.66	0.69	6.6
		Maximum	0.286	0.392	0.350	81.7	26.6	17.2	3.49	3.49	52.7
		@ Blow#	53	54	47	54	50	53	48	48	51
		Minimum	0.259	0.347	0.350	74.0	24.8	15.5	1.13	1.03	33.4
		@ Blow#	47	47	47	47	47	54	54	54	48
		•			Total nun	ober of blow	s analyzed:	8			

2 INCH SS;CME75 TRACK;TRANSTECH

OP: SPK

Test date: 25-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

AR: 0.92 in^2 LE: 53.71 ft WS: 16,807.7 f/s

JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement

EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

EMX: Max Transferred Energy

DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum Fo								D. III. Dielle per IIIIIa.					
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM			
<i></i>	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**			
55	30.00	0	0.272	0.366	0.350	77.8	25.0	16.4	1.22	1.22	0.0			
56	30.06	17	0.266	0.361	0.350	76.1	25.3	15.6	0.92	0.92	38.2			
57	30.12	17	0.277	0.370	0.350	79.3	25.4	14.8	0.98	0.98	37.4			
58	30.18	17	0.276	0.369	0.350	78.8	25.4	14.6	0.96	0.95	37.7			
59	30.24	17	0.273	0.367	0.350	78.0	25.5	14.7	0.96	0.95	37.8			
60	30.30	17	0.274	0.367	0.350	78.2	25.8	14.7	0.88	0.85	38.3			
61	30.36	17	0.274	0.367	0.350	78.2	26.0	14.7	0.87	0.87	37.9			
62	30.42	17	0.270	0.364	0.350	77.1	26.0	14.8	0.79	0.77	37.6			
63	30.48	17	0.279	0.369	0.350	79.6	26.0	14.4	0.98	0.98	37.8			
64	30.55	17	0.266	0.365	0.350	76.0	26.0	14.8	0.73	0.59	37.8			
65	30.61	17	0.269	0.363	0.350	76.9	25.9	15.0	0.85	0.85	38.0			
66	30.67	17	0.267	0.360	0.350	76.2	25.9	14.9	0.73	0.68	37.7			
67	30.73	17	0.262	0.352	0.350	74.8	25.6	14.6	0.81	0.81	37.7			
68	30.79	17	0.272	0.364	0.350	77.8	25.8	15.0	0.84	0.83	37.6			
69	30.85	17	0.274	0.371	0.350	78.3	26.2	15.2	0.87	0.87	41.3			
70	30.91	17	0.278	0.377	0.350	79.4	26.3	14.8	0.80	0.79	43.3			
71	30.97	17	0.277	0.370	0.350	79.1	26.2	15.0	0.91	0.91	43.8			
72	31.03	17	0.280	0.375	0.350	79.9	26.2	15.0	0.83	0.82	44.1			
73	31.09	17	0.280	0.375	0.350	79.9	26.0	15.0	0.81	0.81	44.5			
74	31.15	17	0.282	0.381	0.350	80.7	26.5	15.2	0.77	0.73	44.6			
75	31.21	17	0.280	0.374	0.350	80.0	25.8	15.2	1.04	1.04	44.7			
76	31.27	17	0.275	0.372	0.350	78.5	26.2	15.3	0.71	0.60	45.0			
77	31.33	17	0.275	0.376	0.350	78.5	26.3	15.3	0.78	0.78	44.7			
78	31.39	17	0.277	0.375	0.350	79.3	26.2	15.3	0.69	0.67	45.0			
79	31.45	17	0.276	0.375	0.350	78.9	26.1	15.6	0.86	0.86	45.1			
80	31.52	17	0.277	0.383	0.350	79.2	26.1	15.3	0.69	0.64	45.0			
81	31.58	17	0.271	0.366	0.350	77.3	25.7	15.2	0.65	0.62	44.7			
82	31.64	17	0.289	0.383	0.350	82.5	25.6	14.9	1.07	1.07	45.0			
83	31.70	17	0.275	0.371	0.350	78.4	26.3	15.4	0.61	0.36	44.9			
84	31.76	17	0.283	0.382	0.350	80.7	26.4	15.4	0.68	0.68	45.4			
85	31.82	17	0.274	0.370	0.350	78.4	25.8	15.0	0.68	0.68	45.3			
86	31.88	17	0.277	0.378	0.350	79.2	26.5	15.4	0.62	0.52	45.7			
87	31.94	17	0.281	0.381	0.350	80.3	26.3	15.3	0.69 0.62	0.69	45.5			
88	32.00	17	0.274	0.373	0.350	78.4	26.0	15.1		0.60	45.4			
		Average	0.275	0.371	0.350	78.6	25.9	15.1	0.82	0.79	42.0			
		Std. Dev.	0.005	0.007	0.000	1.5	0.3	0.4	0.14	0.17	3.4			
		laximum	0.289	0.383	0.350	82.5	26.5	16.4	1.22	1.22	45.7			
		@ Blow#	82	80	55	82	74 25.0	55	55 0.64	55	86			
		/linimum	0.262	0.352	0.350	74.8	25.0	14.4	0.61	0.36	37.4			
	(@ Blow#	67	67	55	67	55	63	83	83	57			

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VRANS RSCH001-703 - GD-5 OP: SPK

2 INCH SS;CME75 TRACK;TRANSTECH Test date: 25-Sep-2008

0.92 in^2 53.71 ft AR: SP: 0.492 k/ft3 EM: 30,000 ksi LE: WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement ETR: Energy Transfer Ratio BPM: Blows per Minute

	Maximum Fo								Brivi. Blows per Milliate				
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ		
DL#	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	%* **		
89	35.00	0	0.297	0.400	0.350	84.8	26.6	16.6	1.96	1.94	0.0		
90	35.09	12	0.291	0.395	0.350	83.2	26.3	15.3	0.99	0.86	52.5		
91	35.0 9 35.17	12	0.291	0.398	0.350	84.7	26.5	15.2	0.98	0.98	51.3		
92	35.26	12	0.290	0.398	0.350	85.9	26.5	14.8	0.56	0.96	51.3		
93	35.26 35.35	12	0.305	0.402	0.350	87.0	26.5	15.1	0.79	0.88	51.1		
94	35.43	12		0.406		87.0 87.4	26.7	15.1	0.81	0.79	51.5 51.9		
	35.52		0.306		0.350 0.350	88.3	26.7 27.0	15.0	1.06	1.06			
95		12	0.309	0.413		-					51.9		
96	35.61	12	0.300	0.404	0.350	85.7	26.2	15.2	0.91	0.87	52.3		
97	35.70	12	0.306	0.409	0.350	87.3	26.5	15.2	1.16	1.16	51.8		
98	35.78	12	0.304	0.413	0.350	86.9	26.2	15.3	1.05	0.99	51.9		
99	35.87	12	0.301	0.404	0.350	86.1	25.7	14.8	1.11	1.11	52.2		
100	35.96	12	0.297	0.402	0.350	84.9	25.5	15.0	1.02	1.02	52.1		
101	36.04	12	0.303	0.405	0.350	86.5	25.6	15.0	1.14	1.14	52.3		
102	36.13	12	0.302	0.408	0.350	86.3	25.7	14.8	0.91	0.69	51.9		
103	36.22	12	0.300	0.402	0.350	85.8	25.4	15.0	1.15	1.15	52.0		
104	36.30	12	0.302	0.410	0.350	86.4	25.6	14.9	0.93	0.82	51.7		
105	36.39	12	0.300	0.401	0.350	85.7	25.3	15.0	1.07	1.07	51.9		
106	36.48	12	0.303	0.408	0.350	86.4	25.4	15.0	0.85	0.70	51.7		
107	36.57	12	0.310	0.409	0.350	88.5	25.6	15.0	1.05	1.05	51.7		
108	36.65	12	0.309	0.411	0.350	88.2	25.8	15.2	0.96	0.96	51.8		
109	36.74	12	0.298	0.401	0.350	85.0	25.5	15.1	0.74	0.50	52.0		
110	36.83	12	0.306	0.409	0.350	87.5	25.6	15.4	1.02	1.02	51.7		
111	36.91	12	0.302	0.407	0.350	86.4	25.7	15.3	0.73	0.51	51.5		
112	37.00	12	0.303	0.411	0.350	86.5	25.7	15.5	0.75	0.70	51.6		
		Average	0.302	0.406	0.350	86.3	26.0	15.2	1.00	0.95	51.8		
		Std. Dev.	0.004	0.005	0.000	1.2	0.5	0.4	0.24	0.28	0.3		
	M	laximum	0.310	0.413	0.350	88.5	27.0	16.6	1.96	1.94	52.5		
	(@ Blow#	107	95	89	107	95	89	89	89	90		
	N	/linimum	0.291	0.395	0.350	83.2	25.3	14.8	0.73	0.50	51.1		
		② Blow#	90	90	89	90	105	92	111	109	92		
					T . 1 . 1	L C L L		0.4					

Total number of blows analyzed: 24

Time Summary

Drive	10 seconds	10:02:58 AM - 10:03:08 AM (9/25/2008) BN 1 - 6
Stop	13 minutes 44 seconds	10:03:08 AM - 10:16:52 AM
Drive	21 seconds	10:16:52 AM - 10:17:13 AM BN 7 - 27
Stop	11 minutes 38 seconds	10:17:13 AM - 10:28:51 AM
Drive	20 seconds	10:28:51 AM - 10:29:11 AM BN 28 - 46
Stop	11 minutes 19 seconds	10:29:11 AM - 10:40:30 AM
Drive	9 seconds	10:40:30 AM - 10:40:39 AM BN 47 - 54
Stop	12 minutes	10:40:39 AM - 10:52:39 AM
Drive	46 seconds	10:52:39 AM - 10:53:25 AM BN 55 - 88
Stop	12 minutes 57 seconds	10:53:25 AM - 11:06:22 AM
Drive	26 seconds	11:06:22 AM - 11:06:48 AM BN 89 - 112
Stop	13 minutes 24 seconds	11:06:48 AM - 11:20:12 AM
Drive	26 seconds	11:20:12 AM - 11:20:38 AM BN 113 - 138
Stop	11 minutes 49 seconds	11:20:38 AM - 11:32:27 AM
Drive	27 seconds	11:32:27 AM - 11:32:54 AM BN 139 - 163
Stop	10 minutes 26 seconds	11:32:54 AM - 11:43:20 AM
Drive	11 seconds	11:43:20 AM - 11:43:31 AM BN 164 - 174

2 INCH SS;CME75 TRACK;TRANSTECH Test date: 25-Sep-2008

OP: SPK AR: 0.92 in^2

SP: 0.492 k/ft3 EM: 30,000 ksi

LE: 53.71 ft WS: 16,807.7 f/s

JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement

136

136

116

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating Е F

DFN: Final Displacement

ETR:	Energy Trans	fer Ratio		BPM: Blows per Minute							
FMX:	Maximum Fo	rce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
113	40.00	0	0.314	0.421	0.350	89.8	27.6	17.0	2.13	2.13	0.0
114	40.08	13	0.320	0.427	0.350	91.5	27.3	17.2	1.91	1.91	57.6
115	40.16	13	0.316	0.427	0.350	90.2	26.9	16.7	1.41	1.40	57.1
116	40.24	13	0.311	0.424	0.350	88.8	27.3	15.8	0.97	0.82	57.0
117	40.32	13	0.312	0.420	0.350	89.1	27.3	15.7	0.95	0.88	57.6
118	40.40	13	0.309	0.419	0.350	88.2	27.4	15.7	0.96	0.96	57.5
119	40.48	13	0.305	0.412	0.350	87.1	27.2	16.0	0.84	0.67	57.7
120	40.56	13	0.306	0.417	0.350	87.5	27.3	15.7	0.86	0.85	57.7
121	40.64	13	0.295	0.402	0.350	84.3	27.0	15.8	0.79	0.63	57.7
122	40.72	13	0.309	0.419	0.350	88.2	27.4	16.1	0.85	0.84	57.3
123	40.80	13	0.299	0.406	0.350	85.5	27.1	16.0	0.80	0.77	57.7
124	40.88	13	0.301	0.410	0.350	86.0	27.2	15.9	0.76	0.70	57.9
125	40.96	13	0.304	0.414	0.350	87.0	27.4	16.1	0.75	0.69	58.0
126	41.04	13	0.306	0.411	0.350	87.3	27.1	16.2	0.74	0.68	57.4
127	41.12	13	0.315	0.422	0.350	90.1	27.1	15.7	0.76	0.76	58.4
128	41.20	13	0.314	0.427	0.350	89.7	27.0	15.8	0.68	0.46	57.4
129	41.28	13	0.315	0.422	0.350	89.9	27.4	15.8	0.68	0.54	57.7
130	41.36	13	0.308	0.420	0.350	88.1	26.9	16.1	0.68	0.68	57.5
131	41.44	13	0.317	0.431	0.350	90.6	27.3	15.3	0.62	0.38	57.9
132	41.52	13	0.320	0.427	0.350	91.5	27.4	15.6	0.62	0.25	58.0
133	41.60	13	0.322	0.427	0.350	92.1	26.8	15.7	1.17	1.17	57.6
134	41.68	13	0.312	0.422	0.350	89.1	27.5	16.0	0.59	0.31	57.4
135	41.76	13	0.310	0.417	0.350	88.5	26.9	15.8	0.80	0.80	58.6
136	41.84	13	0.315	0.425	0.350	90.1	27.3	15.7	0.56	0.18	57.3
137	41.92	13	0.304	0.413	0.350	87.0	27.3	16.2	0.57	0.48	57.5
138	42.00	13	0.315	0.428	0.350	90.1	27.0	15.5	0.57	0.48	58.6
		Average	0.311	0.420	0.350	88.7	27.2	16.0	0.88	0.79	57.7
		Std. Dev.	0.007	0.007	0.000	1.9	0.2	0.4	0.38	0.44	0.4
	N	laximum	0.322	0.431	0.350	92.1	27.6	17.2	2.13	2.13	58.6
	(@ Blow#	133	131	113	133	113	114	113	113	135
	N	/linimum	0.295	0.402	0.350	84.3	26.8	15.3	0.56	0.18	57.0
		5 DI	404	404	440	404	400	404	400	400	440

Drive	10 seconds	10:02:58 AM - 10:03:08 AM (9/25/2008) BN 1 - 6
Stop	13 minutes 44 seconds	10:03:08 AM - 10:16:52 AM
Drive	21 seconds	10:16:52 AM - 10:17:13 AM BN 7 - 27
Stop	11 minutes 38 seconds	10:17:13 AM - 10:28:51 AM
Drive	20 seconds	10:28:51 AM - 10:29:11 AM BN 28 - 46
Stop	11 minutes 19 seconds	10:29:11 AM - 10:40:30 AM
Drive	9 seconds	10:40:30 AM - 10:40:39 AM BN 47 - 54
Stop	12 minutes	10:40:39 AM - 10:52:39 AM
Drive	46 seconds	10:52:39 AM - 10:53:25 AM BN 55 - 88
Stop	12 minutes 57 seconds	10:53:25 AM - 11:06:22 AM
Drive	26 seconds	11:06:22 AM - 11:06:48 AM BN 89 - 112
Stop	13 minutes 24 seconds	11:06:48 AM - 11:20:12 AM
Drive	26 seconds	11:20:12 AM - 11:20:38 AM BN 113 - 138
Stop	11 minutes 49 seconds	11:20:38 AM - 11:32:27 AM
Drive	27 seconds	11:32:27 AM - 11:32:54 AM BN 139 - 163
Stop	10 minutes 26 seconds	11:32:54 AM - 11:43:20 AM
Drive	11 seconds	11:43:20 AM - 11:43:31 AM BN 164 - 174

121

113

121

Total number of blows analyzed: 26

133

131

121

@ Blow#

VRANS RSCH001-703 - GD-5 OP: SPK 2 INCH SS;CME75 TRACK;TRANSTECH Test date: 25-Sep-2008

AR: 0.92 in^2 LE: 53.71 ft WS: 16,807.7 f/s SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

	Energy Tra								BPM: Blov	vs per Minu	te
	Maximum I		E147			- ETD	FMV	\	DMV	DEN	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM **
400	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	
139	45.00	0	0.315	0.411	0.350	89.9	27.1	16.7	1.55	1.55	0.0
140	45.08	12	0.306	0.406	0.350	87.4	26.4	16.4	1.72	1.72	51.8
141	45.17	12	0.305	0.400	0.350	87.3	26.6	15.8	1.29	1.29	50.5
142	45.25	12	0.302	0.398	0.350	86.2	27.1	15.1	1.27	1.26	51.3
143	45.33	12	0.299	0.397	0.350	85.3	26.9	15.6	1.29	1.29	51.9
144	45.42	12	0.305	0.408	0.350	87.2	27.5	15.6	1.23	1.22	52.0
145	45.50	12	0.299	0.399	0.350	85.3	27.2	15.4	1.12	1.10	52.6
146	45.58	12	0.300	0.403	0.350	85.8	27.1	15.5	1.04	1.02	52.8
147	45.67	12	0.294	0.391	0.350	83.9	27.0	15.2	0.93	0.84	52.8
148	45.75	12	0.301	0.404	0.350	85.9	27.1	15.3	0.97	0.95	53.4
149	45.83	12	0.296	0.390	0.350	84.7	26.9	15.1	0.95	0.91	53.5
150	45.92	12	0.300	0.400	0.350	85.8	27.2	15.5	0.94	0.94	53.7
151	46.00	12	0.301	0.402	0.350	85.9	27.0	15.2	0.86	0.76	53.7
152	46.08	12	0.299	0.403	0.350	85.4	27.0	15.3	0.88	0.81	53.8
153	46.17	12	0.295	0.397	0.350	84.3	27.1	15.0	0.77	0.37	53.8
154	46.25	12	0.301	0.402	0.350	85.9	27.1	15.3	0.96	0.96	53.9
155	46.33	12	0.299	0.397	0.350	85.5	26.7	15.3	0.82	0.68	54.0
156	46.42	12	0.301	0.404	0.350	86.1	27.2	15.6	0.82	0.82	54.0
157	46.50	12	0.298	0.393	0.350	85.1	26.8	15.6	0.78	0.75	53.9
158	46.58	12	0.302	0.402	0.350	86.4	27.3	15.7	0.76	0.70	53.5
159	46.67	12	0.299	0.394	0.350	85.4	26.8	15.6	0.74	0.73	54.1
160	46.75	12	0.302	0.404	0.350	86.3	27.2	15.7	0.72	0.64	53.9
161	46.83	12	0.299	0.391	0.350	85.6	26.8	15.9	0.77	0.77	54.0
162	46.92	12	0.304	0.405	0.350	87.0	26.9	15.6	0.70	0.52	53.7
_163	47.00	12	0.297	0.395	0.350	85.0	26.8	15.7	0.70	0.69	54.0
		Average	0.301	0.400	0.350	85.9	27.0	15.6	0.98	0.93	53.2
		Std. Dev.	0.004	0.005	0.000	1.2	0.2	0.4	0.27	0.31	1.0
		Maximum	0.315	0.411	0.350	89.9	27.5	16.7	1.72	1.72	54.1
		@ Blow#	139	139	139	139	144	139	140	140	159
		Minimum	0.294	0.390	0.350	83.9	26.4	15.0	0.70	0.37	50.5
		@ Blow#	147	149	139	147	140	153	162	153	141

Total number of blows analyzed: 25

	_		
Time	Sun	าma	rv

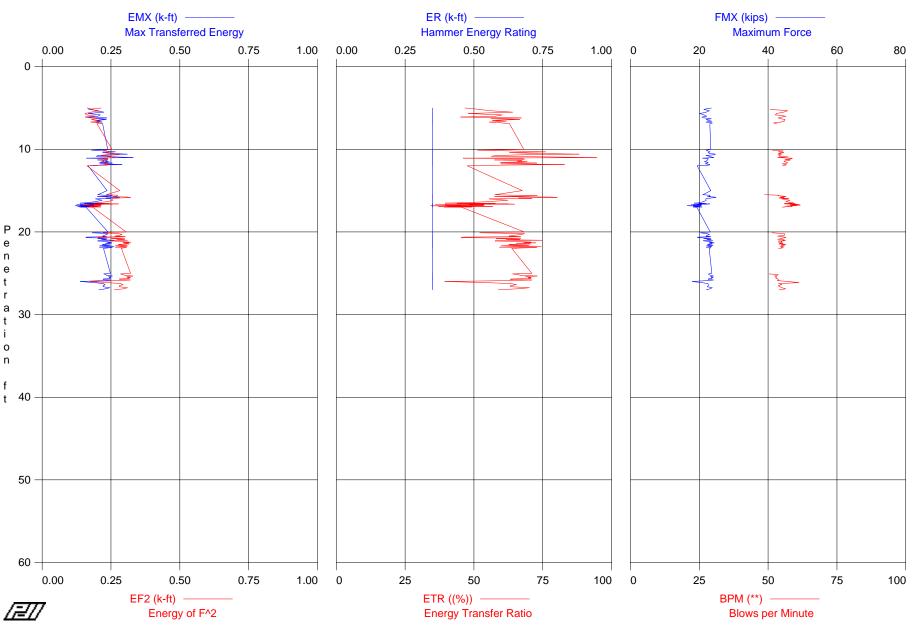
Drive	10 seconds	10:02:58 AM - 10:03:08 AM (9/25/2008) BN 1 - 6
Stop	13 minutes 44 seconds	10:03:08 AM - 10:16:52 AM
Drive	21 seconds	10:16:52 AM - 10:17:13 AM BN 7 - 27
Stop	11 minutes 38 seconds	10:17:13 AM - 10:28:51 AM
Drive	20 seconds	10:28:51 AM - 10:29:11 AM BN 28 - 46
Stop	11 minutes 19 seconds	10:29:11 AM - 10:40:30 AM
Drive	9 seconds	10:40:30 AM - 10:40:39 AM BN 47 - 54
Stop	12 minutes	10:40:39 AM - 10:52:39 AM
Drive	46 seconds	10:52:39 AM - 10:53:25 AM BN 55 - 88
Stop	12 minutes 57 seconds	10:53:25 AM - 11:06:22 AM
Drive	26 seconds	11:06:22 AM - 11:06:48 AM BN 89 - 112
Stop	13 minutes 24 seconds	11:06:48 AM - 11:20:12 AM
Drive	26 seconds	11:20:12 AM - 11:20:38 AM BN 113 - 138
Stop	11 minutes 49 seconds	11:20:38 AM - 11:32:27 AM
Drive	27 seconds	11:32:27 AM - 11:32:54 AM BN 139 - 163
Stop	10 minutes 26 seconds	11:32:54 AM - 11:43:20 AM
Drive	11 seconds	11:43:20 AM - 11:43:31 AM BN 164 - 174

VRANS RSCH001-703 - GD-5
OP: SPK
2 INCH SS;CME75 TRACK;TRANSTECH
Test date: 25-Sep-2008

AR:	0.92 in^2		SP:	0.492 k/ft3
LE:	53.71 ft		EM:	30.000 ksi
WS: 1	16,807.7 f/s		JC:	0.00
FMX.	May Transferre	d Energy VMY:	Maximum \/	ologity

EMX:	Max Transferr	ed Energy				VMX: Ma	ximum Veloc	city					
EF2: Energy of F ²										DMX: Maximum Displacement			
ER:	Hammer Ener	gy Rating			DFN: Final Displacement								
ETR: Energy Transfer Ratio									BPM: Blo	ws per Minut	te		
FMX:	Maximum Ford	ce								•			
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ		

BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
<i>D</i> _,,	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	DF IVI
404											
164	50.00	0	0.306	0.403	0.350	87.5	26.0	16. 4	2.28	2.28	0.0
165	50.20	5	0.310	0.410	0.350	88.7	26.7	15.8	1.93	1.93	50.6
166	50.40	5	0.305	0.413	0.350	87.1	26.9	15.5	1.74	1.73	52.1
167	50.60	5	0.315	0.424	0.350	90.1	27.0	15.6	1.84	1.84	53.0
168	50.80	5	0.309	0.414	0.350	88.3	27.1	15.7	1.90	1.90	54.0
169	51.00	5	0.301	0.409	0.350	85.9	26.5	15.5	1.23	1.22	54.4
170	51.20	5	0.314	0.428	0.350	89.8	26.8	14.9	0.92	0.67	54.4
171	51.40	5	0.310	0.419	0.350	88.5	26.8	15.0	1.29	1.28	54.4
172	51.60	5	0.308	0.423	0.350	88.1	27.3	16.1	1.52	1.52	54.7
173	51.80	5	0.308	0.417	0.350	88.1	27.3	15.8	1.99	1.99	54.4
174	52.00	5	0.324	0.437	0.350	92.6	27.2	16.7	2.04	2.04	54.7
		Average	0.310	0.418	0.350	88.6	26.9	15.7	1.70	1.67	53.7
		Std. Dev.	0.006	0.009	0.000	1.7	0.4	0.5	0.39	0.44	1.3
	N	/laximum	0.324	0.437	0.350	92.6	27.3	16.7	2.28	2.28	54.7
	(@ Blow#	174	174	164	174	173	174	164	164	172
	ľ	Minimum	0.301	0.403	0.350	85.9	26.0	14.9	0.92	0.67	50.6
	(@ Blow#	169	164	164	169	164	170	170	170	165
		_			Total num	har of blows	analyzad:	11			


Total number of blows analyzed: 11 Time Summary

Drive	10 seconds	10:02:58 AM - 10:03:08 AM (9/25/2008) BN 1 - 6
Stop	13 minutes 44 seconds	10:03:08 AM - 10:16:52 AM
Drive	21 seconds	10:16:52 AM - 10:17:13 AM BN 7 - 27
Stop	11 minutes 38 seconds	10:17:13 AM - 10:28:51 AM
Drive	20 seconds	10:28:51 AM - 10:29:11 AM BN 28 - 46
Stop	11 minutes 19 seconds	10:29:11 AM - 10:40:30 AM
Drive	9 seconds	10:40:30 AM - 10:40:39 AM BN 47 - 54
Stop	12 minutes	10:40:39 AM - 10:52:39 AM
Drive	46 seconds	10:52:39 AM - 10:53:25 AM BN 55 - 88
Stop	12 minutes 57 seconds	10:53:25 AM - 11:06:22 AM
Drive	26 seconds	11:06:22 AM - 11:06:48 AM BN 89 - 112
Stop	13 minutes 24 seconds	11:06:48 AM - 11:20:12 AM
Drive	26 seconds	11:20:12 AM - 11:20:38 AM BN 113 - 138
Stop	11 minutes 49 seconds	11:20:38 AM - 11:32:27 AM
Drive	27 seconds	11:32:27 AM - 11:32:54 AM BN 139 - 163
Stop	10 minutes 26 seconds	11:32:54 AM - 11:43:20 AM
Drive	11 seconds	11:43:20 AM - 11:43:31 AM BN 164 - 174

Test date: 25-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VRANS RSCH001-703 - GD-6

Geosciences	Testing	&	Research	Inc
Case Method				

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

Case Method Result	S				PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009					
VRANS RSCH001-7 OP: SPK	03 - GD-6				2 1	NCH SS;CME	75 TRACI	K SAFETY;TRA Test date: 25-		
AR: 0.92 in^2 LE: 28.71 ft WS: 16,807.7 f/s								EM: 30	0.492 k/ft3 0,000 ksi 0.00	
EMX: Max Transfern EF2: Energy of F^2 ER: Hammer Ener ETR: Energy Transf FMX: Maximum Ford	gy Rating er Ratio						DMX: DFN:	Maximum Velo Maximum Disp Final Displace Blows per Minu	lacement ment	
Statistics for entire fil	e (143 blows)								
	EMX k-ft	EF2 k-ft	ER k-ft	ETR (%)	FMX kips	VMX f/s	DMX in	DFN in	BPM **	
Average	0.211	0.244	0.350	60.3	21.9	14.7	1.10	0.97	55.7	
Std. Dev.	0.038	0.049	0.001	10.9	1.7	2.0	0.48	0.65	2.3	
Maximum	0.331	0.329	0.350	94.6	24.8	19.8	2.87	2.87	61.7	
@ Blow#	29	128	1	29	50	13	4	4	73	
Minimum	0.120	0.139	0.350	34.3	16.5	10.0	0.47	-2.41	48.7	
@ Blow#	77	77	1	77	77	138	53	96	44	

Time Summary

Drive

1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146

Stop

17 seconds 10 minutes 26 seconds 27 minutes 21 seconds Drive

OP: SPK

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

Test date: 25-Sep-2008

AR: 0.92 in^2 SP: 0.492 k/ft3 LE: 28.71 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00

EMX:	Max Transferred Energy	VMX:	Maximum Velocity
EF2:	Energy of F^2		Maximum Displacement
ER:	Hammer Energy Rating	DFN:	Final Displacement
ETR:	Energy Transfer Ratio	ВРМ:	Blows per Minute

ETR:	Energy Tra	nsfer Ratio								vs per Minu	
FMX:	Maximum I	Force									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	5.00	6	0.164	0.215	0.350	46.7	23.5	19.5	1.74	1.51	0.0
2	5.17	6	0.181	0.169	0.350	51.8	21.4	17.1	2.43	2.43	50.7
3	5.33	6	0.196	0.207	0.350	55.9	23.0	19.1	2.40	2.40	57.1
4	5.50	6	0.224	0.178	0.350	64.0	22.0	18.0	2.87	2.87	55.6
5	5.67	6	0.168	0.156	0.350	47.9	20.2	16.6	1.55	1.55	53.1
6	5.83	6	0.211	0.163	0.350	60.2	21.4	16.0	1.88	1.88	52.6
7	6.00	6	0.202	0.196	0.350	57.8	22.2	18.3	1.60	1.60	56.5
8	6.10	10	0.158	0.157	0.350	45.2	20.8	16.7	1.06	0.80	55.0
. 9	6.20	10	0.235	0.177	0.350	67.2	21.5	17.6	2.11	2.11	53.7
10	6.30	10	0.196	0.203	0.350	56.1	23.5	19.3	1.29	0.86	54.6
11	6.40	10	0.233	0.180	0.350	66.6	22.1	18.2	2.09	2.09	56.1
12	6.50	10	0.198	0.194	0.350	56.7	22.6	18.7	1.53	1.52	55.8
13	6.60	10	0.216	0.208	0.350	61.8	23.6	19.8	1.42	1.34	55.9
14	6.70	10	0.195	0.177	0.350	55.6	22.0	17.4	1.22	1.08	54.6
15	6.80	10	0.210	0.218	0.350	60.0	23.8	19.5	1.25	0.95	52.0
16	6.90	10	0.220	0.199	0.350	62.9	23.1	18.7	1.41	1.41	<u>53.1</u>
		Average	0.200	0.187	0.350	57.3	22.3	18.2	1.74	1.65	54.4
		Std. Dev.	0.023	0.020	0.000	6.5	1.0	1.1	0.50	0.58	1.8
		Maximum	0.235	0.218	0.350	67.2	23.8	19.8	2.87	2.87	57.1
		@ Blow#	9	15	1	9	15	13	4	4	3
		Minimum	0.158	0.156	0.350	45.2	20.2	16.0	1.06	0.80	50.7
		@ Blow#	8	5	1	8	5	6	8	8	2

Total number of blows analyzed: 16

Time Summary

Drive 17 seconds 1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17

10 minutes 26 seconds Stop

1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146 Drive 27 minutes 21 seconds

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

VRANS	RSCH001-703 -	GD-6
OD: SDI	<i>!</i>	

AK:	0.92	ın^2
LE:	28.71	ft
WS:	16,807.7	f/s

Test date: 25-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

WS: 16,807.7 f/s		JC: 0.00
EMX: Max Transferred Energy	VMX:	Maximum Velocity
EF2: Energy of F ²	DMX:	Maximum Displacement
ER: Hammer Energy Rating	DFN:	Final Displacement
ETR: Energy Transfer Ratio	BPM:	Blows per Minute

	Energy Trans								BPM: Blo	ws per Minu	te
FMX:	Maximum Fo	rce								-	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
18	10.00	0	0.238	0.254	0.350	68.1	23.3	18.0	2.11	2.11	0.0
19	10.10	10	0.180	0.222	0.350	51.3	22.0	16.4	1.16	0.99	51.6
20	10.20	10	0.223	0.235	0.350	63.7	22.5	16.2	1.49	1.49	55.5
21	10.30	10	0.266	0.243	0.350	76.0	23.1	15.7	1.73	1.73	53.7
22	10.40	10	0.220	0.231	0.350	62.9	22.6	15.0	1.13	1.07	55.7
23	10.50	10	0.255	0.247	0.350	72.9	22.9	16.0	1.53	1.53	53.8
24	10.58	12	0.309	0.281	0.350	88.2	24.7	16.8	1.93	1.93	54.9
25	10.67	12	0.236	0.278	0.350	67.6	24.2	16.9	1.03	0.81	53.6
26	10.75	12	0.204	0.214	0.350	58.1	22.0	15.2	1.16	1.16	54.4
27	10.83	12	0.197	0.246	0.350	56.3	22.9	15.2	0.85	-0.39	54.0
28	10.92	12	0.265	0.255	0.350	75.6	23.3	17.1	1.51	1.51	57.1
29	11.00	12	0.331	0.262	0.350	94.6	24.2	16.0	2.24	2.24	53.5
30	11.07	14	0.161	0.204	0.350	46.1	21.0	14.2	1.07	-0.16	58.6
31	11.14	14	0.238	0.237	0.350	67.9	22.6	15.4	0.95	0.95	58.8
32	11.21	14	0.239	0.239	0.350	68.3	22.5	15.0	1.03	1.03	56.2
33	11.29	14	0.201	0.226	0.350	57.5	22.4	14.6	0.91	0.42	58.1
34	11.36	14	0.236	0.221	0.350	67.4	22.2	14.4	1.34	1.34	57.3
35	11.43	14	0.230	0.225	0.350	65.7	22.1	14.6	1.35	1.35	55.8
36	11.50	14	0.243	0.215	0.350	69.3	21.5	14.2	1.75	1.75	56.0
37	11.58	12	0.209	0.237	0.350	59.6	22.6	15.1	1.08	0.85	57.0
38	11.67	12	0.255	0.234	0.350	72.8	22.4	15.0	1.83	1.83	56.9
39	11.75	12	0.209	0.224	0.350	59.8	21.8	15.5	1.32	1.32	55.2
40	11.83	12	0.290	0.244	0.350	82.9	23.1	15.2	2.15	2.15	56.6
41	11.92	12	0.211	0.234	0.350	60.2	22.9	14.7	0.99	0.83	56.3
42	12.00	12	0.167	0.163	0.350	47.6	19.4	12.4	1.07	1.07	55.2
		Average	0.233	0.235	0.350	66.4	22.6	15.4	1.39	1.24	55.7
		td. Dev.	0.040	0.023	0.000	11.3	1.1	1.1	0.41	0.64	1.7
		aximum	0.331	0.281	0.350	94.6	24.7	18.0	2.24	2.24	58.8
	•	Blow#	29	24	18	29	24	18	29	29	31
		linimum	0.161	0.163	0.350	46.1	19.4	12.4	0.85	-0.39	51.6
	@	Blow#	30	42	18	30	42	42	27	27	19
					Total num	ber of blows	analyzed:	25			

Time Summary

Drive 17 seconds

10 minutes 26 seconds

1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17

Stop Drive 27 minutes 21 seconds 1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146

Page 1 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

VRANS RSCH001-703 - GD-6 OP: SPK Test date: 25-Sep-2008

AR:	0.00 :-40		1 est date. 25-3ep-2006
AR.	0.92 in^2		SP: 0.492 k/ft3
LE:	28.71 ft		
			EM: 30,000 ksi
WS:	16.807.7 f/s		
			JC: 0.00
⊢MX	· Max Transferre	d Energy	

VMX: Maximum Velocity DMX: Maximum Displacement EF2: Energy of F^2 ER: Hammer Energy Rating
ETR: Energy Transfer Ratio
FMX: Maximum Force DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum Fo	rce							DI WI. DI	ows per will	ule
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
43	15.00	0	0.236	0.282	0.350	67.Ś	23.4	17.4	1.28	1.23	0.0
44	15.50	2	0.202	0.233	0.350	57.6	21.0	16.1	1.23	1.23	48.7
45	15.56	18	0.224	0.273	0.350	63.9	23.0	17.4	0.88	0.88	53.8
46	15.61	18	0.255	0.274	0.350	73.0	23.0	16.7	1.09	1.09	53.7
47	15.67	18	0.237	0.271	0.350	67.6	23.2	15.9	0.66	0.66	55.6
48	15.72	18	0.201	0.257	0.350	57.5	22.4	16.0	0.53	0.05	56.5
49	15.78	18	0.272	0.311	0.350	77.7	24.4	18.1	1.00	1.00	54.4
50	15.83	18	0.281	0.321	0.350	80.2	24.8	17.9	0.95	0.95	55.8
51	15.89	18	0.232	0.282	0.350	66.2	23.4	16.6	0.57	0.43	54.0
52	15.94	18	0.248	0.258	0.350	71.0	22.4	16.7	1.80	1.80	57.5
53	16.00	18	0.194	0.252	0.350	55.5	21.9	15.0	0.47	-0.59	55.0
54	16.17	6	0.218	0.257	0.350	62.4	22.0	16.3	0.68	0.68	57.9
55	16.33	6	0.194	0.236	0.350	55.3	21.3	15.1	0.71	0.71	56.5
56	16.50	6	0.149	0.186	0.350	42.5	19.4	14.5	0.66	0.71	59.3
57	16.52	66	0.138	0.175	0.350	39.6	18.5	14.4	1.00	1.00	59.5 57.6
58	16.53	66	0.202	0.226	0.350	57.7	20.8	15.2	0.82	0.82	57.6
59	16.55	66	0.202	0.244	0.350	57.7	21.8	14.7	0.55	0.52	58.5
60	16.56	66	0.179	0.203	0.350	51.1	20.1	14.0	1.07	1.07	55.9
61	16.58	66	0.171	0.221	0.350	48.9	20.9	13.1	0.48	0.00	59.9
62	16.59	66	0.154	0.200	0.350	43.9	20.0	12.8	0.47	0.00	57.4
63	16.61	66	0.219	0.277	0.350	62.4	23.1	15.5	0.59	-0.11	56.3
64	16.62	66	0.193	0.246	0.350	55.2	21.9	16.6	0.63	0.40	59.6
65	16.64	66	0.226	0.254	0.350	64.7	22.1	15.5	1.12	1.12	57.9
66	16.65	66	0.126	0.151	0.350	36.0	17.7	11.1	0.62	0.62	61.3
67	16.67	66	0.188	0.206	0.350	53.7	20.4	13.5	0.84	0.84	60.3
68	16.68	66	0.177	0.206	0.350	50.7	20.3	14.2	0.55	0.28	59.0
70	16.71	66	0.169	0.188	0.350	48.2	19.4	12.9	0.62	0.62	60.5
71	16.73	66	0.188	0.215	0.350	53.7	20.7	13.9	0.77	0.77	59.0
72	16.74	66	0.177	0.210	0.350	50.5	20.4	14.5	1.15	1.15	58.0
73	16.76	66	0.138	0.168	0.350	39.5	18.3	13.1	0.67	0.67	61.7
74	16.77	66	0.166	0.191	0.350	47.4	19.6	12.1	1.04	1.04	58.3
75 70	16.79	66	0.170	0.199	0.350	48.6	19.8	12.8	0.67	0.58	59.7
76	16.80	66	0.187	0.213	0.350	53.5	20.5	13.5	1.01	1.01	60.3
77 70	16.82	66	0.120	0.139	0.350	34.3	16.5	10.2	0.96	0.96	58.9
78 70	16.83	66	0.124	0.147	0.350	35.5	17.2	10.7	0.56	0.56	58.5
79 80	16.85	66	0.159	0.174	0.350	45.4	18.6	11.7	0.96	0.96	58.7
81	16.86	66	0.154	0.181	0.350	44.1	18.6	12.1	0.82	0.82	56.8
82	16.88 16.89	66	0.173	0.185	0.350	49.5	19.5	11.5	1.13	1.13	57.5
83	16.69	66 66	0.156	0.195	0.350	44.7	19.6	11.8	0.67	0.67	57.9
84	16.92	66	0.142	0.173	0.350	40.4	18.8	11.6	0.72	0.72	58.8
85	16.94	66 66	0.199	0.208	0.350	56.8	20.3	12.8	2.19	2.19	56.2
86	16.95	66 66	0.130	0.162	0.350	37.1	18.3	11.7	0.65	0.65	56.1
87	16.95	66 66	0.158	0.192	0.350	45.2	19.4	13.4	0.85	0.85	0.0
88	16.98	66 66	0.172	0.213	0.350	49.2	20.8	13.2	0.68	0.20	56.2
89	17.00	66 66	0.137	0.167	0.350	39.1	18.3	11.2	0.53	0.34	55.9
		66	0.159	0.183	0.350	45.4	19.3	12.7	0.75	0.75	<u>55.1</u>
		verage	0.185	0.218	0.350	52.8	20.6	14.1	0.84	0.74	57.4
		d. Dev.	0.039	0.044	0.000	11.2	1.9	2.1	0.33	0.46	2.4
		ximum	0.281	0.321	0.350	80.2	24.8	18.1	2.19	2.19	61.7
		Blow#	50	50	43	50	50	49	84	84	73
		nimum	0.120	0.139	0.350	34.3	16.5	10.2	0.47	-0.59	48.7
	@	Blow#	77	77	43	77	77	77	53	53	44
					i otal numb	per of blows	analyzed: 4	1 6			
O.											

Time Summary

Drive 17 seconds

Stop 10 minutes 26 seconds 1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17

1:45:56 PM - 1:56:22 PM

0.92 in^2

28.71 ft

OP: SPK

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

Test date: 25-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi

WS: 16,807.7 f/s

EMX: Max Transferred Energy

EF2: Energy of F^2

ER: Hammer Energy Rating

ER: Hencey Transfer Ratio

BPM: Blows per Minute

	Energy Trans		BPM: Blows per Mir								
	Maximum Fo										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
90	20.00	0	0.239	0.305	0.350	68.3	23.2	17.0	1.45	1.32	0.0
91	20.10	10	0.182	0.222	0.350	52.1	20.4	15.5	1.15	1.04	51.4
92	20.20	10	0.239	0.276	0.350	68.3	22.2	16.7	2.15	2.15	55.9
93	20.30	10	0.235	0.290	0.350	67.2	22.9	16.1	1.66	1.66	56.1
94	20.40	10	0.226	0.282	0.350	64.6	22.3	15.0	1.27	1.25	55.9
95	20.50	10	0.220	0.265	0.350	62.7	22.0	15.2	1.55	1.55	53.5
96	20.56	16	0.234	0.302	0.350	66.9	23.3	14.4	0.65	-2.41	54.8
97	20.63	16	0.161	0.203	0.350	46.0	19.6	12.1	0.89	0.89	56.0
98	20.69	16	0.159	0.204	0.350	45.3	19.5	11.5	0.53	-0.17	56.4
99	20.75	16	0.235	0.299	0.350	67.0	23.3	13.6	0.82	0.51	55.0
100	20.81	16	0.203	0.253	0.350	58.1	21.3	13.0	0.92	0.92	55.0
101	20.88	16	0.233	0.300	0.350	66.7	23.4	14.0	0.73	-0.04	53.5
102	20.94	16	0.216	0.271	0.350	61.7	22.2	13.5	0.70	0.68	55.9
103	21.00	16	0.262	0.310	0.350	74.7	23.9	14.8	1.10	1.10	55.4
104	21.05	22	0.203	0.246	0.350	58.0	21.2	13.0	0.87	0.87	56.3
105	21.09	22	0.202	0.256	0.350	57.7	21.7	13.1	0.57	0.40	53.7
106	21.14	22	0.233	0.294	0.350	66.5	23.1	14.1	0.66	0.62	55.1
107	21.18	22	0.237	0.296	0.350	67.7	23.1	14.1	0.66	0.62	54.8
108	21.23	22	0.247	0.315	0.350	70.7	23.8	14.6	0.65	0.45	54.9
109	21.27	22	0.238	0.294	0.350	68.1	23.0	13.8	0.64	0.63	55.1
110	21.32	22	0.253	0.322	0.350	72.4	24.3	14.6	0.66	0.28	53.9
111	21.36	22	0.229	0.297	0.350	65.3	23.0	13.6	0.63	0.44	54.5
112	21.41	22	0.244	0.306	0.350	69.8	23.6	14.2	0.74	0.70	55.4
113	21.45	22	0.247	0.315	0.350	70.5	23.7	14.4	0.74	0.49	54.0
114	21.50	22	0.221	0.280	0.350	63.1	22.5	13.7	0.76	0.76	56.5
115	21.56	18	0.219	0.276	0.350	62.6	22.5	13.8	0.68	0.64	55.1
116	21.61	18	0.245	0.309	0.350	69.9	24.0	14.5	0.71	0.64	54.8
117	21.67	18	0.210	0.266	0.350	60.0	22.2	13.1	0.61	0.17	56.0
118	21.72	18	0.261	0.309	0.350	74.5	23.7	14.4	1.15	1.15	54.4
119	21.78	18	0.233	0.294	0.350	66.5	23.3	14.3	0.64	0.46	55.3
120	21.83	18	0.208	0.266	0.350	59.3	22.0	12.8	0.57	0.37	55.6
121	21.89	18	0.255	0.306	0.350	72.8	23.4	14.5	1.06	1.06	54.7
122	21.94	18	0.234	0.294	0.350	66.9	23.2	14.1	0.66	0.50	55.1
123	22.00	18	0.223	0.288	0.350	63.7	22.9	13.9	0.64	0.54	53.8
	,	Average	0.226	0.283	0.350	64.6	22.6	14.2	0.88	0.65	55.0
	S	td. Dev.	0.024	0.029	0.000	6.9	1.2	1.1	0.36	0.71	1.0
		aximum	0.262	0.322	0.350	74.7	24.3	17.0	2.15	2.15	56.5
		② Blow#	103	110	90	103	110	90	92	92	114
		1inimum	0.159	0.203	0.350	45.3	19.5	11.5	0.53	-2.41	51.4
	(② Blow#	98	97	90	98	98	98	98	96	91
					Total num	ber of blows	s analyzed:	34			

Time Summary

Drive 17 seconds

1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17 1:45:56 PM - 1:56:22 PM

Stop 10 minutes 26 seconds 1:45:56 PM - 1:56:22 F

Drive 27 minutes 21 seconds 1:56:22 PM - 2:23:43 PM BN 18 - 146

Page 1 of 1

VRANS RSCH001-703 - GD-6 OP: SPK

AR: 0.92 in^2 LE: 28.71 ft

2 INCH SS;CME75 TRACK SAFETY;TRANSTECH

Test date: 25-Sep-2008

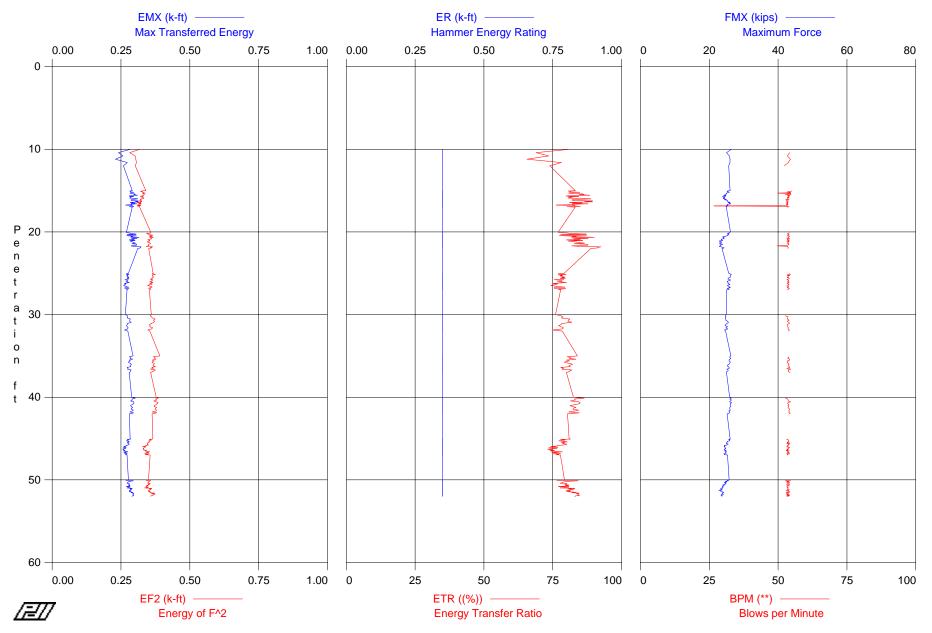
SP: 0.492 k/ft3 EM: 30,000 ksi

WS: 16.807.7 f/s	JC: 0.00				
EMX: Max Transferred Energy	VMX: Maximum Velocity				
EF2: Energy of F ²	DMX: Maximum Displacement				
ER: Hammer Energy Rating	DFN: Final Displacement				
ETR: Energy Transfer Ratio	BPM: Blows per Minute				

	Maximum Fo								ws per iviinu	ute	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
124	25.00	0	0.248	0.321	0.350	71.0	23.6	16.4	1.36	1.14	0.0
125	25.08	12	0.224	0.285	0.350	64.1	22.7	14.8	0.96	0.95	50.4
126	25.17	12	0.232	0.293	0.350	66.2	22.8	15.1	1.00	0.94	53.7
127	25.25	12	0.234	0.303	0.350	66.9	23.4	14.3	1.14	1.14	53.2
128	25.33	12	0.255	0.329	0.350	73.0	24.1	15.3	1.31	1.23	52.4
129	25.42	12	0.241	0.307	0.350	68.7	23.3	15.0	1.83	1.82	53.2
130	25.50	12	0.248	0.321	0.350	70.9	24.0	14.7	1.29	1.04	52.9
131	25.56	16	0.244	0.308	0.350	69.7	23.5	13.6	1.28	1.20	52.7
132	25.63	16	0.247	0.317	0.350	70.7	23.7	13.7	1.11	0.58	53.2
133	25.69	16	0.223	0.280	0.350	63.6	22.6	12.9	1.79	1.79	53.5
134	25.75	16	0.221	0.284	0.350	63.2	22.6	13.2	1.50	1.49	53.7
135	25.81	16	0.248	0.320	0.350	71.0	24.1	13.9	1.55	1.46	53.8
136	25.88	16	0.221	0.279	0.350	63.1	22.4	12.7	1.68	1.68	53.4
138	26.00	16	0.138	0.173	0.350	39.4	18.0	10.0	0.76	0.71	57.3
139	26.13	8	0.192	0.241	0.350	54.8	20.8	12.1	1.03	1.03	61.2
140	26.25	8	0.222	0.284	0.350	63.5	22.5	13.2	1.07	1.07	53.9
141	26.38	8	0.229	0.294	0.350	65.4	22.6	13.9	0.88	0.71	55.0
142	26.50	8	0.221	0.281	0.350	63.2	22.6	13.3	1.04	1.04	53.7
143	26.63	8	0.222	0.281	0.350	63.4	22.3	13.4	0.82	0.68	54.2
144	26.75	8	0.246	0.310	0.350	70.2	23.8	14.3	1.43	1.43	55.1
145	26.88	8	0.230	0.296	0.350	65.8	23.1	14.1	0.81	0.72	56.4
146	27.00	88	0.206	0.262	0.350	58.8	22.0	12.7	0.74	0.66	54.0
	Average		0.227	0.290	0.350	64.8	22.8	13.8	1.20	1.11	54.1
	Std. Dev.		0.025	0.033	0.000	7.0	1.3	1.3	0.32	0.36	2.1
	Maximum		0.255	0.329	0.350	73.0	24.1	16.4	1.83	1.82	61.2
	@ Blow#		128	128	124	128	135	124	129	129	139
	Minimum		0.138	0.173	0.350	39.4	18.0	10.0	0.74	0.58	50.4
	(@ Blow#	138	138	124	138	138	138	146	132	125
	Total number of blows analyzed: 22										

Time Summary

Drive 17 seconds 1:45:39 PM - 1:45:56 PM (9/25/2008) BN 1 - 17


10 minutes 26 seconds Stop

Drive 27 minutes 21 seconds 1:45:56 PM - 1:56:22 PM 1:56:22 PM - 2:23:43 PM BN 18 - 146

Test date: 26-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VTRANS RSCH011-703 - GD-7

Geosciences Testing	Page 1 of 1								
Case Method Results	PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009								
VTRANS RSCH011-7 OP: SPK	703 - GD-7					21	NCH SS;C	ME45C AUTO Test date: 26-	
AR: 0.92 in^2 LE: 53.80 ft WS: 16,807.7 f/s								EM: 30	0.492 k/ft3 0,000 ksi 0.00
EMX: Max Transferre EF2: Energy of F^2 ER: Hammer Energ ETR: Energy Transfe FMX: Maximum Force	gy Rating er Ratio						DMX: DFN:	Maximum Velo Maximum Disp Final Displace Blows per Mine	lacement ment
Statistics for entire file	e (240 blows))							
Average	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
	0.282	0.351	0.350	80.6	25.0	14.9	1.17	1.15	53.5
Std. Dev.	0.014	0.019	0.001	3.9	0.9	1.0	0.40	0.42	1.9
Maximum	0.323	0.391	0.350	92.4	26.5	17.9	2.99	2.99	55.0
@ Blow#	76	128	1	76	155	80	128	128	8
Minimum	0.230	0.282	0.350	65.6	22.8	12.7	0.53	0.26	26.7
@ Blow#	4		1	4	227	178	42	193	44

Time	Summary
------	---------

Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240
T - (-) ()		. C71\

VTRANS RSCH011-703 - GD-7 OP: SPK 2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008

EMX:	Max Transferred Ene	gy VMX: Maximum	Velo	ocity
WS: 1	16,807.7 f/s	JO):	0.00
LE:	53.80 ft	E!	VI: 30),000 ksi
AR:	0.92 in^2	SI	o: (0.492 k/ft3

EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute
FMX: Maximum Force	·

FINIX: 1	viaximum Fo	rce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	10.00	3	0.283	0.318	0.350	81.0	26.4	17.2	2.07	2.07	0.0
2	10.40	3	0.241	0.282	0.350	69.0	25.0	16.5	2.20	2.20	54.2
3	10.80	3	0.257	0.301	0.350	73.5	25.8	17.2	2.01	2.01	53.4
4	11.20	3	0.230	0.304	0.350	65.6	26.0	16.8	1.44	1.36	54.5
5	11.60	3	0.273	0.306	0.350	78.1	26.0	16.1	1.84	1.84	53.7
6	12.00	3	0.259	0.302	0.350	73.9	25.7	16.6	1.99	1.99	52.3
		Average	0.257	0.302	0.350	73.5	25.8	16.7	1.92	1.91	53.6
	S	Std. Dev.	0.018	0.011	0.000	5.2	0.4	0.4	0.24	0.27	0.8
	M	laximum	0.283	0.318	0.350	81.0	26.4	17.2	2.20	2.20	54.5
	(@ Blow#	1	1	1	1	1	1	2	2	4
	Ň	/linimum	0.230	0.282	0.350	65.6	25.0	16.1	1.44	1.36	52.3
	(@ Blow#	4	2	1	4	2	5	4	4	6
					Total nun	nber of blow	s analyzed:	6			

Time Summary

Drive 6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6							
Stop 14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM							
Drive 45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47							
Stop 11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM							
Drive 34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79							
Stop 10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM							
Drive 34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111							
Stop 10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM							
Drive 16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127							
Stop 11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM							
Drive 22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148							
Stop 18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM							
Drive 19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167							
Stop 17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM							
Drive 40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204							
Stop 19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM							
Drive 38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240							
Total time [1:58:11] = (Driving [0:04:14] + Stop [1:53:57])								

Page 1 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-7

OP: SPK

2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008

AR: 0.92 in^2 LE: 53.80 ft WS: 16,807.7 f/s SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum For	rce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
7	15.00	0	0.291	0.340	0.350	83.2	26.0	15.8	1.48	1.47	0.0
8	15.05	20	0.282	0.324	0.350	80.7	25.2	14.7	1.05	1.05	55.0
9	15.10	20	0.285	0.321	0.350	81.5	25.2	14.1	0.76	0.68	54.2
10	15.15	20	0.285	0.328	0.350	81.4	25.5	14.3	0.86	0.86	53.4
11	15.20	20	0.297	0.331	0.350	84.8	25.8	14.4	1.12	1.12	54.1
12	15.25	20	0.285	0.329	0.350	81.4	25.3	14.5	1.03	1.03	54.6
13	15.30	20	0.283	0.338	0.350	80.7	25.0	15.1	1.07	1.07	49.9
14	15.35	20	0.288	0.329	0.350	82.3	25.1	15.0	1.25	1.25	54.6
15	15.40	20	0.300	0.332	0.350	85.7	24.9	15.2	1.23	1.23	53.5
16	15.45	20	0.302	0.335	0.350	86.3	25.0	15.2	1.35	1.35	52.6
17	15.50	20	0.296	0.333	0.350	84.5	24.5	14.9	1.12	1.12	54.7
18	15.55	20	0.310	0.333	0.350	88.5	24.8	15.2	1.47	1.47	53.4
19	15.60	20	0.291	0.327	0.350	83.0	24.2	15.3	1.09	1.09	54.2
20	15.65	20	0.280	0.325	0.350	79.9	24.8	14.8	0.66	0.65	53.6
21	15.70	20	0.296	0.330	0.350	84.4	24.4	14.9	1.15	1.15	53.6
22	15.75	20	0.283	0.320	0.350	80.7	23.8	14.9	1.15	1.15	54.0
23	15.80	20	0.287	0.329	0.350	82.1	24.5	14.9	0.96	0.96	53.4
24	15.85	20	0.284	0.332	0.350	81.2	24.2	14.7	0.72	0.72	54.0
25	15.90	20	0.282	0.330	0.350	80.5	24.3	14.6	0.76	0.76	53.4
26	15.95	20	0.303	0.332	0.350	86.5	24.1	14.7	0.96	0.96	53.5
27	16.00	20	0.311	0.325	0.350	88.8	24.6	14.4	1.21	1.21	53.7
28	16.05	20	0.294	0.320	0.350	84.1	25.0	14.9	0.99	0.99	52.8
29	16.10	20	0.287	0.321	0.350	82.0	24.3	15.2	0.66	0.66	54.0
30	16.15	20	0.287	0.325	0.350	82.0	25.1	15.0	0.54	0.40	53.5
31	16.20	20	0.289	0.320	0.350	82.6	25.2	14.9	0.55	0.38	53.2
32	16.25	20	0.313	0.317	0.350	89.4	25.3	14.7	1.38	1.38	52.9
33	16.30	20	0.303	0.326	0.350	86.6	25.3	15.4	0.61	0.56	53.4
34	16.35	20	0.313	0.321	0.350	89.4	25.4	15.2	1.41	1.41	53.7
35	16.40	20	0.291	0.322	0.350	83.1	26.0	14.8	0.76	0.76	53.3
36	16.45	20	0.284	0.309	0.350	81.1	25.5	14.9	0.91	0.91	53.5
37	16.50	20	0.300	0.322	0.350	85.7	26.0	14.9	1.06	1.06	52.9
38	16.55	20	0.287	0.314	0.350	82.1	25.8	14.9	0.89	0.89	53.5
39	16.60	20	0.307	0.324	0.350	87.8	26.2	15.1	1.30	1.30	53.3
40	16.65	20	0.288	0.319	0.350	82.3	25.4	15.2	0.81	0.81	53.6
41	16.70	20	0.289	0.316	0.350	82.5	25.3	15.0	1.06	1.06	53.0
42	16.75	20	0.267	0.310	0.350	76.3	25.1	14.8	0.53	0.42	53.5
43	16.80	20	0.291	0.322	0.350	83.1	25.4	14.9	0.90	0.90	53.2
44	16.85	20	0.289	0.310	0.350	82.6	24.9	15.1	0.90	0.90	26.7
45	16.90	20	0.297	0.317	0.350	85.0	25.2	15.5	1.24	1.24	53.0
46	16.95	20	0.281	0.318	0.350	80.2	24.9	15.6	0.71	0.71	54.0
47	17.00	20	0.291	0.318	0.350	83.2	25.0	15.6	0.84	0.84	53.3

Time Summary

Drive 6 seconds 9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6 Stop 14 minutes 35 seconds 9:09:49 AM - 9:24:24 AM Drive 45 seconds 9:24:24 AM - 9:25:09 AM BN 7 - 47 11 minutes 38 seconds 9:25:09 AM - 9:36:47 AM Stop Drive 34 seconds 9:36:47 AM - 9:37:21 AM BN 48 - 79 10 minutes 19 seconds 9:37:21 AM - 9:47:40 AM Stop Drive 34 seconds 9:47:40 AM - 9:48:14 AM BN 80 - 111

0.324

0.007

0.340

0.309

36

0.350

0.000

0.350

0.350

83.4

2.8

32

42

Total number of blows analyzed: 41

89.4

76.3

25.1

0.6

26.2

23.8

39

22

15.0

0.3

15.8

14.1

9

0.99

0.26

1.48

0.53

42

0.97

0.28

1.47

0.38

31

52.8

4.3 55.0

8

26.7

44

0.292

0.010

0.313

0.267

32

42

Average

Std. Dev.

Maximum

@ Blow#

Minimum

@ Blow#

EMX: Max Transferred Energy EF2: Energy of F^2

0.92 in^2 53.80 ft

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS

Test date: 26-Sep-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

VMX: Maximum Velocity DMX: Maximum Displacement

DFN: Final Displacement
RPM: Blows per Minute

ER:	Hammer Energy Rating
ETR:	Energy Transfer Ratio
FMX:	Maximum Force

OP: SPK

WS: 16,807.7 f/s

AR:

LE:

	Energy Trans								BPM: Blov	vs per Minu	te
FMX:	Maximum Fo	rce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
48	20.00	0	0.270	0.358	0.350	77.0	26.2	16.0	2.45	2.45	0.0
49	20.06	16	0.270	0.357	0.350	77.1	25.8	16.1	1.32	1.32	54.0
50	20.13	16	0.282	0.356	0.350	80.5	25.7	15.1	1.17	1.14	53.9
51	20.19	16	0.285	0.343	0.350	81.3	25.3	14.7	1.37	1.37	53.5
52	20.26	16	0.305	0.350	0.350	87.2	25.8	14.9	1.39	1.39	53.5
53	20.32	16	0.273	0.351	0.350	77.9	25.3	15.1	1.23	1.23	54.0
54	20.39	16	0.305	0.366	0.350	87.2	25.5	15.6	1.43	1.43	53.4
55	20.45	16	0.271	0.354	0.350	77.5	25.2	15.5	1.25	1.25	53.7
56	20.52	16	0.292	0.363	0.350	83.6	24.7	15.3	1.16	1.14	54.2
57	20.58	16	0.287	0.353	0.350	82.0	23.9	15.5	1.38	1.38	53.5
58	20.65	16	0.315	0.368	0.350	90.0	24.4	15.2	1.30	1.30	53.7
59	20.71	16	0.286	0.355	0.350	81.8	24.0	15.5	1.31	1.31	53.9
60	20.77	16	0.308	0.361	0.350	87.9	24.3	15.6	1.21	1.21	53.1
61	20.84	16	0.289	0.360	0.350	82.7	24.0	15.9	0.88	0.88	54.2
62	20.90	16	0.298	0.354	0.350	85.0	23.5	15.8	1.09	1.09	53.4
63	20.97	16	0.280	0.347	0.350	80.0	23.5	15.7	1.12	1.12	53.6
64	21.03	16	0.301	0.355	0.350	85.9	23.8	16.1	1.29	1.29	54.0
65	21.10	16	0.283	0.353	0.350	80.7	22.9	16.0	0.87	0.87	53.2
66	21.16	16	0.288	0.348	0.350	82.2	23.1	16.1	1.01	1.01	54.0
67	21.23	16	0.293	0.346	0.350	83.7	23.6	15.6	1.24	1.24	53.4
68	21.29	16	0.296	0.354	0.350	84.6	23.2	16.3	0.82	0.82	53.7
69	21.35	16	0.303	0.356	0.350	86.5	22.9	16.4	1.31	1.31	53.8
70	21.42	16	0.290	0.357	0.350	82.8	23.3	16.2	0.73	0.72	53.4
71	21.48	16	0.306	0.352	0.350	87.6	24.0	15.4	1.29	1.29	53.9
72	21.55	16	0.307	0.350	0.350	87.8	23.1	15.7	1.13	1.13	53.8
73	21.61	16	0.306	0.349	0.350	87.5	23.4	15.5	1.35	1.35	53.4
74	21.68	16	0.287	0.351	0.350	82.0	23.2	15.7	0.90	0.90	49.7
75 70	21.74	16	0.295	0.342	0.350	84.4	22.9	15.3	1.41	1.41	53.3
76	21.81	16	0.323	0.365	0.350	92.4	23.6	15.9	1.21	1.21	53.5
77	21.87	16	0.320	0.357	0.350	91.4	23.8	16.0	1.42	1.42	53.6
78	21.94	16	0.320	0.361	0.350	91.3	24.3	15.7	1.15 1.19	1.15 1.19	53.7
79	22.00	16	0.311	0.351	0.350	88.8	23.7	16.0			53.5
		Average	0.295	0.354	0.350	84.3	24.1	15.7	1.23	1.23	53.5
		Std. Dev.	0.015	0.006	0.000	4.2	1.0	0.4	0.28	0.28	0.8
		Maximum	0.323	0.368	0.350	92.4	26.2	16.4	2.45	2.45	54.2
		@ Blow#	76	58	48	76	48	69	48	48	56
		Vinimum	0.270	0.342	0.350	77.0	22.9	14.7	0.73	0.72	49.7
	(@ Blow#	48	75	48	48	75	51	70	70	74
					i otai num	ber of blows	s anaiyzed:	32			

Time Summary

Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM

0.92 in^2

OP: SPK AR:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS

rest	uate. 2	20-Sep-2008	
	SP:	0.492 k/ft3	
	CRA.	20 000 1:	

 SP:	0.492 k/ft3	3
EM:	30,000 ksi	

1 P	SP: 0.492 k/ft3
LE: 53.80 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

ETR: Energy Transfer Ratio

FMX:	Maximum Fo	rce							D. III. DIO	vo per minu	ıc
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
80	25.00	0	0.277	0.367	0.350	79.1	25.7	17.9	1.61	1.61	0.0
81	25.06	16	0.269	0.363	0.350	77.0	26.0	16.4	1.04	1.04	54.0
82	25.13	16	0.279	0.375	0.350	79.8	26.4	16.0	1.10	1.10	54.5
83	25.19	16	0.270	0.366	0.350	77.1	26.3	15.6	0.95	0.94	53.3
84	25.26	16	0.275	0.364	0.350	78.6	26.2	14.9	1.28	1.28	54.2
85	25.32	16	0.272	0.364	0.350	77.7	26.2	15.6	0.93	0.93	53.4
86	25.39	16	0.273	0.367	0.350	78.1	26.1	15.8	0.99	0.99	53.7
87	25.45	16	0.278	0.368	0.350	79.3	26.1	15.5	0.97	0.97	53.7
88	25.52	16	0.274	0.366	0.350	78.2	26.0	15.1	0.98	0.98	53.3
89	25.58	16	0.279	0.364	0.350	79.6	25.5	15.2	1.11	1.11	54.0
90	25.65	16	0.272	0.360	0.350	77.7	25.5	15.2	0.04	0.04	57.0

• .	_00		U.E.1 U	0.507	0.550	70.0	20.2	14.9	1.20	1.28	54.2
85	25.32	16	0.272	0.364	0.350	77.7	26.2	15.6	0.93	0.93	53.4
86	25.39	16	0.273	0.367	0.350	78.1	26.1	15.8	0.99	0.99	53.7
87	25.45	16	0.278	0.368	0.350	79.3	26.1	15.5	0.97	0.97	53.7
88	25.52	16	0.274	0.366	0.350	78.2	26.0	15.1	0.98	0.98	53.3
89	25.58	16	0.279	0.364	0.350	79.6	25.5	15.2	1.11	1.11	54.0
90	25.65	16	0.272	0.360	0.350	77.7	25.5	15.7	0.94	0.94	54.0
91	25.71	16	0.277	0.365	0.350	79.1	25.5	15.8	0.91	0.91	53.7
92	25.77	16	0.265	0.357	0.350	75.6	26.1	16.6	0.72	0.66	53.2
93	25.84	16	0.271	0.363	0.350	77.4	26.1	16.5	1.11	1.11	53.8
94	25.90	16	0.275	0.364	0.350	78.5	25.7	16.0	1.06	1.06	53.7
95	25.97	16	0.274	0.361	0.350	78.3	25.2	15.5	1.04	1.04	53.9
96	26.03	16	0.268	0.354	0.350	76.7	25.3	16.0	0.96	0.96	53.3
97	26.10	16	0.280	0.366	0.350	80.0	25.5	15.1	0.93	0.93	54.0
98	26.16	16	0.274	0.360	0.350	78.2	25.4	15.4	1.07	1.07	53.7
99	26.23	16	0.263	0.355	0.350	75.1	25.6	16.3	0.78	0.78	53.3
100	26.29	16	0.268	0.364	0.350	76.7	25.7	15.8	0.85	0.85	53.7
101	26.35	16	0.266	0.360	0.350	76.0	26.0	15.7	0.90	0.90	54.0
102	26.42	16	0.262	0.350	0.350	74.9	25.5	15.5	0.81	0.81	53.6
103	26.48	16	0.260	0.347	0.350	74.4	25.3	16.2	1.08	1.08	53.7
104	26.55	16	0.265	0.354	0.350	75.8	25.5	16.5	1.12	1.12	53.2
105	26.61	16	0.270	0.362	0.350	77.1	25.9	16.0	0.93	0.91	53.8
106	26.68	16	0.278	0.363	0.350	79.4	25.7	15.5	1.24	1.24	53.7
107	26.74	16	0.264	0.357	0.350	75.6	26.1	16.2	1.12	1.12	53.3
108	26.81	16	0.264	0.350	0.350	75.5	25.2	15.3	1.31	1.31	54.1
100	26 97	46	0.070	0.050	0.050	70.7	==-	: = :=		1.01	J-1. 1

109 26.87 0.358 16 0.279 0.350 79.7 25.4 15.5 1.23 1.23 53.9 110 26.94 16 0.270 0.359 0.350 77.1 25.8 16.8 1.35 1.35 53.7 111 27.00 16 0.272 0.353 0.350 77.9 25.0 16.4 1.47 1.47 53.3 Average 0.271 0.361 0.350 77.5 25.7 15.9 1.06 1.06 53.7 Std. Dev. 0.006 0.006 0.000 1.6 0.4 0.6 0.19 0.20 0.3 Maximum 0.280 0.375 0.350 80.0 26.4 17.9 1.61 1.61 54.5 @ Blow# 97 82 80 97 82 80 80 80 82 Minimum 0.260 0.347 0.350 74.4 25.0 0.72 14.9 0.66 53.2 @ Blow# 103 103 80 103 111 84 92 92 92

9:09:49 AM - 9:24:24 AM

Total number of blows analyzed: 32

Time Sum	тагу		
Drive	6 seconds	9:09:4	3 AM - 9:09:49 AM (9/26/2008) BN 1 - 6

14 minutes 35 seconds

Stop

Drive 45 seconds 9:24:24 AM - 9:25:09 AM BN 7 - 47 Stop 11 minutes 38 seconds 9:25:09 AM - 9:36:47 AM Drive 34 seconds 9:36:47 AM - 9:37:21 AM BN 48 - 79 Stop 10 minutes 19 seconds 9:37:21 AM - 9:47:40 AM Drive 34 seconds 9:47:40 AM - 9:48:14 AM BN 80 - 111 Stop 10 minutes 26 seconds 9:48:14 AM - 9:58:40 AM Drive 16 seconds 9:58:40 AM - 9:58:56 AM BN 112 - 127 Stop 11 minutes 59 seconds 9:58:56 AM - 10:10:55 AM Drive 22 seconds 10:10:55 AM - 10:11:17 AM BN 128 - 148 10:11:17 AM - 10:29:36 AM Stop 18 minutes 19 seconds

Drive 19 seconds 10:29:36 AM - 10:29:55 AM BN 149 - 167

17 minutes 37 seconds 10:29:55 AM - 10:47:32 AM Stop Drive 40 seconds 10:47:32 AM - 10:48:12 AM BN 168 - 204

Stop 19 minutes 4 seconds 10:48:12 AM - 11:07:16 AM VTRANS RSCH011-703 - GD-7 OP: SPK

0.92 in^2

53.80 ft

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS

Test date: 26-Sep-2008

SP: 0.492 k/ft3

EM: 30,000 ksi JC: 0.00

 -	00.00 it		EIVI. 30,000 K3
WS: 16	5,807.7 f/s		JC: 0.00
EMX: I	Max Transferred Energy \	/MX:	Maximum Velocity
EF2: I	Energy of F^2	MX:	Maximum Displacemen
ER: I	Hammer Energy Rating	PN:	Final Displacement
ETR: I	Energy Transfer Ratio E	BPM:	Blows per Minute
FMX:	Maximum Force		

FMX:	Maximum F	orce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
112	30.00	0	0.266	0.360	0.350	76.0	24.9	16.2	2.37	2.37	0.0
113	30.13	8	0.273	0.357	0.350	77.9	24.6	15.8	2.04	2.04	52.6
114	30.27	8	0.275	0.361	0.350	78.7	24.9	15.4	1.72	1.70	53.6
115	30.40	8	0.273	0.364	0.350	78.1	24.7	15.8	1.72	1.69	53.5
116	30.53	8	0.284	0.374	0.350	81.2	24.8	16.2	1.90	1.90	53.4
117	30.67	8	0.282	0.368	0.350	80.6	24.8	16.2	1.98	1.98	54.0
118	30.80	8	0.282	0.372	0.350	80.5	25.3	16.0	1.64	1.63	53.3
119	30.93	8	0.287	0.370	0.350	81.9	25.6	16.9	1.76	1.76	53.9
120	31.07	8	0.274	0.360	0.350	78.3	25.2	17.1	1.94	1.94	54.1
121	31.20	8	0.273	0.353	0.350	78.0	24.8	17.1	1.77	1.77	53.3
122	31.33	8	0.270	0.356	0.350	77.1	24.6	15.5	1.58	1.58	53.3
123	31.47	8	0.273	0.355	0.350	78.0	25.3	16.0	1.86	1.86	53.5
124	31.60	8	0.276	0.365	0.350	78.9	24.8	15.7	1.24	1.24	53.7
125	31.73	8	0.274	0.361	0.350	78.4	25.3	16.5	1.40	1.40	53.6
126	31.87	8	0.263	0.348	0.350	75.0	24.4	15.3	1.15	1.15	54.1
127	32.00	8	0.275	0.355	0.350	78.5	24.7	15.2	1.29	1.29	53.8
		Average	0.275	0.361	0.350	78.6	24.9	16.1	1.71	1.71	53.6
		Std. Dev.	0.006	0.007	0.000	1.8	0.3	0.6	0.31	0.31	0.4
		Maximum	0.287	0.374	0.350	81.9	25.6	17.1	2.37	2.37	54.1
		@ Blow#	119	116	112	119	119	120	112	112	120
		Minimum	0.263	0.348	0.350	75.0	24.4	15.2	1.15	1.15	52.6
		@ Blow#	126	126	112	126	126	127	126	126	113
					Total num	ber of blows	s analyzed:	16			

Time Summary

Drive Stop	6 seconds 14 minutes 35 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6 9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240

VTRANS RSCH011-703 - GD-7 OP: SPK

0.92 in^2

AR:

2 INCH SSICMEASC ALITON/TRANS

2 INCH SS;CME45	OC AL	лο;ν	RANS
Test	date:	26-Se	p-2008

 rest date: 2	:o-Sep-2008
SP:	0.492 k/ft3
EM:	30,000 ksi

741. 0.52 III Z	3F. 0.492 MIS
LE: 53.80 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute
FMX: Maximum Force	

ETR:	Energy Tra	ansfer Ratio	,							vs per Minu	
FMX:	Maximum	Force									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
128	35.00	0	0.294	0.391	0.350	84.0	26.3	16.8	2.99	2.99	0.0
129	35.10	10	0.281	0.368	0.350	80.3	26.0	15.5	2.01	2.01	53.6
130	35.20	10	0.285	0.374	0.350	81.5	26.0	15.1	1.62	1.62	53.8
131	35.30	10	0.284	0.372	0.350	81.1	26.2	15.2	1.38	1.38	53.5
132	35.40	10	0.292	0.377	0.350	83.4	26.0	15.7	1.49	1.49	54.2
133	35.50	10	0.280	0.364	0.350	80.0	25.7	14.2	1.36	1.36	54.2
134	35.60	10	0.284	0.371	0.350	81.0	25.8	14.0	1.36	1.36	53.4
135	35.70	10	0.278	0.365	0.350	79.4	26.1	14.8	1.51	1.51	53.6
136	35.80	10	0.278	0.363	0.350	79.3	26.1	14.5	1.69	1.69	53.3
137	35.90	10	0.284	0.371	0.350	81.2	25.8	13.8	1.49	1.49	53.6
138	36.00	10	0.288	0.370	0.350	82.2	25.7	14.1	1.35	1.35	54.0
139	36.10	10	0.285	0.368	0.350	81.5	25.4	14.5	1.47	1.47	53.7
140	36.20	10	0.283	0.366	0.350	80.9	25.2	14.1	1.37	1.37	53.7
141	36.30	10	0.285	0.375	0.350	81.3	25.5	13.9	1.12	1.12	54.1
142	36.40	10	0.273	0.362	0.350	78.0	25.7	13.8	1.27	1.27	54.2
143	36.50	10	0.276	0.368	0.350	78.9	25.8	14.4	1.31	1.31	53.2
144	36.60	10	0.274	0.358	0.350	78.3	25.1	14.1	1.05	1.01	54.6
145	36.70	10	0.287	0.375	0.350	81.9	25.5	14.0	1.21	1.21	53.6
146	36.80	10	0.284	0.370	0.350	81.2	25.5	14.0	1.30	1.30	53.9
147	36.90	10	0.284	0.365	0.350	81.1	25.0	14.0	1.34	1.34	53.8
148	37.00	10	0.280	0.358	0.350	80.0	25.0	13.4	1.25	1.25	54.3
		Average	0.283	0.369	0.350	80.8	25.7	14.5	1.47	1.47	53.8
		Std. Dev.	0.005	0.007	0.000	1.5	0.4	0.8	0.39	0.40	0.4
		Maximum	0.294	0.391	0.350	84.0	26.3	16.8	2.99	2.99	54.6
		@ Blow#	128	128	128	128	128	128	128	128	144

0.273 0.358 0.350 25.0 1.05 Minimum 78.0 13.4 1.01 53.2 @ Blow# 142 144 128 142 148 148 144 144 143 Total number of blows analyzed: 21

Time Summary

Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240

0.92 in^2

EMX: Max Transferred Energy

53.80 ft WS: 16,807.7 f/s

EF2: Energy of F^2

OP: SPK

AR:

LE:

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008

SP: 0.492 k/ft3

EM:	30,000 ksi
JC:	0.00
Maximum V	elocity

VMX: DMX: Maximum Displacement DFN: Final Displacement

ER: ETR: FMX:	3,	rgy Rating fer Ratio							DFN: Fina	al Displacen vs per Minu	nent
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
149	40.00	0	0.289	0.378	0.350	82.5	25.9	16.0	2.18	2.18	0.0
150	40.11	9	0.302	0.385	0.350	86.4	26.4	15.8	1.74	1.74	52.7
151	40.22	9	0.290	0.375	0.350	82.9	25.9	16.0	1.48	1.48	53.5
152	40.33	9	0.291	0.380	0.350	83.2	26.5	15.3	1.67	1.67	53.6
153	40.44	9	0.285	0.369	0.350	81.5	26.1	16.0	1.75	1.75	53.7
154	40.56	9	0.296	0.378	0.350	84.4	25.9	14.2	1.86	1.86	54.5
155	40.67	9	0.297	0.385	0.350	84.9	26.5	14.0	1.36	1.32	53.5
156	40.78	9	0.297	0.381	0.350	84.8	26.2	13.8	1.80	1.80	53.5
157	40.89	9	0.290	0.378	0.350	83.0	26.1	14.6	2.09	2.09	53.9
158	41.00	9	0.285	0.371	0.350	81.3	26.1	14.5	1.96	1.96	53.6
159	41.11	9	0.287	0.371	0.350	82.0	26.3	14.5	1.85	1.85	53.8
160	41.22	9	0.292	0.379	0.350	83.4	26.0	13.8	1.48	1.48	53.6
161	41.33	9	0.288	0.375	0.350	82.4	26.0	13.7	1. 4 6	1.46	53.8
162	41.44	9	0.288	0.374	0.350	82.4	26.0	13.8	1.59	1.59	54.2
163	41.56	9	0.295	0.379	0.350	84.4	26.1	13.8	1.49	1.49	54.0
164	41.67	9	0.291	0.377	0.350	83.0	25.7	13.5	0.86	0.86	53.9
165	41.78	9	0.283	0.364	0.350	80.9	26.0	13.6	1.11	1.11	54.1
166	41.89	9	0.296	0.380	0.350	84.5	26.0	13.6	1.03	1.03	53.9
_167	42.00	9	0.281	0.363	0.350	80.4	25.2	13.4	1.11	1.11	54.5

9 0.281 0.363 0.350 80.4 25.2 13.4 1.11 1.11 54.5 Average 0.291 0.376 0.350 83.1 26.0 14.4 1.57 1.57 53.8 Std. Dev. 0.005 0.006 0.000 1.5 0.3 0.9 0.35 0.36 0.4 0.302 Maximum 0.385 0.350 86.4 26.5 16.0 2.18 2.18 54.5 @ Blow# 150 150 149 150 155 151 149 149 154 0.350 Minimum 0.281 0.363 80.4 25.2 13.4 0.86 0.86 52.7 @ Blow# 167 167 149 167 167 167 164 164 150 Total number of blows analyzed: 19

Time Summary

Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148
Stop	18 minutes 19 seconds	10:11:17 AM - 10:29:36 AM
Drive	19 seconds	10:29:36 AM - 10:29:55 AM BN 149 - 167
Stop	17 minutes 37 seconds	10:29:55 AM - 10:47:32 AM
Drive	40 seconds	10:47:32 AM - 10:48:12 AM BN 168 - 204
Stop	19 minutes 4 seconds	10:48:12 AM - 11:07:16 AM
Drive	38 seconds	11:07:16 AM - 11:07:54 AM BN 205 - 240

PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-7 OP: SPK

AR: 0.92 in^2 LE: 53.80 ft WS: 16,807.7 f/s

2 INCH SS;CME45C AUTO;VTRANS

Test date: 26-Sep-2008 SP: 0.492 k/ft3

EM: 30,000 ksi JC: 0.00 VMX: Maximum Velocity

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

DMX: Maximum Displacement DFN: Final Displacement
BPM: Blows per Minute

FMX:	Maximum	Force

	Energy Trans Maximum Fo								BPM: Blov	ws per Minu	te
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
168	45.00	0	0.283	0.366	0.350	80.9	26.0	13.9	1.45	1.45	0.0
169	45.06	18	0.285	0.364	0.350	81.4	26.2	13.8	1.41	1.41	53.4
170	45.11	18	0.273	0.353	0.350	77.9	25.7	13.8	1.58	1.58	53.2
171	45.17	18	0.278	0.360	0.350	79.5	26.0	13.7	1.18	1.18	53.7
172	45.22	18	0.275	0.358	0.350	78.5	25.8	13.7	0.91	0.91	53.9
173	45.28	18	0.270	0.351	0.350	77.2	25.9	13.6	0.76	0.76	53.9
174	45.33	18	0.277	0.351	0.350	79.2	25.3	13.3	1.06	1.06	53.9
175	45.39	18	0.281	0.355	0.350	80.3	25.4	13.4	1.03	1.03	53.9
176	45.44	18	0.273	0.353	0.350	78.1	25.1	13.3	0.93	0.93	53.3
177	45.50	18	0.277	0.350	0.350	79.3	25.1	13.0	0.91	0.91	53.3
178	45.56	18	0.276	0.346	0.350	78.8	25.0	12.7	0.95	0.95	54.3
179	45.61	18	0.275	0.345	0.350	78.6	25.0	12.8	0.78	0.78	53.2
180	45.67	18	0.280	0.347	0.350	80.1	25.5	12.9	0.99	0.99	54.1
181	45.72	18	0.279	0.346	0.350	79.8	25.3	13.4	1.25	1.25	53.7
182	45.78	18	0.275	0.350	0.350	78.6	25.0	12.8	0.67	0.63	53.6
183	45.83	18	0.269	0.340	0.350	76.8	24.3	13.1	0.98	0.98	53.4
184	45.89	18	0.269	0.342	0.350	76.8	24.6	13.1	0.82	0.82	53.8
185	45.94	18	0.260	0.329	0.350	74.3	24.4	12.9	1.13	1.13	53.5
186	46.00	18	0.265	0.339	0.350	75.8	24.5	13.1	0.64	0.54	53.1
187	46.06	18	0.269	0.338	0.350	76.9	24.6	13.2	1.51	1.51	53.7
188	46.11	18	0.258	0.334	0.350	73.6	24.6	12.8	0.63	0.28	54.2
189	46.17	18	0.268	0.331	0.350	76.6	24.7	12.9	1.54	1.54	53.5
190	46.22	18	0.263	0.333	0.350	75.3	24.8	12.9	1.19	1.19	53.7
191	46.28	18	0.256	0.330	0.350	73.1	24.4	12.9	0.62	0.61	53.5
192	46.33	18	0.261	0.334	0.350	74.7	24.6	12.9	1.12	1.12	53.2
193	46.39	18	0.259	0.333	0.350	73.9	24.4	13.0	0.60	0.26	54.0
194	46.44	18	0.265	0.343	0.350	75.6	24.9	13.2	0.82	0.82	52.9
195	46.50	18	0.260	0.338	0.350	74.3	24.7	13.3	0.61	0.48	53.6
196	46.56	18	0.267	0.347	0.350	76.2	24.6	13.1	1.12	1.12	53.8
197	46.61	18	0.275	0.354	0.350	78.5	25.0	13.4	0.89	0.89	53.3
198	46.67	18	0.261	0.341	0.350	74.6	24.7	13.6	0.59	0.46	54.0
199	46.72	18	0.267	0.349	0.350	76.3	24.8	13.8	0.80	0.80	53.4
200	46.78	18	0.273	0.352	0.350	77.9	24.9	13.5	0.92	0.92	53.2
201	46.83	18	0.263	0.336	0.350	75.0	24.3	13.8	1.01	1.01	54.3
202	46.89	18	0.270	0.348	0.350	77.1	24.5	13.7	0.59	0.45	53.4
203	46.94	18	0.267	0.339	0.350	76.3	24.4	13.6	0.65	0.65	53.5
204	47.00	18	0.272	0.356	0.350	77.8	25.3	13.8	0.61	0.54	53.3
		Average	0.270	0.345	0.350	77.2	25.0	13.3	0.95	0.92	53.6
	S	Std. Dev.	0.007	0.009	0.000	2.1	0.5	0.4	0.29	0.34	0.3
	M	laximum	0.285	0.366	0.350	81.4	26.2	13.9	1.58	1.58	54.3
	(② Blow#	169	168	168	169	169	168	170	170	178
		/linimum	0.256	0.329	0.350	73.1	24.3	12.7	0.59	0.26	52.9
		② Blow#	191	185	168	191	201	178	202	193	194
	•	-			Total num	ber of blows	s analyzed:	37			

Time Summary

Drive	6 seconds	9:09:43 AM - 9:09:49 AM (9/26/2008) BN 1 - 6
Stop	14 minutes 35 seconds	9:09:49 AM - 9:24:24 AM
Drive	45 seconds	9:24:24 AM - 9:25:09 AM BN 7 - 47
Stop	11 minutes 38 seconds	9:25:09 AM - 9:36:47 AM
Drive	34 seconds	9:36:47 AM - 9:37:21 AM BN 48 - 79
Stop	10 minutes 19 seconds	9:37:21 AM - 9:47:40 AM
Drive	34 seconds	9:47:40 AM - 9:48:14 AM BN 80 - 111
Stop	10 minutes 26 seconds	9:48:14 AM - 9:58:40 AM
Drive	16 seconds	9:58:40 AM - 9:58:56 AM BN 112 - 127
Stop	11 minutes 59 seconds	9:58:56 AM - 10:10:55 AM
Drive	22 seconds	10:10:55 AM - 10:11:17 AM BN 128 - 148

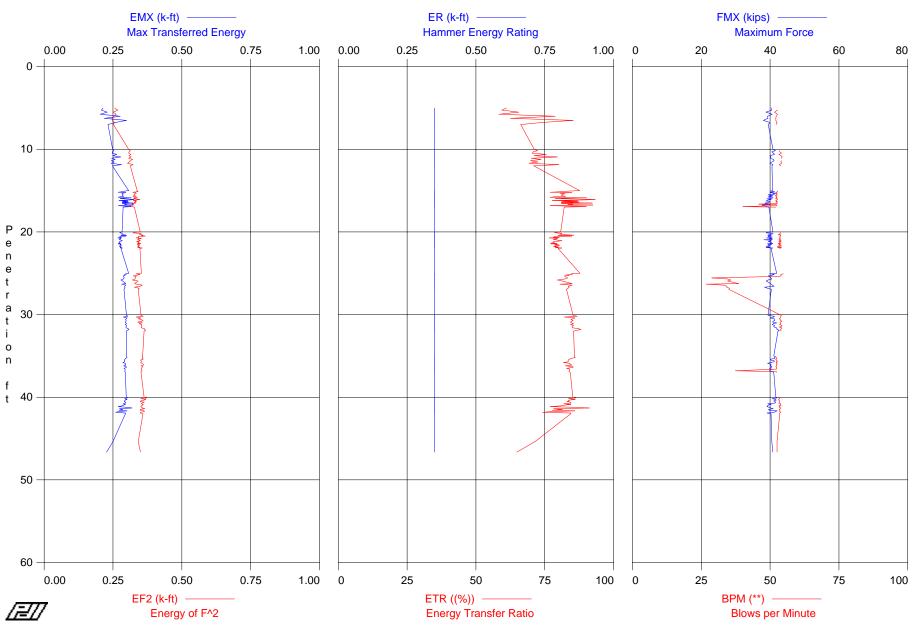
2 INCH SS:CME45C ALITO:VTDANS

Z INCH SS,CIVIE45C	AUTO; VIRANS
Test da	te: 26-Sep-2008

<u>∪⊢.</u>	2F IX	rest date. 20-3ep-2006
AR:	0.92 in^2	SP: 0.492 k/ft3
LE:	53.80 ft	EM: 30,000 ksi
WS: 1	16,807.7 f/s	JC: 0.00

Case Method Results	PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009
VTRANS RSCH011-703 - GD-7	2 INCH SS;CME45C AUTO;VTRANS
OP: SPK	Test date: 26-Sep-2008
AR: 0.92 in^2	SP: 0.492 k/ft3
LE: 53.80 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio FMX: Maximum Force	VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX	Maximum Fo	rce							BPM: Blows per Minute			
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM	
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	Pt 141	
205	50.00	0	0.277	0.350	0.350	79.3	25.8	14.1	1.02	1.02	0.0	
206	50.06	18	0.268	0.341	0.350	76.5	25.2	14.0	0.71	0.32	54.6	
207	50.11	18	0.295	0.358	0.350	84.2	25.6	14.4	1.63	1.63	52.7	
208	50.17	18	0.282	0.353	0.350	80.4	24.7	14.9	0.97	0.97	54.0	
209	50.23	18	0.277	0.351	0.350	79.2	25.0	15.0	0.88	0.88	53.2	
210	50.29	18	0.275	0.347	0.350	78.6	24.3	14.7	0.82	0.82	54.2	
211	50.34	18	0.275	0.350	0.350	78.5	24.9	14.4	0.93	0.93	53.1	
212	50.40	18	0.272	0.348	0.350	77.7	24.5	14.2	0.67	0.54	53.3	
213	50.46	18	0.281	0.357	0.350	80.2	24.9	14.4	0.70	0.59	53.8	
214	50.51	18	0.278	0.349	0.350	79.4	24.7	14.0	0.96	0.96	54.3	
215	50.57	18	0.279	0.353	0.350	79.7	24.2	14.5	1.06	1.06	53.1	
216	50.63	18	0.282	0.348	0.350	80.7	23.9	14.6	0.76	0.72	53.1	
217	50.69	18	0.278	0.343	0.350	79.5	24.3	14.5	1.15	1.15	54.0	
218	50.74	18	0.283	0.349	0.350	80.8	24.2	14.6	1.02	1.02	53.6	
219	50.80	18	0.270	0.340	0.350	77.0	23.8	14.3	0.61	0.50	53.3	
220	50.86	18	0.283	0.343	0.350	80.9	23.9	14.5	0.87	0.87	53.2	
221	50.91	18	0.279	0.349	0.350	79.7	24.0	14.3	0.88	0.88	53.7	
222	50.97	18	0.272	0.336	0.350	77.7	23.7	14.3	0.83	0.83	53.5	
223	51.03	18	0.291	0.362	0.350	83.0	23.8	15.0	0.83	0.83	53.5	
224	51.09	18	0.283	0.354	0.350	80.8	23.2	15.1	0.73	0.61	53.7	
225	51.14	18	0.285	0.359	0.350	81.5	23.5	14.8	0.98	0.98	53.4	
226	51.20	18	0.289	0.355	0.350	82.7	23.8	15.0	1.09	1.09	54.0	
227	51.26	18	0.280	0.352	0.350	79.9	22.8	15.6	0.84	0.75	52.9	
228	51.31	18	0.284	0.349	0.350	81.1	23.4	15.3	1.00	1.00	53.8	
229	51.37	18	0.285	0.356	0.350	81.4	23.3	15.6	0.80	0.62	54.2	
230	51.43	18	0.280	0.350	0.350	80.0	23.5	15.7	0.77	0.75	53.8	
231	51.49	18	0.292	0.357	0.350	83.5	24.2	15.5	1.34	1.34	52.9	
232	51.54	18	0.287	0.356	0.350	81.9	24.0	15.2	0.69	0.56	54.1	
233	51.60	18	0.296	0.372	0.350	84.6	23.8	15.3	0.72	0.55	53.0	
234	51.66	18	0.293	0.361	0.350	83.6	23.7	14.9	1.22	1.22	53.8	
235	51.71	18	0.296	0.374	0.350	84.4	24.1	15.2	0.74	0.45	53.7	
236	51.77	18	0.294	0.367	0.350	84.1	23.6	15.3	1.16	1.16	53.1	
237	51.83	18	0.294	0.367	0.350	84.1	23.4	15.2	0.84	0.84	54.2	
238	51.89	18	0.296	0.364	0.350	84.7	23.8	15.2	0.96	0.96	53.2	
239	51.94	18	0.292	0.359	0.350	83.4	23.6	15.1	0.67	0.67	54.0	
240	52.00	18	0.290	0.358	0.350	83.0	23.7	15.5	0.60	0.60	53.2	
		Average	0.284	0.354	0.350	81.1	24.1	14.8	0.90	0.85	53.6	
		td. Dev.	0.008	0.008	0.000	2.3	0.7	0.5	0.21	0.27	0.5	
		aximum	0.296	0.374	0.350	84.7	25.8	15.7	1.63	1.63	54.6	
		Blow#	233	235	205	238	205	230	207	207	206	
		linimum	0.268	0.336	0.350	76.5	22.8	14.0	0.60	0.32	52.7	
		D Blow#	206	222	205	206	227	206	240	206	207	
		- D.O	_00				analyzed:		270		201	


Time Summary

Drive 6 seconds 9:09:43 AM - 9:09:49 AM (9/26/2008) BN	11-0
Stop 14 minutes 35 seconds 9:09:49 AM - 9:24:24 AM	
Drive 45 seconds 9:24:24 AM - 9:25:09 AM BN 7 - 47	
Stop 11 minutes 38 seconds 9:25:09 AM - 9:36:47 AM	
Drive 34 seconds 9:36:47 AM - 9:37:21 AM BN 48 - 79	
Stop 10 minutes 19 seconds 9:37:21 AM - 9:47:40 AM	
Drive 34 seconds 9:47:40 AM - 9:48:14 AM BN 80 - 111	
Stop 10 minutes 26 seconds 9:48:14 AM - 9:58:40 AM	
Drive 16 seconds 9:58:40 AM - 9:58:56 AM BN 112 - 127	
Stop 11 minutes 59 seconds 9:58:56 AM - 10:10:55 AM	
Drive 22 seconds 10:10:55 AM - 10:11:17 AM BN 128 - 14	3
Stop 18 minutes 19 seconds 10:11:17 AM - 10:29:36 AM	

Test date: 26-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VTRANS RSCH011-703 - GD-8

1.45 in^2

OP: SPK AR:

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS

Test date: 26-Sep-2008
SP: 0.492 k/ft3
EM. 20 000 lest

LE: 54.50 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F ²	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

ETR: Energy Transfer Ratio FMX: Maximum Force Statisti

stics for entire file	e (176 blows))							
	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
Average	0.284	0.338	0.350	81.1	40.3	14.5	1.09	1.03	51.7
Std. Dev.	0.020	0.025	0.001	5.8	0.9	1.0	0.49	0.64	5.1
Maximum	0.327	0.372	0.350	93.3	42.7	16.8	2.90	2.90	54.8
@ Blow#	41	170	1	41	146	2	2	2	95
Minimum	0.204	0.246	0.350	58.4	37.6	12.0	0.08	-2.64	26.8
@ Blow#	4	6	1	4	52	215	215	215	115

Time Summary

	•	
Drive	9 seconds	12:04:42 PM - 12:04:51 PM (9/26/2008) BN 1 - 9
Stop	11 minutes 54 seconds	12:04:51 PM - 12:16:45 PM
Drive	17 seconds	12:16:45 PM - 12:17:02 PM BN 10 - 23
Stop	16 minutes 26 seconds	12:17:02 PM - 12:33:28 PM
Drive	36 seconds	12:33:28 PM - 12:34:04 PM BN 24 - 56
Stop	13 minutes 29 seconds	12:34:04 PM - 12:47:33 PM
Drive	40 seconds	12:47:33 PM - 12:48:13 PM BN 57 - 93
Stop	2 days 21 hours 30 minutes 21 second	s12:48:13 PM - 10:18:34 AM
Drive	48 seconds	10:18:34 AM - 10:19:22 AM BN 94 - 126
Stop	23 minutes 14 seconds	10:19:22 AM - 10:42:36 AM
Drive	22 seconds	10:42:36 AM - 10:42:58 AM BN 127 - 147
Stop	16 minutes 24 seconds	10:42:58 AM - 10:59:22 AM
Drive	23 seconds	10:59:22 AM - 10:59:45 AM BN 148 - 168
Stop	21 minutes 51 seconds	10:59:45 AM - 11:21:36 AM
Drive	26 seconds	11:21:36 AM - 11:22:02 AM BN 169 - 192
Stop	29 minutes 11 seconds	11:22:02 AM - 11:51:13 AM
Drive	34 seconds	11:51:13 AM - 11:51:47 AM BN 193 - 220
Stop	1 hour 44 seconds	11:51:47 AM - 12:52:31 PM
Drive	41 seconds	12:52:31 PM - 12:53:12 PM BN 221 - 246
T-4-10 r	70 40 001 (D.1.1 - 10 04 501 - 01 - 170	40.043

Total time [72:48:30] = (Driving [0:04:56] + Stop [72:43:34])

Geosciences Testing & Research Inc Case Method Results

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS

Test date: 26-Sep-2008

VTRANS RSCH011-703 - GD-8 OP: SPK

AR: 1.45 in^2 LE: 54.50 ft WS: 16,807.7 f/s

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX:	Maximum	Force								•	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
1	5.00	4	0.214	0.256	0.350	61.1	40.3	16.4	1.98	1.98	0.0
2	5.25	4	0.208	0.267	0.350	59.4	40.5	16.8	2.90	2.90	52.7
3	5.50	4	0.229	0.251	0.350	65.5	38.8	16.8	2.66	2.62	51.6
4	5.75	4	0.204	0.261	0.350	58.4	40.6	16.5	2.53	2.49	52.7
5	6.00	4	0.276	0.253	0.350	78.8	39.3	16.0	2.49	2.49	52.2
6	6.25	4	0.219	0.246	0.350	62.5	39.4	15.6	2.16	2.16	52.1
7	6.50	4	0.299	0.248	0.350	85.3	38.0	16.5	2.62	2.62	52.1
8	6.75	4	0.258	0.255	0.350	73.8	39.9	15.5	2.20	2.20	52.5
9	7.00	4	0.232	0.252	0.350	66.3	39.5	15.4	2.19	2.19	52.2
		Average	0.238	0.254	0.350	67.9	39.6	16.2	2.42	2.41	52.3
		Std. Dev.	0.031	0.006	0.000	8.8	0.8	0.5	0.28	0.28	0.3
		Maximum	0.299	0.267	0.350	85.3	40.6	16.8	2.90	2.90	52.7
		@ Blow#	7	2	1	7	4	2	2	2	2
		Minimum	0.204	0.246	0.350	58.4	38.0	15.4	1.98	1.98	51.6
		@ Blow#	4	6	1	4	7	9	1	1	3
					Total nun	nber of blow	s analyzed:	9			

2 INCH SS;CME45C AUTO;VTRANS

VTRANS RSCH011-703 - GD-8 OP: SPK Test date: 26-Sep-2008

AR: 1.45 in^2 SP: 0.492 k/ft3 LE: 54.50 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2 DMX: Maximum Displacement Hammer Energy Rating DFN: Final Displacement BPM: Blows per Minute ETR: Energy Transfer Ratio

FMX: Maximum Force VMX BL# depth **BLC EMX** EF2 ER **ETR** FMX DMX DFN **BPM** k-ft bl/ft k-ft k-ft (%) kips f/s ft in in 10 10.00 0 0.249 0.307 0.350 71.Ź 40.8 15.5 2.42 2.42 0.0 1.84 10.15 7 0.253 0.313 0.350 41.6 15.3 1.84 53.5 11 72.4 7 7 12 10.31 0.248 0.309 0.350 70.9 40.5 15.1 1.52 1.52 53.5 13 10.46 0.247 0.307 0.350 70.5 40.9 15.0 1.50 1.50 54.1 14 10.62 7777777 0.264 0.315 0.350 75.5 41.3 15.1 1.49 1.49 53.2 39.9 1.50 15 0.308 0.350 1.50 54.0 10.77 0.249 71.1 15.1 16 10.92 0.278 0.316 0.350 79.6 40.2 15.0 1.49 1.49 54.4 0.307 1.47 1.47 17 11.08 0.245 0.350 70.1 40.1 15.4 54.0 18 11.23 0.258 0.321 0.350 73.6 41.0 15.3 1.35 1.35 0.0 1.36 11.38 19 0.350 69.8 41.2 15.2 1.36 0.244 0.313 54.1 20 11.54 0.254 0.309 0.350 72.5 40.5 15.3 1.49 1.49 53.9 21 39.9 1.30 1.29 11.69 0.243 0.303 0.350 69.3 14.9 54.2 22 11.85 7 0.281 0.323 0.350 80.2 40.8 15.3 1.45 1.45 53.3 23 12.00 40.<u>6</u> 15.0 1.28 1.27 0.248 0.313 0.350 71.0 53.9 0.254 0.312 40.7 1.53 1.53 53.8 Average 0.350 72.7 15.2

Std. Dev. 0.012 0.005 0.000 3.3 0.5 0.2 0.28 0.28 0.4 15.5 0.323 80.2 41.6 2.42 Maximum 0.281 0.350 2.42 54.4 @ Blow# 22 22 10 22 11 10 10 10 16 1.27 0.303 0.350 69.3 39.9 1.28 Minimum 0.243 14.9 53.2 @ Blow# 21 21 10 21 15 21 23 23 14

	•						
VTRANS RSCH011-703 - GD-8	2 INCH SS;CME45C AUTO;VTRANS						
OP: SPK	Test date: 26-Sep-2008						
AR: 1.45 in^2	SP: 0.492 k/ft3						
LE: 54.50 ft	EM: 30,000 ksi						
WS: 16,807.7 f/s	JC: 0.00						

WW . 10	,007.7 173										7.00
EMX: N	Max Transferr	ed Energy							VMX: Max	imum Velo	city
EF2: E											acement
ER: H	ER: Hammer Energy Rating DFN									al Displacem	nent
ETR: E	Energy Transf	er Ratio							BPM: Blov	vs per Minu	te
FMX: N	Maximum Ford	ce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM

ETR:				BPM: Blows per Minute							
	Maximum For								510/		
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM **
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	
24	15.00	0	0.307	0.338	0.350	87.7	40.7	15.5	1.50	1.50	0.0
25	15.06	16	0.292	0.337	0.350	83.5	40.1	14.8	0.99	0.99	52.8
26	15.13	16	0.284	0.341	0.350	81.2	41.3	13.5	0.74	0.70	52.5
27	15.19	16	0.269	0.322	0.350	76.9	40.5	12.9	0.68	0.68	52.6
28	15.25	16	0.297	0.332	0.350	84.8	40.0	13.7	0.73	0.73	52.2
29	15.31	16	0.282	0.335	0.350	80.5	41.8	13.1	0.55	0.41	51.9
30	15.38	16	0.287	0.329	0.350	82.1	40.8	12.8	0.56	0.56	52.4
31	15.44	16	0.287	0.328	0.350	82.0	41.3	13.0	0.67	0.67	52.6
32	15.50	16	0.284	0.329	0.350	81.2	39.5	12.9	0.53	0.45	52.4
33	15.56	16	0.284	0.325	0.350	81.0	40.8	13.4	0.70	0.70	51.9
34	15.63	16	0.285	0.330	0.350	81.4	39.7	13.2	0.64	0.64	52.5
35	15.69	16	0.289	0.335	0.350	82.6	40.6	13.0	0.64	0.64	52.2
36	15.75	16	0.275	0.323	0.350	78.5	39.4	12.9	0.69	0.69	52.1
37	15.81	16	0.270	0.328	0.350	77.0	39.9	13.2	0.63	0.59	52.5
38	15.88	16	0.316	0.339	0.350	90.2	40.8	13.7	0.89	0.89	52.4
39	15.94	16	0.276	0.326	0.350	78.8	40.3	13.5	0.70	0.59	52.0
40	16.00	16	0.292	0.331	0.350	83.4	39.1	13.3	0.77	0.77	52.5
41	16.06	16	0.327	0.348	0.350	93.3	40.3	13.9	0.88	0.88	52.7
42	16.13	16	0.315	0.335	0.350	90.0	39.6	14.1	0.90	0.90	52.4
43	16.19	16	0.272	0.324	0.350	77.8	39.2	13.8	0.78	0.69	52.1
44	16.25	16	0.304	0.336	0.350	87.0	38.8	13.8	0.89	0.87	52.3
45	16.31	16	0.284	0.330	0.350	81.2	40.0	13.8	0.85	0.78	52.6
46	16.38	16	0.306	0.334	0.350	87.5	39.8	14.3	0.95	0.95	52.1
47	16.44	16	0.283	0.327	0.350	81.0	39.5	14.6	0.94	0.94	52.5
48	16.50	16	0.323	0.332	0.350	92.3	38.6	13.7	1.14	1.14	52.6
49	16.56	16	0.284	0.319	0.350	81.0	39.1	13.9	0.95	0.95	52.5
50	16.63	16	0.298	0.325	0.350	85.1	39.9	13.5	0.86	0.81	45.9
51	16.69	16	0.292	0.319	0.350	83.4	39.9	13.4	1.05	1.05	52.0
52	16.75	16	0.324	0.315	0.350	92.5	37.6	13.6	1.07	1.07	52.5
53	16.81	16	0.270	0.312	0.350	77.0	38.5	13.6	1.10	1.10	52.4
55	16.94	16	0.315	0.318	0.350	90.1	39.0	13.8	1.51	1.51	40.1
56	17.00	16	0.287	0.328	0.350	82.1	39.6	14.2	1.14	1.14	52.1
		Average	0.292	0.329	0.350	83.6	39.9	13.6	0.86	0.84	51.8
		td. Dev.	0.016	0.008	0.000	4.7	0.9	0.6	0.24	0.26	2.4
		aximum	0.327	0.348	0.350	93.3	41.8	15.5	1.51	1.51	52.8
		D Blow#	41	41	24	41	29	24	55	55	25
	•	finimum	0.269	0.312	0.350	76.9	37.6	12.8	0.53	0.41	40.1
	17		0.200	0.0.2	0.000	70.0	0,.0	0	22	20	

@ Blow# 27 53 24 27 52 30 32 29 55

VTRANS RSCH011-703 - GD-8 OP: SPK	2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008
AR: 1.45 in^2	SP: 0.492 k/ft3
LE: 54.50 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00

WS: 1	6,807.7 f/s									JC:	0.00
EMX:	Max Transferr	ed Energy							VMX: Max	imum Velo	city
EF2:	Energy of F^2	!							DMX: Max	dimum Disp	lacement
ER:	Hammer Ener	rgy Rating							DFN: Fina	al Displacen	nent
ETR:	Energy Trans	fer Ratio							BPM: Blov	vs per Minu	ite
FMX:	Maximum For	ce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**

	FMX: Maximum Force								Brivi. Blows per ivilinate				
						ETD	- FNAV) (MA)/	DMY	DEN	221		
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM **		
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in			
57	20.00	0	0.283	0.349	0.350	80.8	40.8	14.0	1.62	1.62	0.0		
58	20.06	18	0.275	0.326	0.350	78.5	38.9	13.4	1.00	0.88	53.8		
59	20.11	18	0.277	0.323	0.350	79.2	39.0	13.2	1.30	1.30	53.7		
60	20.17	18	0.284	0.346	0.350	81.2	40.3	13.7	1.39	1.39	53.5		
61	20.22	18	0.284	0.353	0.350	81.1	40.9	13.3	1.02	1.02	53.6		
62	20.28	18	0.282	0.346	0.350	80.5	40.2	13.7	1.05	1.05	53.7		
63	20.33	18	0.289	0.352	0.350	82.5	39.7	13.9	0.93	0.92	52.9		
64	20.39	18	0.300	0.359	0.350	85.6	39.3	14.2	1.05	1.05	53.9		
65	20.44	18	0.279	0.353	0.350	79.8	40.4	13.8	1.06	1.06	53.8		
66	20.50	18	0.297	0.367	0.350	84.9	39.5	13.7	0.86	0.86	53.7		
67	20.56	18	0.276	0.342	0.350	78.9	39.5	13.4	0.91	0.91	53.5		
68	20.61	18	0.274	0.343	0.350	78.1	40.6	13.9	1.12	1.12	53.7		
69	20.67	18	0.281	0.344	0.350	80.3	40.3	14.1	0.83	0.80	53.7		
70	20.72	18	0.268	0.335	0.350	76.7	39.1	13.9	0.81	0.81	53.4		
71	20.78	18	0.279	0.353	0.350	79.6	40.6	13.9	0.83	0.83	53.4		
72	20.83	18	0.278	0.343	0.350	79.4	39.8	13.0	0.85	0.84	53.8		
73	20.89	18	0.273	0.345	0.350	78.1	40.7	14.2	0.77	0.76	53.7		
74	20.94	18	0.276	0.339	0.350	79.0	38.2	13.2	0.79	0.73	53.2		
75	21.00	18	0.279	0.346	0.350	79.7	40.3	14.0	1.01	1.01	54.0		
76	21.06	18	0.284	0.349	0.350	81.2	40.3	13.4	0.94	0.94	53.5		
77	21.11	18	0.280	0.343	0.350	80.1	40.0	13.7	0.79	0.79	53.2		
78	21.17	18	0.274	0.336	0.350	78.2	39.5	13.5	0.79	0.79	54.0		
79	21.22	18	0.275	0.346	0.350	78.5	40.4	13.7	0.88	0.88	53.3		
80	21.28	18	0.273	0.342	0.350	78.1	40.2	13.7	0.58	0.48	53.7		
81	21.33	18	0.271	0.340	0.350	77.5	40.2	14.0	0.64	0.64	53.6		
82	21.39 .	18	0.278	0.351	0.350	79.4	40.8	13.9	0.60	0.60	53.0		
83	21.44	18	0.269	0.339	0.350	77.0	39.2	13.7	0.59	0.59	54.0		
84	21.50	18	0.280	0.347	0.350	80.0	40.5	13.1	0.58	0.52	53.2		
85	21.56	18	0.276	0.338	0.350	78.9	39.4	12.3	0.85	0.85	53.3		
86	21.61	18	0.275	0.343	0.350	78.6	39.7	13.3	0.65	0.65	54.0		
87	21.67	18	0.281	0.346	0.350	80.4	39.9	13.0	0.75	0.75	53.6		
88	21.72	18	0.276	0.340	0.350	79.0	38.8	12.8	0.62	0.62	52.6		
89	21.78	18	0.274	0.341	0.350	78.2	39.6	12.6	0.87	0.87	53.4		
90	21.83	18	0.280	0.347	0.350	79.9	39.9	13.2	0.80	0.80	54.2		
91	21.89	18	0.276	0.340	0.350	78.8	38.8	12.7	0.54	0.52	52.7		
92	21.94	18	0.284	0.356	0.350	81.2	40.7	13.9	0.68	0.68	53.9		
93	22.00	18	0.279	0.348	0.350	79.8	40.3	13.9	0.59	0.59	53.5		
		Average	0.279	0.345	0.350	79.7	39.9	13.5	0.86	0.85	53.5		
		td. Dev.	0.006	0.008	0.000	1.8	0.7	0.5	0.23	0.24	0.4		
		aximum	0.300	0.367	0.350	85.6	40.9	14.2	1.62	1.62	54.2		
		Blow#	64	66	57	64	61	73	57	57	90		
		g Blown Iinimum	0.268	0.323	0.350	76.7	38.2	12.3	0.54	0.48	52.6		
		D Blow#	70	59	57	70	74	85	91	80	88		
	9	5 5.0 1111	, 0		٠.	, 0			٠.				

2 INCH SS; CME45C AUTO; VTRANS

OP: SPK	Test date: 26-Sep-2008
AR: 1.45 in^2	SP: 0.492 k/ft3
LE: 54.50 ft	EM: 30,000 ksi
WS: 16 807 7 f/s	IC: 0.00

WS:	16,807.7 f/s		JC: 0.00
EMX	Max Transferred Energy	VMX:	Maximum Velocity
EF2:	Energy of F ²	DMX:	Maximum Displacement
ER:	Hammer Energy Rating	DFN:	Final Displacement
ETR:	Energy Transfer Ratio	BPM:	Blows per Minute

FMX: Maximum Force BL# depth BLC **EMX** EF2 ER ETR **FMX** VMX DMX DFN **BPM** ft bl/ft k-ft k-ft k-ft (%) kips f/s in in 87.8 94 25.00 0.307 0.353 0.350 15.0 1.46 0.0 0 41.9 1.46 95 25.06 16 0.296 0.334 0.350 84.6 39.9 14.4 1.09 1.09 54.8 96 25.13 0.348 0.350 85.1 41.2 14.9 1.09 16 0.298 1.09 54.1 97 25.19 16 0.291 0.343 0.350 83.0 40.9 14.6 0.64 0.61 53.9 98 25.25 16 0.294 0.337 0.350 83.9 40.5 14.7 0.68 0.68 54.0 99 25.31 16 0.288 0.324 0.350 82.2 39.5 14.5 0.75 0.75 53.8 100 25.38 16 0.288 0.334 0.350 82.4 39.9 14.1 0.67 0.67 53.6 103 25.56 16 0.291 0.331 0.350 83.3 40.2 14.2 0.77 0.77 28.8 105 25.69 16 0.288 0.330 0.350 82.3 40.5 14.4 0.88 0.88 34.6 0.90 107 25.81 16 0.279 0.321 0.350 79.7 39.4 14.3 0.90 35.7 109 25.94 16 0.285 0.341 0.350 81.4 38.9 13.9 0.83 0.83 34.6 0.80 114 26.25 16 0.297 0.329 0.350 84.9 40.1 14.7 0.80 38.6 80.5 40.3 115 26.31 16 0.282 0.336 0.350 14.1 0.77 0.77 26.8 85.0 0.59 117 26.44 16 0.297 0.357 0.350 40.7 14.3 0.59 33.1 119 26.56 16 0.292 0.348 0.350 83.5 41.2 14.6 0.74 0.74 34.3 121 26.69 16 0.294 0.328 0.350 83.9 38.4 14.0 0.78 0.78 34.3 26.81 123 16 0.292 0.345 0.350 83.5 39.3 14.1 0.51 0.51 35.2 125 26.94 0.290 16 0.342 0.350 82.9 40.4 14.5 0.48 0.47 35.0 40.2 0.80 0.80 Average 0.292 0.338 0.350 83.3 14.4 40.9 Std. Dev. 0.006 0.010 0.000 0.8 0.3 0.23 1.8 0.23 10.0 0.307 87.8 1.46 1.46 54.8 Maximum 0.357 0.350 41.9 15.0 @ Blow# 94 117 94 94 94 94 94 94 95 0.279 79.7 13.9 0.48 Minimum 0.321 0.350 38.4 0.47 26.8 @ Blow# 107 107 94 107 121 109 125 125 115

2 INCH SS; CME45C AUTO; VTRANS

Test date: 26-Sep-2008 OP: SPK AR: 1.45 in^2 SP: 0.492 k/ft3 LE: 54.50 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2 DMX: Maximum Displacement Hammer Energy Rating DFN: Final Displacement ETR: Energy Transfer Ratio BPM: Blows per Minute

FMX: Maximum Force BL# depth **BLC EMX** EF2 **FMX** VMX ER **ETR** DMX DFN **BPM** bl/ft ft k-ft k-ft k-ft (%) kips f/s in in 128 30.10 0.299 0.352 85.3 10 0.350 39.4 15.1 1.71 1.71 54.1 129 30.20 10 0.304 0.360 0.350 86.8 41.3 15.2 1.65 1.65 53.9 130 30.30 0.288 0.335 10 0.350 82.2 41.0 15.2 1.43 53.8 1.41 131 30.40 10 0.301 0.351 0.350 85.9 40.1 15.2 1.58 1.58 53.7 132 30.50 10 0.298 0.342 0.350 85.2 41.2 15.2 1.40 1.38 53.4 30.60 133 10 0.296 0.351 0.350 84.5 41.3 15.2 1.58 1.58 53.7 134 30.70 10 0.298 0.359 0.350 85.3 41.3 15.2 1.32 1.31 53.8 30.80 135 10 0.297 0.356 0.350 84.7 40.9 15.1 1.28 1.27 54.3 136 30.90 10 0.295 0.340 0.350 84.4 40.8 15.1 1.55 1.55 53.7 137 31.00 0.356 10 0.297 0.350 84.8 41.9 15.3 1.25 1.20 53.6 138 31.10 10 0.299 0.345 0.350 85.4 41.0 15.2 1.34 1.34 53.8 139 31.20 0.295 10 0.354 0.350 84.4 40.6 15.1 1.16 1.10 53.5 140 31.30 10 0.299 0.355 0.350 85.4 15.1 41.3 1.20 1.20 54.3 141 31.40 10 0.298 0.354 0.350 85.1 41.1 15.4 1.11 1.11 54.2 142 31.50 10 0.297 0.355 0.350 84.9 41.2 15.2 1.10 1.10 53.4 143 31.60 10 0.298 0.353 0.350 85.2 41.8 15.3 1.11 1.11 54.2 144 31.70 10 0.305 0.364 0.350 87.2 42.0 15.9 0.98 1.04 54.3 145 31.80 0.365 10 0.308 0.350 88.1 42.0 1.45 15.8 1.45 53.8 146 31.90 10 0.303 0.369 0.350 86.7 42.7 1.05 15.8 0.95 53.9 147 32.00 10 0.299 0.363 85.5 0.350 42.3 15.6 1.28 1.28 54.0 Average 0.354 0.299 0.350 85.4 41.3 1.33 1.31 15.3 53.9 Std. Dev. 0.004 0.008 0.000 1.2 0.7 0.3 0.20 0.22 0.3 Maximum 0.308 0.369 0.350 88.1 42.7 15.9 1.71 1.71 54.3 @ Blow# 145 146 128 145 146 144 128 128 135 Minimum 0.288 0.335 0.350 82.2 39.4 15 1 1.04 0.95 53.4 @ Blow# 130 130 128 130 128 136 144 146 132

Maximum

@ Blow#

Minimum

@ Blow#

0.301

0.286

150

156

0.361

0.350

159

153

0.350

0.350

148

2 INCH SS;CME45C AUTO;VTRANS

VTRANS RSCH011-703 - GD-8 OP: SPK

 OP: SPK
 Test date: 26-Sep-2008

 AR:
 1.45 in^2

 LE:
 54.50 ft

 SP:
 0.492 k/ft3

 EM: 30,000 ksi

WS: 16,807.7 f/s

EMX: Max Transferred Energy

Energy of F^2
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio

JC: 0.00

VMX: Maximum Velocity

DMX: Maximum Displacement

DFN: Final Displacement

BPM: Blows per Minute

FMX: Maximum Force BL# depth **BLC EMX** EF2 ER **ETR FMX VMX** DMX DFN **BPM** bl/ft k-ft ft k-ft k-ft (%) kips f/s 35.00 148 0 0.300 0.358 0.350 85.8 2.04 41.1 15.3 2.04 0.0 149 35.10 10 0.300 0.356 0.350 85.7 41.5 15.1 1.77 1.77 51.9 150 35.20 10 0.301 0.359 0.350 86.0 41.3 15.3 1.45 1.45 52.3 151 35.30 10 0.296 0.356 0.350 84.6 41.3 14.9 1.55 1.55 52.4 152 35.40 10 0.294 0.360 0.350 84.1 40.2 1.29 14.7 1.29 52.0 153 35.50 10 0.292 0.350 83.5 0.350 40.3 14.8 1.39 1.39 52.4 154 35.60 10 0.292 0.353 0.350 83.5 41.2 14.8 1.33 1.33 52.2 0.292 0.350 155 35.70 10 0.353 83.5 41.2 14.8 1.40 1.40 52.7 156 35.80 10 0.286 0.351 0.350 81.8 40.1 14.5 1.47 1.47 52.2 157 35.90 10 0.295 0.355 84.1 0.350 39.3 1.56 1.56 15.1 52.5 158 36.00 10 0.294 0.360 0.350 84.1 40.3 14.9 1.05 1.05 52.3 159 36.10 10 0.297 0.361 84.8 0.350 40.2 15.1 0.92 0.86 52.5 160 36.20 10 0.289 0.352 0.350 82.5 40.0 14.8 0.92 0.90 52.3 161 36.30 10 0.298 0.358 0.350 85.2 40.5 0.93 15.3 0.87 52.1 162 36.40 10 0.298 0.356 0.350 85.3 40.4 14.7 1.15 1.15 52.4 163 36.50 10 0.290 0.353 0.350 83.0 39.8 15.0 0.93 0.86 52.4 164 36.60 10 0.294 0.352 0.350 84.1 40.4 15.3 0.98 0.93 52.3 166 36.80 10 0.294 0.356 0.350 83.9 39.8 15.0 1.15 1.15 37.4 167 36.90 10 0.293 0.352 0.350 83.8 40.6 14.7 1.13 1.12 52.3 168 37.00 10 0.295 0.352 0.350 84.3 14.5 41.1 1.18 1.18 52.2 Average 0.295 0.355 0.350 40.5 1.28 84.2 14.9 1.26 51.5 Std. Dev. 0.004 0.003 0.000 1.1 0.6 0.3 0.30 0.31 3.3

> 148 156 157 Total number of blows analyzed: 20

41.5

149

39.3

15.3

150

14.5

168

2.04

148

0.92

159

2.04

148

0.86

159

52.7

155

37.4

166

86.0

150

81.8

2 INCH SS;CME45C AUTO;VTRANS

VTRANS RSCH011-703 - GD-8 OP: SPK Test date: 26-Sep-2008

AR: 1.45 in^2 SP: 0.492 k/ft3 LE: 54.50 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F²
ER: Hammer Energy Rating
ETR: Energy Transfer Ratio DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

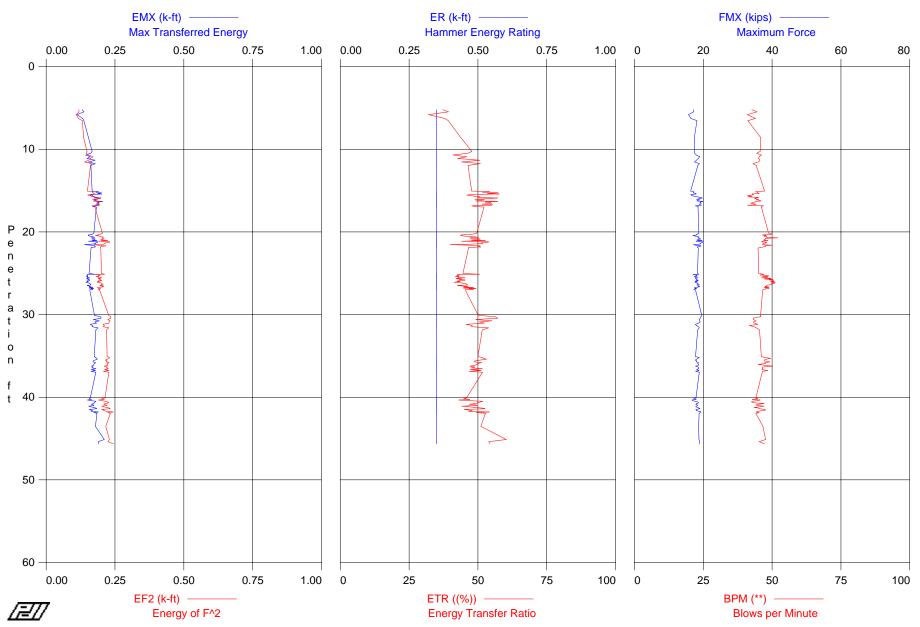
								BPM: BIO	ws per Minu	te
depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
. ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips		in	in	**
40.00	0	0.298	0.363	0.350	85.2	41.7		1.72	1.72	0.0
40.09	12	0.302	0.372	0.350	86.2	41.9	16.5	1.56	1.56	53.2
40.17	12	0.293	0.351	0.350	83.6	40.7	16.2	1.29	1.29	53.5
40.26	12	0.301	0.369	0.350	86,1	41.6	16.0	1.38	1.38	53.1
40.35	12	0.293	0.363	0.350	83.6	41.8	16.0	1.55	1.55	53.2
40.43	12	0.294	0.352	0.350	83.9	41.1	16.0	1.54	1.54	53.4
40.52	12	0.291	0.349	0.350	83.1	41.4	16.1	1.72	1.72	53.5
40.61	12	0.296	0.364	0.350	84.4	41.6	16.0	1.35	1.34	53.4
40.70	12	0.296	0.356	0.350	84.5	41.4	16.1	1.18	1.17	53.2
40.78	12	0.287	0.353	0.350	82.0	39.3	15.5	1.15	1.15	53.8
	12	0.295	0.360	0.350	84.4	40.3	16.2	0.70	0.65	53.6
	12	0.288	0.357	0.350	82.3	39.5	15.5	0.79	0.76	54.0
	12	0.283	0.353	0.350	80.9	39.3	15.5	0.50	0.19	53.2
		0.269	0.351	0.350	76.9	39.1	15.2	0.50	0.23	53.6
	12	0.304	0.356	0.350	86.7	39.7	15.0	1.16	1.16	53.4
		0.319	0.355	0.350	91.2	40.2	15.2	1.04	1.02	53.9
	12	0.274	0.366	0.350	78.2	40.9	15.5	0.41	-0.34	53.6
	12	0.285	0.349	0.350	81.5	39.5	14.9	0.34	-0.79	53.3
						39.8	14.9	0.32	-0.76	53.6
						42.0	14.5	0.66	0.42	53.5
			0.364	0.350	77.3		15.0	0.38	-0.39	53.5
			0.350	0.350	74.2		14.4	0.24	-0.95	53.9
41.91	12	0.296	0.351	0.350	84.5	39.2	14.4	0.74	0.67	53.5
		0.295	0.359	0.350	84.4	40.3	14.5	0.38	-0.56	53.5
-	Average	0.290	0.357	0.350	82.9	40.6	15.4	0.94	0.66	53.5
S	td. Dev.	0.013	0.007	0.000	3.7	1.0	0.6	0.49	0.86	0.2
Ma	aximum	0.319	0.372	0.350	91.2	42.0	16.5	1.72	1.72	54.0
@	Blow#	184	170	169	184	188	170	175	175	180
M	linimum	0.260	0.349	0.350	74.2	39.1	14.4	0.24	-0.95	53.1
@) Blow#	190	175	169	190	182	191	190	190	172
	Maximum For depth ft 40.00 40.09 40.17 40.26 40.35 40.43 40.52 40.61 40.70 40.78 40.87 40.96 41.04 41.13 41.22 41.30 41.39 41.48 41.57 41.65 41.74 41.83 41.91 42.00	Maximum Force depth ft bl/ft 40.00 0 40.09 12 40.17 12 40.26 12 40.35 12 40.52 12 40.61 12 40.70 12 40.87 12 40.96 12 41.04 12 41.33 12 41.39 12 41.48 12 41.57 12 41.65 12 41.74 12 41.83 12 41.91 12	Maximum Force depth ft BLC bl/ft EMX k-ft 40.00 0 0.298 40.09 12 0.302 40.17 12 0.293 40.26 12 0.301 40.35 12 0.293 40.43 12 0.294 40.52 12 0.291 40.61 12 0.296 40.70 12 0.296 40.78 12 0.287 40.87 12 0.285 41.04 12 0.283 41.13 12 0.269 41.22 12 0.304 41.30 12 0.319 41.39 12 0.274 41.48 12 0.285 41.57 12 0.272 41.65 12 0.301 41.74 12 0.260 41.91 12 0.295 Average 0.295 Std. Dev. <td> Maximum Force depth</td> <td>Maximum Force depth ft BLC ft EMX k-ft k-</td> <td>Maximum Force depth ft BLC ft EMX k-ft k-ft k-ft k-ft (%) 40.00 0 0.298 0.363 0.350 85.2 40.09 12 0.302 0.372 0.350 86.2 40.17 12 0.293 0.351 0.350 83.6 40.26 12 0.301 0.369 0.350 86.1 40.35 12 0.293 0.363 0.350 83.6 40.43 12 0.294 0.352 0.350 83.9 40.52 12 0.291 0.349 0.350 83.1 40.61 12 0.296 0.364 0.350 84.4 40.70 12 0.296 0.356 0.350 84.5 40.78 12 0.287 0.353 0.350 84.5 40.78 12 0.287 0.353 0.350 84.4 40.96 12 0.288 0.357 0.350 82.3 <!--</td--><td> Maximum Force depth BLC EMX EF2 ER k-ft (%) kips 40.00 0 0.298 0.363 0.350 85.2 41.7 40.09 12 0.302 0.372 0.350 86.2 41.9 40.17 12 0.293 0.351 0.350 83.6 40.7 40.26 12 0.301 0.369 0.350 83.6 40.7 40.43 12 0.294 0.352 0.350 83.6 41.8 40.43 12 0.294 0.352 0.350 83.1 41.4 40.52 12 0.291 0.349 0.350 83.1 41.4 40.61 12 0.296 0.364 0.350 84.4 41.6 40.70 12 0.296 0.356 0.350 84.5 41.4 40.78 12 0.295 0.360 0.350 84.4 40.3 40.87 12 0.288 0.357 0.350 82.0 39.3 40.87 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.3 41.13 12 0.269 0.351 0.350 86.7 39.7 41.30 12 0.319 0.355 0.350 86.7 39.7 41.30 12 0.319 0.355 0.350 86.7 39.7 41.39 12 0.274 0.366 0.350 86.7 39.7 41.48 12 0.285 0.349 0.350 85.9 42.0 41.48 12 0.270 0.364 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.2 40.6 41.83 12 0.260 0.351 0.350 74.2 41.2 41.91 12 0.296 0.351 0.350 74.2 41.2 41.91 12 0.296 0.351 0.350 74.2 39.1 41.65 41.91 42.00 41.84 4</td><td>Maximum Force depth BLC EMX EF2 ER ETR FMX VMX ft bl/ft k-ft k-ft k-ft k-ft (%) kips f/s 40.00 0 0.298 0.363 0.350 85.2 41.7 15.8 40.09 12 0.302 0.372 0.350 86.2 41.9 16.5 40.17 12 0.293 0.351 0.350 83.6 40.7 16.2 40.26 12 0.301 0.369 0.350 83.6 41.8 16.0 40.35 12 0.293 0.363 0.350 83.6 41.8 16.0 40.43 12 0.294 0.352 0.350 83.1 41.4 16.1 40.61 12 0.296 0.364 0.350 84.4 41.6 16.0 40.70 12 0.296 0.356 0.350 84.5 41.4 16.1</td><td>Maximum Force depth ft BLC bl/ft EMX k-ft k-ft</td><td>Maximum Force depth ft BLC ft EMX EF2 ER ETR FMX VMX DMX DFN in in</td></td>	Maximum Force depth	Maximum Force depth ft BLC ft EMX k-ft k-	Maximum Force depth ft BLC ft EMX k-ft k-ft k-ft k-ft (%) 40.00 0 0.298 0.363 0.350 85.2 40.09 12 0.302 0.372 0.350 86.2 40.17 12 0.293 0.351 0.350 83.6 40.26 12 0.301 0.369 0.350 86.1 40.35 12 0.293 0.363 0.350 83.6 40.43 12 0.294 0.352 0.350 83.9 40.52 12 0.291 0.349 0.350 83.1 40.61 12 0.296 0.364 0.350 84.4 40.70 12 0.296 0.356 0.350 84.5 40.78 12 0.287 0.353 0.350 84.5 40.78 12 0.287 0.353 0.350 84.4 40.96 12 0.288 0.357 0.350 82.3 </td <td> Maximum Force depth BLC EMX EF2 ER k-ft (%) kips 40.00 0 0.298 0.363 0.350 85.2 41.7 40.09 12 0.302 0.372 0.350 86.2 41.9 40.17 12 0.293 0.351 0.350 83.6 40.7 40.26 12 0.301 0.369 0.350 83.6 40.7 40.43 12 0.294 0.352 0.350 83.6 41.8 40.43 12 0.294 0.352 0.350 83.1 41.4 40.52 12 0.291 0.349 0.350 83.1 41.4 40.61 12 0.296 0.364 0.350 84.4 41.6 40.70 12 0.296 0.356 0.350 84.5 41.4 40.78 12 0.295 0.360 0.350 84.4 40.3 40.87 12 0.288 0.357 0.350 82.0 39.3 40.87 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.3 41.13 12 0.269 0.351 0.350 86.7 39.7 41.30 12 0.319 0.355 0.350 86.7 39.7 41.30 12 0.319 0.355 0.350 86.7 39.7 41.39 12 0.274 0.366 0.350 86.7 39.7 41.48 12 0.285 0.349 0.350 85.9 42.0 41.48 12 0.270 0.364 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.2 40.6 41.83 12 0.260 0.351 0.350 74.2 41.2 41.91 12 0.296 0.351 0.350 74.2 41.2 41.91 12 0.296 0.351 0.350 74.2 39.1 41.65 41.91 42.00 41.84 4</td> <td>Maximum Force depth BLC EMX EF2 ER ETR FMX VMX ft bl/ft k-ft k-ft k-ft k-ft (%) kips f/s 40.00 0 0.298 0.363 0.350 85.2 41.7 15.8 40.09 12 0.302 0.372 0.350 86.2 41.9 16.5 40.17 12 0.293 0.351 0.350 83.6 40.7 16.2 40.26 12 0.301 0.369 0.350 83.6 41.8 16.0 40.35 12 0.293 0.363 0.350 83.6 41.8 16.0 40.43 12 0.294 0.352 0.350 83.1 41.4 16.1 40.61 12 0.296 0.364 0.350 84.4 41.6 16.0 40.70 12 0.296 0.356 0.350 84.5 41.4 16.1</td> <td>Maximum Force depth ft BLC bl/ft EMX k-ft k-ft</td> <td>Maximum Force depth ft BLC ft EMX EF2 ER ETR FMX VMX DMX DFN in in</td>	Maximum Force depth BLC EMX EF2 ER k-ft (%) kips 40.00 0 0.298 0.363 0.350 85.2 41.7 40.09 12 0.302 0.372 0.350 86.2 41.9 40.17 12 0.293 0.351 0.350 83.6 40.7 40.26 12 0.301 0.369 0.350 83.6 40.7 40.43 12 0.294 0.352 0.350 83.6 41.8 40.43 12 0.294 0.352 0.350 83.1 41.4 40.52 12 0.291 0.349 0.350 83.1 41.4 40.61 12 0.296 0.364 0.350 84.4 41.6 40.70 12 0.296 0.356 0.350 84.5 41.4 40.78 12 0.295 0.360 0.350 84.4 40.3 40.87 12 0.288 0.357 0.350 82.0 39.3 40.87 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.5 41.04 12 0.288 0.357 0.350 82.3 39.3 41.13 12 0.269 0.351 0.350 86.7 39.7 41.30 12 0.319 0.355 0.350 86.7 39.7 41.30 12 0.319 0.355 0.350 86.7 39.7 41.39 12 0.274 0.366 0.350 86.7 39.7 41.48 12 0.285 0.349 0.350 85.9 42.0 41.48 12 0.270 0.364 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 85.9 42.0 41.74 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.270 0.364 0.350 77.7 39.8 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.5 41.65 12 0.301 0.363 0.350 84.5 39.2 40.6 41.83 12 0.260 0.351 0.350 74.2 41.2 41.91 12 0.296 0.351 0.350 74.2 41.2 41.91 12 0.296 0.351 0.350 74.2 39.1 41.65 41.91 42.00 41.84 4	Maximum Force depth BLC EMX EF2 ER ETR FMX VMX ft bl/ft k-ft k-ft k-ft k-ft (%) kips f/s 40.00 0 0.298 0.363 0.350 85.2 41.7 15.8 40.09 12 0.302 0.372 0.350 86.2 41.9 16.5 40.17 12 0.293 0.351 0.350 83.6 40.7 16.2 40.26 12 0.301 0.369 0.350 83.6 41.8 16.0 40.35 12 0.293 0.363 0.350 83.6 41.8 16.0 40.43 12 0.294 0.352 0.350 83.1 41.4 16.1 40.61 12 0.296 0.364 0.350 84.4 41.6 16.0 40.70 12 0.296 0.356 0.350 84.5 41.4 16.1	Maximum Force depth ft BLC bl/ft EMX k-ft k-ft	Maximum Force depth ft BLC ft EMX EF2 ER ETR FMX VMX DMX DFN in

Total number of blows analyzed: 24

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;CME45C AUTO;VTRANS Test date: 26-Sep-2008

OP: SPK AR: 1.45 in^2 SP: 0.492 k/ft3 LE: 54.50 ft EM: 30,000 ksi WS: 16,807.7 f/s JC: 0.00


EMX: Max Transferred Energy VMX: Maximum Velocity DMX: Maximum Displacement EF2: Energy of F^2 Hammer Energy Rating ER: DFN: Final Displacement ETR: Energy Transfer Ratio BPM: Blows per Minute FMX: Maximum Force

BL# depth BLC **EMX** EF2 ER **ETR FMX VMX** DMX DFN **BPM** ft bl/ft k-ft k-ft k-ft (%) kips f/s in in 198 45.37 14 0.250 0.342 0.350 40.5 71.5 15.2 0.48 0.12 52.5 215 46.63 14 0.227 0.350 0.350 64.9 40.8 0.08 12.0 -2.64 52.5 Average 0.238 0.346 0.350 68.2 40.6 13.6 0.28 -1.26 52.5 Std. Dev. 0.004 0.011 0.000 0.1 3.3 1.6 0.20 1.38 0.0 0.48 Maximum 0.250 0.350 0.350 71.5 40.8 15.2 0.12 52.5 @ Blow# 215 198 198 198 215 198 198 198 198 Minimum 0.227 0.342 0.350 64.9 40.5 12.0 0.08 -2.64 52.5 @ Blow# 215 198 198 215 198 215 215 215 198

Test date: 29-Sep-2008

PDIPLOT Ver. 2008.2 - Printed: 5-May-2009

VTRANS RSCH011-703 - GD-9

VTRANS RSCH011-7	'03 - GD-9					2 INCH	HSS;MOBILE	E SAFETY DI	RIVE;SDI
OP: SPK							T	est date: 29-	Sep-2008
AR: 0.92 in^2								SP: 0	.492 k/ft3
LE: 53.71 ft								EM: 30	,000 ksi
WS: 16,807.7 f/s								JC:	0.00
EMX: Max Transferre	d Energy						VMX: M	aximum Velo	city
EF2: Energy of F^2	0,						DMX: M	aximum Disp	lacement
ER: Hammer Energ	y Rating						DFN: Fi	nal Displacer	nent
ETR: Energy Transfe	er Ratio						BPM: BI	lows per Minu	ıte
FMX: Maximum Ford	e								
Statistics for entire file	e (354 blows))							
	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
Average	0.168	0.197	0.350	48.1	18.3	13.0	0.78	0.74	46.1
Std. Dev.	0.020	0.028	0.001	5.7	0.9	1.1	0.39	0.44	2.7
Maximum	0.220	0.255	0.350	62.9	20.6	16.2	2.24	2.24	53.3
@ Blow#	242	340	2	242	129	243	37	37	115
Minimum	0.112	0.109	0.350	32.0	15.2	10.6	0.30	-2.37	38.3
@ Blow#	7	7	2	7	38	140	191	357	9

Time Summary

Drive	20 minutes 25 seconds	9:50:46 AM - 10:11:11 AM (9/29/2008) BN 1 - 94
Stop	14 minutes 27 seconds	10:11:11 AM - 10:25:38 AM
Drive	11 minutes 39 seconds	10:25:38 AM - 10:37:17 AM BN 95 - 236
Stop	12 minutes 57 seconds	10:37:17 AM - 10:50:14 AM
Drive	39 seconds	10:50:14 AM - 10:50:53 AM BN 237 - 265
Stop	14 minutes 55 seconds	10:50:53 AM - 11:05:48 AM
Drive	11 minutes 54 seconds	11:05:48 AM - 11:17:42 AM BN 266 - 356
Stop	11 minutes 21 seconds	11:17:42 AM - 11:29:03 AM
Drive	2 minutes 51 seconds	11:29:03 AM - 11:31:54 AM BN 357 - 410
Stop	32 minutes 9 seconds	11:31:54 AM - 12:04:03 PM
Drive	3 minutes 21 seconds	12:04:03 PM - 12:07:24 PM BN 411 - 452

Total time [2:16:38] = (Driving [0:50:49] + Stop [1:25:49])

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;MOBILE SAFETY DRIVE;SDI

VTRANS RSCH011-703 - GD-9
OP: SPK

AR: 0.92 in^2 LE: 53.71 ft WS: 16,807.7 f/s Test date: 29-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
BPM: Blows per Minute

BL#	/laximum Fo depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
DL#	•	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
_	ft								1.67	1.67	40.4
2	5.13	8	0.136	0.121	0.350	38.8	17.4	13.6			
3	5.27	8	0.125	0.118	0.350	35.6	16.9	13.5	1.62	1.62	44.8
4	5.40	8	0.124	0.117	0.350	35.5	17.4	13.5	1.38	1.38	45.4
5	5.53	8	0.151	0.121	0.350	43.1	17.0	12.7	1.96	1.96	43.8
6	5.67	8	0.133	0.121	0.350	38.0	17.1	13.2	1.44	1.44	38.7
7	5.80	8	0.112	0.109	0.350	32.0	15.7	12.5	1.32	1.32	41.0
8	5.93	8	0.147	0.133	0.350	41.9	17.7	13.5	1.64	1.64	39.4
9	6.07	8	0.122	0.109	0.350	34.8	16.1	12.4	1.36	1.36	38.3
10	6.20	8	0.138	0.110	0.350	39.3	15.7	12.5	1.45	1.45	44.3
11	6.33	8	0.128	0.125	0.350	36.6	17.1	12.5	1.52	1.52	43.6
12	6.47	8	0.150	0.118	0.350	42.8	16.8	12.7	1.53	1.53	41.0
13	6.60	8	0.124	0.145	0.350	35.6	19.5	14.6	1.81	1.81	41.4
14	6.73	8	0.167	0.113	0.350	47.6	15.7	13.1	1.60	1.60	39.3
16	7.00	8	0.132	0.125	0.350	37.6	17.3	14.1	1.56	1.56	43.1
		Average	0.135	0.120	0.350	38.5	17.0	13.2	1.56	1.56	41.7
	5	Std. Dev.	0.014	0.009	0.000	4.0	1.0	0.6	0.17	0.17	2.3
	N	1aximum	0.167	0.145	0.350	47.6	19.5	14.6	1.96	1.96	45.4
	(@ Blow#	14	13	2	14	13	13	5	5	4
	ř		0.112	0.109	0.350	32.0	15.7	12.4	1.32	1.32	38.3
	(@ Blow#	7	7	2	7	7	9	7	7	9
	· ·	_			Total num	ber of blows	s analyzed:	14			

2 INCH SS;MOBILE SAFETY DRIVE;SDI

VTRANS RSCH011-703 - GD-9 OP: SPK AR: 0.92 in^2

Test date: 29-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

WS: 16,807.7 f/s EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating

53.71 ft

LE:

JC: 0.00 VMX: Maximum Velocity DMX: Maximum Displacement

DFN:	Final Displacement
BPM:	Blows per Minute

ETR:	Energy Tra	ansfer Ratio							BPM: Blov	vs per Minu	te
FMX:	Maximum	Force									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
17	10.00	0	0.161	0.176	0.350	46.0	18.8	15.9	1.96	1.96	0.0
18	10.11	10	0.175	0.147	0.350	49.9	17.5	14.0	1.44	1.44	48.5
19	10.21	10	0.146	0.151	0.350	41.7	17.8	13.6	0.87	0.75	45.8
20	10.32	10	0.188	0.146	0.350	53.8	17.1	13.2	1.45	1.45	45.5
21	10.42	10	0.131	0.139	0.350	37.5	17.2	13.0	0.89	0.80	45.0
22	10.53	10	0.193	0.152	0.350	55.2	17.7	14.3	1.70	1.70	43.7
23	10.63	10	0.118	0.148	0.350	33.8	17.9	15.1	0.92	0.59	45.1
24	10.74	10	0.169	0.159	0.350	48.1	18.1	14.8	1.64	1.64	47.1
25	10.84	10	0.141	0.176	0.350	40.3	19.3	16.2	1.46	1.44	44.0
26	10.95	10	0.180	0.164	0.350	51.6	18.6	15.5	1.60	1.60	46.7
27	11.05	10	0.115	0.147	0.350	33.0	17.9	15.4	0.98	0.09	43.9
28	11.16	10	0.183	0.174	0.350	52.3	19.2	15.3	1.32	1.32	46.2
29	11.26	10	0.137	0.140	0.350	39.1	17.6	14.8	1.35	1.35	45.7
30	11.37	10	0.218	0.169	0.350	62.4	18.5	14.0	1.54	1.54	45.5
31	11.47	10	0.171	0.131	0.350	48.9	17.2	14.1	2.15	2.15	44.5
32	11.58	10	0.138	0.148	0.350	39.4	17.7	14.2	1.09	1.07	45.6
33	11.68	10	0.191	0.169	0.350	54.5	19.0	15.4	1.59	1.59	43.6
34	11.79	10	0.166	0.164	0.350	47.3	18.7	14.6	1.38	1.38	42.5
35	11.90	10	0.162	0.160	0.350	46.3	18.1	14.3	1.27	1.27	45.7
36	12.00	10	0.163	0.162	0.350	46.4	18.8	14.7	1.64	1.64	42.8
		Average	0.162	0.156	0.350	46.4	18.1	14.6	1.41	1.34	45.1
		Std. Dev.	0.026	0.013	0.000	7.5	0.7	8.0	0.34	0.47	1.5
		Maximum	0.218	0.176	0.350	62.4	19.3	16.2	2.15	2.15	48.5
		@ Blow#	30	17	17	30	25	25	31	31	18
		Minimum	0.115	0.131	0.350	33.0	17.1	13.0	0.87	0.09	42.5
		@ Blow#	27	31	17	27	20	21	19	27	34
					Total num	ber of blow	s analyzed:	20			

Page 1 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;MOBILE SAFETY DRIVE;SDI

Test date: 29-Sep-2008

OP: SPK SP: 0.492 k/ft3 AR: 0.92 in^2 EM: 30,000 ksi LE: 53.71 ft WS: 16,807.7 f/s JC: 0.00

EMX: Max Transferred Energy VMX: Maximum Velocity DMX: Maximum Displacement EF2: Energy of F^2 ER: Hammer Energy Rating DFN: Final Displacement BPM: Blows per Minute

	Energy Trans Maximum For							te			
						ETR	FMX	VMX	DMX	DFN	BPM
BL#	depth	BLC	EMX k-ft	EF2 k-ft	ER k-ft	(%)	kips	f/s	in	in	DFIVI
27	ft 15.00	bl/ft	0.145	0.157	0.350	41.5	16.7	15.1	2.24	2.24	0.0
37		0			0.350	47.2	15.2	12.6	1.29	1.29	46.4
38	15.04	29	0.165	0.140	0.350	47.2 48.2	17.4	13.8	0.78	0.78	48.1
39	15.07	29	0.169	0.160	0.350			13.6			
40	15.11	29	0.185	0.173	0.350	52.8	17.2	13.5	0.81	0.81	43.3
41	15.14	29	0.195	0.167	0.350	55.7	17.5	13.4	1.31	1.31	44.7
42	15.18	29	0.208	0.179	0.350	59.5	17.3	13.2	1.39	1.39	44.1
43	15.21	29	0.154	0.155	0.350	43.9	17.1	11.9	0.62	0.45	45.2
44	15.25	29	0.197	0.173	0.350	56.3	17.1	13.1	1.28	1.28	45.8
45	15.28	29	0.204	0.170	0.350	58.4	17.0	12.8	1.20	1.20	43.6
46	15.32	29	0.174	0.170	0.350	49.7	18.2	14.0	0.78	0.78	47.8
47	15.35	29	0.200	0.175	0.350	57.2	17.5	13.7	1.02	1.02	42.9
48	15.39	29	0.193	0.185	0.350	55.2	18.4	14.1	0.94	0.94	43.8
49	15.42	29	0.211	0.171	0.350	60.2	17.5	13.2	1.25	1.25	41.8
50	15.46	29	0.163	0.158	0.350	46.6	16.7	12.7	0.84	0.84	41.6
51	15.49	29	0.168	0.157	0.350	47.9	16.3	11.7	0.77	0.77	44.8
52	15.53	29	0.158	0.153	0.350	45.2	16.5	12.2	0.91	0.91	42.4
53	15.56	29	0.164	0.149	0.350	46.8	16.3	12.2	0.79	0.79	42.6
54	15.60	29	0.160	0.157	0.350	45.7	16.6	12.6	0.73	0.73	41.9
55	15.63	29	0.178	0.161	0.350	50.8	17.0	13.1	0.95	0.95	40.1
56	15.67	29	0.158	0.152	0.350	45.0	16.5	12.4	0.85	0.85	44.4
57	15.70	29	0.181	0.177	0.350	51.8	18.3	13.6	0.73	0.73	40.8
58	15.74	29	0.160	0.155	0.350	45.8	17.3	12.6	0.75	0.75	40.8
59	15.77	29	0.195	0.193	0.350	55.8	19.4	13.7	0.72	0.72	41.9
60	15.81	29	0.189	0.195	0.350	53.9	19.4	14.5	0.80	0.80	44.6
61	15.84	29	0.161	0.176	0.350	45.9	18.9	13.4	0.46	0.42	45.5
62	15.88	29	0.200	0.202	0.350	57.3	20.0	13.8	0.65	0.65	44.9
63	15.91	29	0.199	0.192	0.350	57.0	19.4	13.7	0.83	0.83	43.3
64	15.95	29	0.199	0.185	0.350	56.7	18.4	13.3	1.01	1.01	43.8
65	15.98	29	0.180	0.188	0.350	51.5	19.4	13.3	0.62	0.62	43.5
66	16.02	29	0.177	0.167	0.350	50.5	17.4	12.3	0.74	0.74	45.0
67	16.05	29	0.166	0.170	0.350	47.4	18.7	13.3	0.68	0.68	45.2
68	16.09	29	0.189	0.186	0.350	54.1	18.5	13.2	0.84	0.84	42.7
69	16.12	29	0.177	0.189	0.350	50.5	19.6	13.5	0.46	0.35	45.8
70	16.16	29	0.179	0.170	0.350	51.2	17.5	11.9	1.06	1.06	46.4
71	16.19	29	0.180	0.190	0.350	51.5	19.3	12.6	0.43	0.39	44.4
72	16.23	29	0.159	0.163	0.350	45.4	17.3	10.8	0.77	0.77	46.3
73	16.26	29	0.186	0.184	0.350	53.1	19.1	13.0	0.54	0.54	45.7
74	16.30	29	0.205	0.206	0.350	58.5	20.1	14.2	0.80	0.80	43.2
75	16.33	29	0.195	0.205	0.350	55.8	19.8	13.5	0.58	0.58	44.9
76	16.37	29	0.170	0.174	0.350	48.6	18.6	11.9	0.72	0.72	42.1
77	16.40	29	0.198	0.200	0.350	56.6	19.6	13.6	0.59	0.59	45.5
78	16.44	29	0.173	0.179	0.350	49.5	18.8	12.4	0.81	0.81	42.7
79	16.47	29	0.209	0.197	0.350	59.6	19.3	12.9	0.78	0.78	42.7
80	16.51	29	0.184	0.183	0.350	52.6	18.9	12.8	0.87	0.87	41.1
81	16.54	29	0.200	0.200	0.350	57.3	19.8	13.4	0.46	0.41	43.6
82	16.58	29	0.206	0.208	0.350	59.0	20.3	14.3	0.76	0.76	39.9
83	16.61	29	0.198	0.196	0.350	56.5	19.2	13.3	0.58	0.58	42.2
84	16.65	29	0.163	0.176	0.350	46.5	18.8	13.3	0.46	0.46	45.8
85	16.68	29	0.209	0.188	0.350	59.6	18.4	12.6	1.17	1.17	44.1
86	16.72	29	0.178	0.192	0.350	51.0	19.3	13.8	0.45	0.44	43.5
87	16.75	29	0.206	0.204	0.350	58.9	19.8	13.8	0.84	0.84	41.7
88	16.79	29	0.178	0.183	0.350	50.9	19.1	13.1	0.46	0.43	40.5
89	16.83	29	0.183	0.178	0.350	52.3	18.0	12.2	0.76	0.76	45.5
90	16.86	29	0.152	0.159	0.350	43.3	17.4	11.7	0.42	0.42	48.2
91	16.90	29	0.159	0.168	0.350	45.5	18.1	12.1	0.45	0.45	46.7
92	16.93	29	0.181	0.188	0.350	51.8	19.0	12.1	0.60	0.60	45.8
93	16.97	29	0.202	0.192	0.350	57.8	19.3	13.4	0.86	0.86	45.3

Geosciences Testing & Research Inc Case Method Results Page 2 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

VTRANS RSCH011-703 - GD-9

2 INCH SS;MOBILE SAFETY DRIVE;SDI

OP: SP	'K								Tes	st date: 29-S	ep-2008
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
94	17.00	29	0.163	0.162	0.350	46.6	17.7	12.2	0.58	0.58	46.9
		Average	0.182	0.177	0.350	51.9	18.2	13.0	0.81	0.80	44.0
	5	Std. Dev.	0.018	0.016	0.000	5.0	1.2	0.8	0.31	0.31	2.0
	N	1aximum	0.211	0.208	0.350	60.2	20.3	15.1	2.24	2.24	48.2
	(@ Blow#	49	82	37	49	82	37	37	37	90
	ľ	V inimum	0.145	0.140	0.350	41.5	15.2	10.8	0.42	0.35	39.9
	(@ Blow#	37	38	37	37	38	72	90	69	82
		_			T	L					

2 INCH SS;MOBILE SAFETY DRIVE;SDI Test date: 29-Sep-2008

OP: SPK

SP: 0.492 k/ft3 EM: 30,000 ksi

AR: 0.92 in^2 LE: 53.71 ft WS: 16,807.7 f/s

JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating

VMX: Maximum Velocity DMX: Maximum Displacement DFN: Final Displacement

	Energy Transf								BPM: Blov	ws per Minu	te
	Maximum For										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
95	20.00	0	0.177	0.224	0.350	50.5	19.7	14.9	1.42	1.39	0.0
97	20.07	29	0.179	0.229	0.350	51.1	20.1	15.9	0.80	0.74	0.0
98	20.10	29	0.158	0.195	0.350	45.1	18.3	13.1	0.68	0.68	0.0
99	20.14	29	0.178	0.202	0.350	50.8	18.2	12.5	0.95	0.95	49.4
100	20.17	29	0.169	0.207	0.350	48.3	19.3	13.9	0.75	0.75	48.1
101	20.21	29	0.180	0.201	0.350	51.5	18.0	12.6	0.97	0.97	48.2
102	20.24	29	0.160	0.202	0.350	45.8 54.0	19.0	14.0	0.64	0.64	52.0
103 104	20.28	29	0.181	0.196	0.350	51.8	17.6	13.0	0.96 1.04	0.96	49.0
104	20.31 20.35	29 29	0.151	0.187	0.350 0.350	43.2 46.8	18.6	13.6	0.57	1.04	50.3
105	20.35	29 29	0.164	0.199			17.8	11.9	0.57	0.52 0.55	46.1
107	20.38	29 29	0.144 0.173	0.181 0.193	0.350 0.350	41.1 49.3	18.3 17.3	12.7 12.0	0.55	0.82	46.9 47.6
107	20.45	29 29	0.173	0.193	0.350	38.0	16.8	11.9	0.82	0.82	48.1
100	20.48	2 9 29	0.153	0.185	0.350	44.1	17.3	11.6	0.43	0.62	48.3
110	20.52	29	0.162	0.200	0.350	46.2	18.0	11.7	0.67	0.67	45.8
111	20.55	29	0.102	0.205	0.350	50.1	19.0	12.4	0.64	0.64	50.1
112	20.59	29	0.158	0.193	0.350	45.3	17.8	11.7	0.62	0.62	46.1
113	20.62	29	0.197	0.230	0.350	56.2	20.1	13.5	0.76	0.76	47.5
114	20.66	29	0.155	0.186	0.350	44.3	17.6	11.9	0.64	0.64	48.3
115	20.69	29	0.171	0.215	0.350	49.0	19.4	13.2	0.51	0.50	53.3
116	20.72	29	0.158	0.191	0.350	45.1	17.5	11.6	0.68	0.68	50.7
117	20.76	29	0.172	0.210	0.350	49.1	19.4	13.4	0.61	0.61	47.7
118	20.79	29	0.162	0.201	0.350	46.3	18.1	12.1	0.63	0.63	47.4
119	20.83	29	0.160	0.202	0.350	45.7	19.3	13.7	0.52	0.36	47.7
120	20.86	29	0.196	0.220	0.350	56.0	19.2	12.9	1.12	1.12	47.6
121	20.90	29	0.166	0.207	0.350	47.3	19.4	13.2	0.47	0.16	47.1
122	20.93	29	0.185	0.191	0.350	52.9	17.7	11.7	1.28	1.28	47.3
123	20.97	29	0.151	0.193	0.350	43.2	18.2	12.2	0.59	0.59	48.0
124	21.00	29	0.183	0.207	0.350	52.2	18.1	13.1	0.54	0.46	45.9
125	21.03	29	0.165	0.211	0.350	47.0	19.1	12.3	0.47	0.45	47.8
126	21.07	29	0.204	0.237	0.350	58.4	20.3	13.3	0.83	0.83	49.2
127	21.10	29	0.143	0.180	0.350	40.9	17.6	11.5	0.40	0.32	48.6
128	21.14	29	0.165	0.202	0.350	47.3	18.2	11.9	0.45	0.42	44.4
129	21.17	29	0.188	0.239	0.350	53.8	20.6	13.7	0.58	0.58	46.7
130	21.21	29	0.189	0.224	0.350	54.1	19.3	13.3	0.86	0.86	45.6
131	21.24	29	0.176	0.221	0.350	50.2	20.2	13.6	0.56	0.56	47.8
132 133	21.28 21.31	29	0.198	0.236	0.350	56.5	19.6	12.9	0.63	0.63	48.3
134	21.35	29	0.169	0.212	0.350	48.3 54.2	19.2	12.7 12.7	0.44 0.60	0.28 0.60	48.6 46.0
135	21.38	29 29	0.190 0.169	0.220 0.198	0.350 0.350	48.3	19.4 18.1	11.8	1.18	1.18	46.9 47.0
136	21.41	2 9 29	0.103	0.190	0.350	55.3	20.1	12.8	0.45	0.32	46.5
137	21.45	29	0.193	0.205	0.350	46.2	18.7	12.0	0.72	0.32	48.2
138	21.48	29	0.176	0.212	0.350	50.3	19.4	12.1	0.46	0.46	45.1
139	21.52	29	0.153	0.189	0.350	43.9	17.9	11.8	0.43	0.42	47.3
140	21.55	29	0.127	0.159	0.350	36.2	16.5	10.6	0.45	0.45	45.8
141	21.59	29	0.154	0.190	0.350	44.1	17.9	11.8	0.52	0.52	51.2
142	21.62	29	0.174	0.188	0.350	49.7	17.7	11.6	0.67	0.67	48.7
143	21.66	29	0.163	0.200	0.350	46.7	18.3	11.7	0.64	0.64	47.4
144	21.69	29	0.192	0.235	0.350	54.8	20.4	13.4	0.49	0.43	47.3
145	21.72	29	0.161	0.192	0.350	46.0	18.4	12.5	0.43	0.43	48.3
146	21.76	29	0.191	0.214	0.350	54.4	19.7	12.8	0.55	0.55	47.1
147	21.79	29	0.155	0.176	0.350	44.3	17.1	11.2	0.83	0.83	45.5
148	21.83	29	0.203	0.220	0.350	57.9	19.3	12.3	0.98	0.98	48.2
149	21.86	29	0.155	0.192	0.350	44.2	18.2	11.6	0.41	0.32	45.5
150	21.90	29	0.172	0.202	0.350	49.0	18.6	12.4	0.74	0.74	46.1
151	21.93	29	0.149	0.188	0.350	42.6	17.6	11.1	0.40	0.33	44.9
152	21.97	29	0.177	0.209	0.350	50.5	19.5	12.4	0.48	0.47	44.9

Page 2 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;MOBILE SAFETY DRIVE;SDI Test date: 29-Sep-2008

VTRANS RSCH011-703 - GD-9 OP: SPK

							1 63	st date. 25-3	ep-zuuo
	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
Average	0.170	0.203	0.350	48.4	18.6	12.6	0.67	0.64	47.7
Std. Dev.	0.017	0.017	0.000	4.8	1.0	0.9	0.23	0.25	1.8
Maximum	0.204	0.239	0.350	58.4	20.6	15.9	1.42	1.39	53.3
@ Blow#	126	129	95	126	129	97	95	95	115
Minimum	0.127	0.159	0.350	36.2	16.5	10.6	0.40	0.16	44.4
@ Blow#	140	140	95	140	140	140	127	121	128
_			~	to a confidence of					

2 INCH SS; MOBILE SAFETY DRIVE; SDI

OP: SPK

Test date: 29-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi

AR: 0.92 in^2 LE: 53.71 ft WS: 16,807.7 f/s

JC: 0.00 Maximum Velocity VMX:

EMX: Max Transferred Energy EF2: Energy of F^2 Hammer Energy Rating ETR: Energy Transfer Ratio

DMX: Maximum Displacement DFN: Final Displacement BPM: Blows per Minute

FMX: Maximum Force BL# depth **BLC EMX** EF2 ER **ETR FMX VMX** DMX DFN **BPM** bl/ft k-ft k-ft (%) ft k-ft kips f/s 154 25.00 0.165 0.219 0.350 47.2 0.98 0 19.0 14.6 0.95 0.0 155 25.02 41 0.156 0.201 0.350 44.5 18.4 13.3 0.61 0.60 45.1 156 25.05 0.154 0.200 0.350 43.9 41 18.5 13.1 0.52 0.47 0.0 157 25.07 41 0.161 0.206 0.350 19.0 46.1 13.1 0.87 0.87 0.0 158 25.10 41 0.227 0.350 0.197 56.3 18.7 12.7 0.77 0.77 46.3 159 25.12 41 0.158 0.198 0.350 45.1 18.8 13.4 0.65 0.65 47.7 160 25.15 41 0.169 0.196 0.350 48.2 17.3 11.8 0.70 0.70 46.2 161 25.17 41 0.128 0.163 0.350 36.6 16.8 11.0 0.65 0.65 47.1 162 25.20 41 0.155 0.200 0.350 44.3 17.8 12.3 0.40 0.17 44.8 163 25.22 41 0.148 0.350 42.4 0.192 18.3 0.61 12.1 0.61 46.4 164 25.24 41 0.153 0.202 0.350 43.8 18.3 12.2 0.37 0.25 48.5 165 25.27 41 0.350 0 145 0.187 41.4 18.1 11.8 0.35 0.22 47.4 166 25.29 41 0.147 0.187 0.350 41.9 17.6 12.0 0.36 0.31 50.5 167 25.32 41 0.149 0.191 0.350 42.7 18.1 12.5 0.37 0.37 47.0 168 25.34 41 0.159 0.197 0.350 45.4 18.2 12.2 0.43 0.43 48.6 169 25.37 41 0.143 0.186 0.350 41 N 18.1 0.33 12 1 0.25 48.5 170 25.39 41 0.159 0.194 0.350 45.5 17.4 11.1 0.53 0.53 47.0 171 25.42 41 0.133 0.169 0.350 17.4 38.1 11.8 0.47 0.47 46.2 172 25.44 41 0.157 0.194 0.350 44.7 17.4 11.2 0.42 0.42 48.2 173 25.46 41 0.145 0.188 0.350 18.0 0.37 0.37 414 11.8 48.6 174 25.49 41 0.150 0.190 0.350 42.7 17.2 11.3 0.43 0.43 45.6 175 25.51 41 0.150 0.192 0.350 42.9 18.2 0.38 0.38 12 1 50.0 176 25.54 41 0.163 0.204 0.350 46.7 18.1 11.9 0.43 0.43 46.8 25.56 177 41 0.154 0.200 0.350 43.9 18.6 0.33 12.2 0.24 45.6 178 25.59 41 0.149 0.197 0.350 42.5 17.5 10.8 0.39 0.39 48.9 179 25.61 41 0.148 0.188 0.350 42.4 18.1 12.2 0.43 0.43 50.2 180 25.63 41 0.149 0.350 0.36 0.194 42.5 17.6 11.1 0.36 49.7 181 25.66 41 0.146 0.184 0.350 41.8 17.9 11.5 0.35 0.29 49 4 182 25.68 41 0.158 0.203 0.350 45.2 17.9 11.2 0.34 0.24 48.0 183 25.71 41 0.350 0.150 0.192 42.9 18.1 11.4 0.33 0.33 46.5 25.73 184 41 0.152 17.4 0.194 0.350 43.5 11.3 0.61 0.61 50.4 185 25.76 41 0.194 0.350 0.34 0.150 43.0 18.6 12.4 0.24 50.2 0.202 186 25.78 41 0.165 0.350 47.1 11.8 18.1 0.42 0.42 47.4 187 25.81 41 0.151 0.190 0.350 43.3 18.5 12.3 0.43 0.43 50.6 188 25.83 41 0.173 0.209 0.350 49.3 18.0 12.0 0.57 0.57 49.0 189 25.85 41 0.145 0.183 0.350 41.3 12.0 0.32 0.30 18.1 50.7 0.205 190 25.88 41 0.157 0.350 44.8 18.6 11.6 0.32 0.30 52.0 191 25.90 41 0.147 0.198 0.350 41.9 18.5 0.30 11.6 0.27 49.2 192 25.93 41 0.139 0.350 0.180 39.8 17.7 11.5 0.31 0.31 49.3 193 25.95 41 0.159 0.197 0.350 45.3 17.7 12.3 0.51 0.51 51.8 0.193 194 25.98 41 0.153 0.350 43.7 18.3 12.5 0.67 0.67 49.0 195 26.00 41 0.152 0.195 0.350 43.3 18.1 12.4 0.31 0.15 49.9 196 26.02 41 0.135 0.172 0.350 38.6 17.5 11.5 0.36 0.36 49.5 197 41 26.05 0.162 0.203 0.350 46.2 17.9 11.5 0.57 0.57 51.8 198 26.07 41 0.143 0.184 0.350 40.8 17.9 11.7 0.52 0.52 51.5 199 26.10 41 0.147 0.186 0.350 41.9 17.3 11.0 0.39 0.39 50.8 200 41 26.12 0.149 0.192 0.350 42.7 18.1 113 0.31 0.30 51.7 201 26.15 41 0.155 0.198 0.350 44.3 17.7 10.9 0.45 0.45 48.1 202 41 26.17 0.151 0.194 0.350 43.1 18.2 11.4 0.51 0.51 51.1 204 26.22 41 0.160 0.205 0.350 45.8 18.9 10.9 0.33 0.29 50.8 205 26.24 41 0.164 0.215 0.350 46.9 18.8 0.33 11.7 0.33 48.8 207 26.29 41 0.155 0.193 0.350 44.3 17.8 11.5 0.33 0.18 50.6 208 26.32 41 0.165 0.204 0.350 47.1 18.2 11.9 0.44 0.44 50.8 209 26.34 41 0.158 0.196 0.350 45.0 18.0 11.4 0.38 0.38 49.1 210 26.37 41 0.155 0.190 0.350 44.4 18.4 0.42 0.42 11 4 49.8 211 26.39 41 0.169 0.215 0.350 48.2 19.1 12.5 0.36 0.22 50.1 212 26.42 41 0.169 0.219 0.350 48.3 19.4 11.6 0.36 0.32 48.3

VTRAN OP: SP	S RSCH011 K	-703 - GD-9	9					2 INCH S	S;MOBILE \$ Tes	SAFETY DF t date: 29-S	
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	· ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
213	26.44	41	0.153	0.198	0.350	43.7	18.2	11.8	0.34	0.18	48.5
214	26.46	41	0.142	0.185	0.350	40.6	18.1	11.8	0.33	0.26	46.6
215	26.49	41	0.156	0.206	0.350	44.5	18.8	12.7	0.35	0.21	49.5
216	26.51	41	0.138	0.179	0.350	39.4	17.5	12.1	0.34	0.25	48.4
217	26.54	41	0.168	0.218	0.350	47.9	19.3	13.5	0.38	0.31	47.6
218	26.56	41	0.159	0.202	0.350	45.4	18.5	13.0	0.46	0.46	46.8
219	26.59	41	0.156	0.208	0.350	44.6	18.8	13.1	0.38	0.37	48.7
220	26.61	41	0.160	0.207	0.350	45.7	18.7	12.9	0.38	0.29	46.6
221	26.63	41	0.165	0.210	0.350	47.2	19.2	13.0	0.61	0.61	48.3
222	26.66	41	0.166	0.213	0.350	47.5	18.8	13.1	0.39	0.27	49.1
223	26.68	41	0.148	0.191	0.350	42.2	18.1	12.1	0.42	0.42	48.6
224	26.71	41	0.184	0.199	0.350	52.6	17.8	12.8	0.96	0.96	47.2
225	26.73	41	0.158	0.198	0.350	45.1	18.1	12.3	0.42	0.31	0.0
226	26.76	41	0.155	0.173	0.350	44.3	17.2	12.6	0.90	0.90	47.2
227	26.78	41	0.166	0.190	0.350	47.4	17.0	12.5	0.82	0.82	49.0
228	26.81	41	0.147	0.185	0.350	42.1	17.9	12.2	0.45	0.43	48.9
229	26.83	41	0.186	0.199	0.350	53.1	17.6	12.0	0.89	0.89	47.2
230	26.85	4 1	0.159	0.194	0.350	45.5	18.5	12.4	0.69	0.69	50.2
231	26.88	41	0.168	0.200	0.350	48.0	17.1	13.0	0.48	0.18	46.7
232	26.90	41	0.160	0.195	0.350	45.7	18.1	12.7	0.65	0.65	48.2
233	26.93	41	0.192	0.196	0.350	54.9	16.8	13.2	1.34	1.34	44.9
234	26.95	41	0.147	0.183	0.350	41.9	17.7	12.2	0.54	0.54	50.1
235	26.98	41	0.178	0.216	0.350	51.0	18.3	12.7	0.55	0.55	48.1
236	27.00	41	0.139	0.172	0.350	39.8	17.2	11.7	0.56	0.56	45.1
		Average	0.156	0.196	0.350	44.5	18.1	12.1	0.49	0.45	48.6
		Std. Dev.	0.012	0.012	0.000	3.4	0.6	0.7	0.19	0.22	1.8
		laximum	0.197	0.227	0.350	56.3	19.4	14.6	1.34	1.34	52.0
		Blow#	158	158	154	158	212	154	233	233	190
		/linimum	0.128	0.163	0.350	36.6	16.8	10.8	0.30	0.15	44.8
		D Blow#	161	161	154	161	161	178	191	195	162
	Ì			-		ber of blows	s analyzed:				•

OP: SPK

AR:

Page 1 of 1 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;MOBILE SAFETY DRIVE;SDI

Test date: 29-Sep-2008

0.92 in^2 SP: 0.492 k/ft3 LE: 53.71 ft WS: 16,807.7 f/s EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy VMX: Maximum Velocity EF2: Energy of F^2 DMX: Maximum Displacement ER: Hammer Energy Rating DFN: Final Displacement

ETR:	Energy Trans								BPM: Blov	vs per Minu	te
FMX:	Maximum Fo	rce									
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
237	30.00	0	0.180	0.237	0.350	51.4	19.7	15.7	1.93	1.93	0.0
238	30.07	14	0.169	0.219	0.350	48.3	19.1	14.4	1.13	0.97	46.5
239	30.14	14	0.182	0.236	0.350	51.9	20.0	15.6	1.21	1.19	45.1
240	30.21	14	0.216	0.237	0.350	61.7	19.1	14.9	1.88	1.88	46.6
241	30.29	14	0.178	0.231	0.350	50.9	19.6	15.2	1.24	1.24	45.2
242	30.36	14	0.220	0.249	0.350	62.9	19.8	15.7	1.93	1.93	42.8
243	30.43	14	0.163	0.211	0.350	46.5	18.6	16.2	0.99	0.83	39.6
244	30.50	14	0.180	0.221	0.350	51.5	18.5	15.0	1.10	1.10	43.5
245	30.57	14	0.174	0.227	0.350	49.8	19.3	15.6	0.93	0.93	42.6
246	30.64	14	0.170	0.221	0.350	48.6	18.5	14.7	1.00	1.00	43.8
247	30.71	14	0.187	0.237	0.350	53.3	19.6	15.7	0.86	0.85	43.8
248	30.79	14	0.199	0.227	0.350	56.8	18.5	14.8	1.62	1.62	44.5
249	30.86	14	0.179	0.228	0.350	51.1	19.2	16.1	0.82	0.77	42.2
250	30.93	14	0.175	0.230	0.350	49.9	18.9	14.3	0.94	0.94	44.2
251	31.00	14	0.197	0.238	0.350	56.3	19.2	14.6	1.01	1.01	44.2
252	31.07	14	0.169	0.217	0.350	48.4	18.1	14.3	0.95	0.95	42.9
253	31.14	14	0.164	0.209	0.350	46.9	18.2	13.5	0.76	0.75	45.5
254	31.21	14	0.156	0.206	0.350	44.6	17.3	13.5	0.84	0.84	44.2
255	31.29	14	0.163	0.206	0.350	46.4	18.4	13.5	0.74	0.73	42.7
256	31.36	14	0.173	0.217	0.350	49.4	17.7	13.4	0.83	0.82	40.8
257	31.43	14	0.165	0.202	0.350	47.1	18.3	13.6	0.74	0.64	45.5
258	31.50	14	0.169	0.213	0.350	48.3	18.8	13.8	0.80	0.80	41.4
259	31.57	14	0.193	0.222	0.350	55.2	18.6	13.9	1.05	1.05	44.5
260	31.64	14	0.184	0.233	0.350	52.5	19.1	14.0	0.69	0.48	44.0
262	31.79	14	0.198	0.230	0.350	56.6	18.4	13.7	1.04	1.04	44.1
263	31.86	14	0.212	0.222	0.350	60.5	18.0	13.1	1.21	1.21	39.9
264	31.93	14	0.163	0.209	0.350	46.6	18.4	13.7	0.65	0.46	46.8
		Average	0.181	0.224	0.350	51.6	18.8	14.5	1.07	1.04	43.7
		Std. Dev.	0.017	0.012	0.000	4.8	0.6	0.9	0.36	0.39	1.9
		1 aximum	0.220	0.249	0.350	62.9	20.0	16.2	1.93	1.93	46.8
		@ Blow#	242	242	237	242	239	243	242	242	264
		dinimum	0.156	0.202	0.350	44.6	17.3	13.1	0.65	0.46	39.6
	(@ Blow#	254	257	237	254	254	263	264	264	243

2 INCH SS;MOBILE SAFETY DRIVE;SDI	ı
Test date: 29-Sep-2008	3

VTRANS RSCH011-703 - GD-9 OP: SPK	2 INCH SS;MOBILE SAFETY DRIVE;SDI Test date: 29-Sep-2008
AR: 0.92 in^2	SP: 0.492 k/ft3
LE: 53.71 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00

**O: 10,007:7 1/3	80 . 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F ²	DMX: Maximum Displacement
ER: Hammer Energy Rating	DFN: Final Displacement
ETR: Energy Transfer Ratio	BPM: Blows per Minute

	Energy Trans								te		
	Maximum Fo										
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
266	35.00	0	0.176	0.225	0.350	50.2	18.0	12.4	1.65	1.65	0.0
267	35.05	19	0.172	0.220	0.350	49.3	17.8	13.6	1.49	1.49	45.7
268	35.11	19	0.177	0.223	0.350	50.7	17.7	12.2	1.49	1.49	46.5
269	35.16	19	0.181	0.228	0.350	51.8	19.0	14.3	1.31	1.31	47.9
270	35.21	19	0.180	0.231	0.350	51.3	18.6	13.3	1.20	1.20	46.8
271	35.26	19	0.191	0.231	0.350	54.4	17.9	14.0	1.31	1.31	48.4
272	35.32	19	0.173	0.227	0.350	49.4	19.1	13.7	0.93	0.93	50.6
273	35.37	19	0.169	0.210	0.350	48.3	17.5	13.4	0.96	0.96	48.7
274	35.42	19	0.203	0.233	0.350	58.0	18.7	14.2	1.30	1.30	47.0
275	35.47	19	0.162	0.201	0.350	46.3	17.5	13.4	0.66	0.55	47.8
276	35.53	19	0.193	0.230	0.350	55.2	17.9	13.6	1.12	1.12	46.5
277	35.58	19	0.186	0.246	0.350	53.1	19.7	14.1	0.62	0.56	48.5
278	35.63	19	0.156	0.196	0.350	44.6	16.4	12.6	0.64	0.63	46.2
279	35.68	19	0.165	0.220	0.350	47.3	18.1	12.1	0.58	0.56	51.9
280	35.74	19	0.176	0.216	0.350	50.2	17.9	12.1	0.81	0.81	46.4
281	35.79	19	0.188	0.234	0.350	53.8	18.5	13.3	0.67	0.66	46.7
282	35.84	19	0.171	0.223	0.350	48.8	18.7	12.6	0.63	0.63	47.8
283	35.90	19	0.166	0.202	0.350	47.3	17.7	13.8	0.64	0.64	47.2
284	35.95	19	0.185	0.240	0.350	52.8	19.1	12.9	0.76	0.76	48.0
285	36.00	19	0.185	0.233	0.350	52.8	18.8	14.2	0.62	0.56	45.9
286	36.05	19	0.162	0.210	0.350	46.2	18.5	12.8	0.63	0.63	43.9
287	36.11	19	0.174	0.219	0.350	49.6	18.0	13.3	0.60	0.50	48.7
288	36.16	19	0.170	0.230	0.350	48.7	19.0	12.5	0.52	0.33	46.1
289	36.21	19	0.158	0.194	0.350	45.1	16.5	12.9	0.71	0.71	51.6
290	36.26	19	0.172	0.227	0.350	49.0	19.1	11.9	0.55	0.49	48.9
291	36.32	19	0.174	0.228	0.350	49.8	18.2	13.1	0.57	0.51	48.3
292	36.37	19	0.168	0.217	0.350	48.0	18.9	13.4	0.63	0.62	44.9
293	36.42	19	0.162	0.207	0.350	46.2	17.8	12.8	0.68	0.68	47.4
294	36.47	19	0.171	0.230	0.350	48.9	19.4	13.4	0.68	0.68	45.5
295	36.53	19	0.183	0.223	0.350	52.2	18.2	13.7	0.84	0.84	47.5
296	36.58	19	0.179	0.228	0.350	51.0	19.0	14.1	0.65	0.65	45.6
297	36.63	19	0.165	0.206	0.350	47.3	17.4	13.4	0.76	0.76	45.3
298	36.68	19	0.165	0.219	0.350	47.3	18.8	11.7	0.48	0.13	47.5
299	36.74	19	0.188	0.231	0.350	53.7	18.9	13.6	0.84	0.84	47.0
300	36.79	19	0.170	0.224	0.350	48.5	18.7	12.2	0.58	0.55	49.8
301	36.84	19	0.170	0.209	0.350	48.6	17.7	12.3	0.81	0.81	45.6
302	36.90	19	0.158	0.208	0.350	45.2	17.8	11.5	0.63	0.63	47.5
303	36.95	19	0.177	0.219	0.350	50.7	18.3	12.6	0.84	0.84	47.4
304	37.00	19	0.184	0.237	0.350	52.7	19.4	13.4	0.90	0.90	45.4
		Average	0.174	0.221	0.350	49.9	18.3	13.1	0.83	0.80	47.3
		Std. Dev.	0.010	0.012	0.000	3.0	0.7	0.7	0.30	0.33	1.7
		laximum	0.203	0.012	0.350	58.0	19.7	14.3	1.65	1.65	51.9
		@ Blow#	274	277	266	274	277	269	266	266	279
		Minimum	0.156	0.194	0.350	44.6	16.4	11.5	0.48	0.13	43.9
		@ Blow#	278	289	266	278	278	302	298	298	286
	,	₩ DIO W	210	203		her of blows			200	200	200

2 INCH SS;MOBILE SAFETY DRIVE;SDI

VTRANS RSCH011-703 - GD-9
OP: SPK

AR: 0.92 in^2 LE: 53.71 ft WS: 16,807.7 f/s Test date: 29-Sep-2008 SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.00

EMX: Max Transferred Energy EF2: Energy of F^2 ER: Hammer Energy Rating ETR: Energy Transfer Ratio

VMX: Maximum Velocity
DMX: Maximum Displacement
DFN: Final Displacement
RPM: Blows per Minute

ETR:	Energy Transfer Ratio BPM: Blows per Mini										
	Maximum For								DE W. DIO	ws ber willin	le
BL#	depth	BLC	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	ВРМ
	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
305	40.00	0	0.170	0.230	0.350	48.7	18.8	14.4	1.17	1.16	0.0
306	40.04	26	0.164	0.217	0.350	46.8	18.4	14.0	1.20	1.20	43.1
307	40.08	26	0.160	0.207	0.350	45.6	17.9	13.0	0.96	0.82	0.0
308	40.12	26	0.157	0.210	0.350	44.9	17.4	12.7	0.63	0.63	45.1
309	40.16	26	0.157	0.198	0.350	44.8	17.9	13.2	1.09	1.09	45.7
310	40.20	26	0.157	0.205	0.350	44.9	16.7	12.6	0.66	0.65	43.8
311	40.24	26	0.149	0.186	0.350	42.7	17.2	12.7	0.73	0.73	42.3
312	40.28	26	0.180	0.236	0.350	51.5	18.6	12.9	0.70	0.70	43.2
313	40.31	26	0.143	0.182	0.350	41.0	17.2	12.6	0.48	0.26	46.1
314	40.35	26	0.158	0.199	0.350	45.2	16.3	12.3	0.59	0.58	45.2
315	40.39	26	0.143	0.176	0.350	40.9	16.7	12.2	0.73	0.73	44.5
316	40.43	26	0.183	0.228	0.350	52.3	17.2	12.9	0.65	0.65	45.1
317	40.47	26	0.143	0.177	0.350	40.9	16.7	12.4	0.72	0.72	43.2
318	40.51	26	0.219	0.252	0.350	62.6	18.6	13.6	1.26	1.26	42.0
319	40.55	26	0.157	0.201	0.350	44.9	18.0	13.2	0.66	0.66	39.9
320	40.59	26	0.188	0.243	0.350	53.8	18.7	13.6	0.62	0.60	40.8
321	40.63	26	0.166	0.213	0.350	47.5	18.5	14.0	0.54	0.36	44.6
322	40.67	26	0.192	0.247	0.350	54.8	18.9	13.3	0.70	0.69	43.2
323	40.71	26	0.157	0.202	0.350	44.9	18.1	14.3	0.54	0.53	44.9
324	40.75	26	0.178	0.217	0.350	50.7	17.5	13.0	0.94	0.94	47.5
325	40.78	26	0.165	0.211	0.350	47.0	18.6	13.9	0.53	0.45	46.6
326	40.82	26	0.173	0.218	0.350	49.3	17.6	12.9	0.82	0.82	45.5
327	40.86	26	0.156	0.200	0.350	44.5	18.0	13.5	0.55	0.48	44.5
328	40.90	26	0.180	0.219	0.350	51.5	17.8	13.2	0.94	0.94	44.0
329	40.94	26	0.164	0.214	0.350	46.9	18.9	13.5	0.52	0.48	44.3
330	40.98	26	0.178	0.221	0.350	50.9	17.8	13.0	0.89	0.89	43.8
331	41.02	26	0.169	0.222	0.350	48.4	18.9	14.4	0.52	0.47	46.0
332	41.06	26	0.178	0.237	0.350	50.7	19.6	14.1	0.56	0.56	45.9
333	41.10	26	0.131	0.168	0.350	37.5	16.2	11.7	0.47	0.47	48.2
334	41.14	26	0.162	0.205	0.350	46.3	17.0	12.4	0.67	0.67	46.8
335	41.18	26	0.165	0.213	0.350	47.2	18.7	14.3	0.52	0.52	44.4
336	41.22	26	0.176	0.227	0.350	50.3	18.0	13.2	0.77	0.77	42.2
337	41.26	26	0.165	0.212	0.350	47.2	18.8	14.0	0.49	0.42	44.7
338	41.29	26	0.182	0.228	0.350	51.9	18.1	12.8	0.77	0.77	43.9
339	41.33	26	0.180	0.233	0.350	51.6	19.3	13.7	0.53	0.45	46.2
340	41.37	26	0.205	0.255	0.350	58.5	19.2	13.7	0.94	0.94	46.3
341	41.41	26	0.163	0.210	0.350	46.6	18.9	13.6	0.51	0.51	44.6
342	41.45	26	0.175	0.230	0.350	50.1	18.9	12.8	0.66	0.66	45.6
343	41.49	26	0.140	0.175	0.350	39.9	16.8	12.4	0.49	0.43	49.0
344	41.53	26	0.176	0.231	0.350	50.4	18.1	12.7	0.61	0.61	49.8
345	41.57	26	0.150	0.187	0.350	42.8	17.8	13.0	0.53	0.49	45.5
346	41.61	26	0.178	0.218	0.350	50.9	17.6	12.5	0.89	0.89	44.5
347	41.65	26	0.158	0.202	0.350	45.0	18.5	13.2	0.47	0.20	48.0
348	41.69	26	0.165	0.224	0.350	47.3	19.1	12.6	0.47	0.47	45.4
349	41.73	26	0.161	0.216	0.350	46.0	18.5	13.2	0.48	0.48	44.3
350	41.77	26	0.186	0.241	0.350	53.1	19.8	14.5	0.50	0.33	44.8
351	41.80	26	0.193	0.246	0.350	55.2	18.9	13.0	0.85	0.85	43.8
352	41.84	26	0.179	0.228	0.350	51.2	19.5	14.2	0.51	0.45	4 5.1
353	41.88	26	0.167	0.219	0.350	47.6	18.7	13.2	0.48	0.39	45.4
354	41.92	26	0.174	0.227	0.350	49.8	19.0	13.6	0.49	0.44	44.2
355	41.96	26	0.195	0.240	0.350	55.7	18.6	12.8	1.00	1.00	44.0
356	42.00	26	0.158	0.200	0.350	45.1	18.1	13.4	0.47	0.43	46.1

Geosciences Testing & Research Inc Case Method Results

VTRANS RSCH011-703 - GD-9 OP: SPK Page 2 of 2 PDIPLOT Ver. 2008.2 - Printed: 3-Apr-2009

2 INCH SS;MOBILE SAFETY DRIVE;SDI

							Tes	t date: 29-S	Sep-2008
	EMX	EF2	ER	ETR	FMX	VMX	DMX	DFN	BPM
	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
Average	0.169	0.215	0.350	48.2	18.2	13.2	0.68	0.65	44.9
Std. Dev.	0.017	0.020	0.000	4.7	0.9	0.6	0.21	0.24	1.8
Maximum	0.219	0.255	0.350	62.6	19.8	14.5	1.26	1.26	49.8
@ Blow#	318	340	305	318	350	350	318	318	344
Minimum	0.131	0.168	0.350	37.5	16.2	11.7	0.47	0.20	39.9
@ Blow#	333	333	305	333	333	333	356	347	319

BL#

depth

EMX

BLC

EF2

DFN

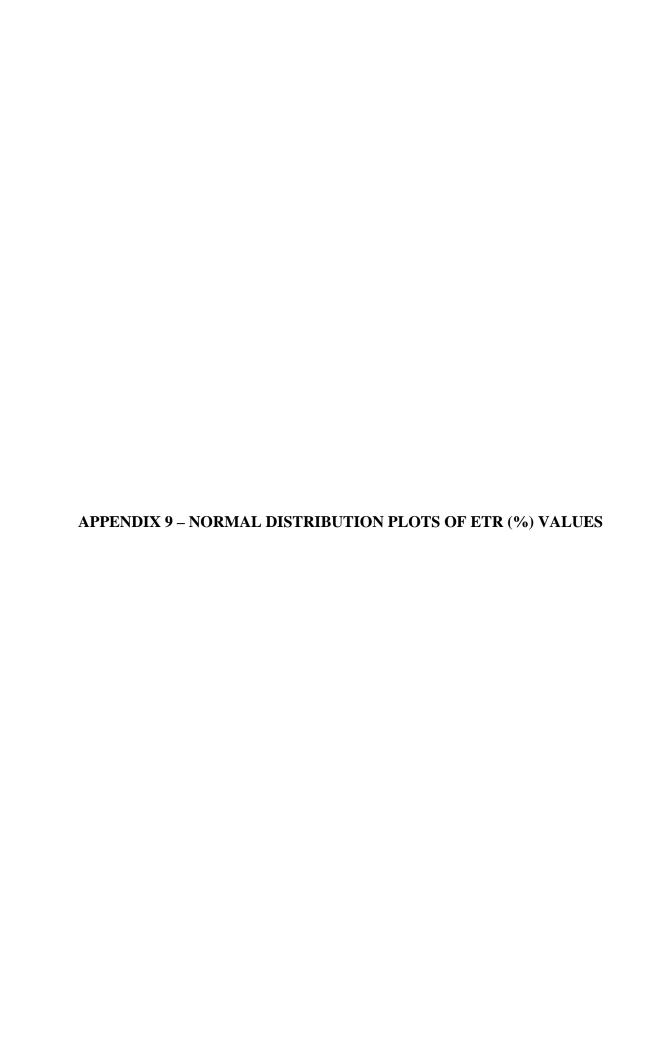
ВРМ

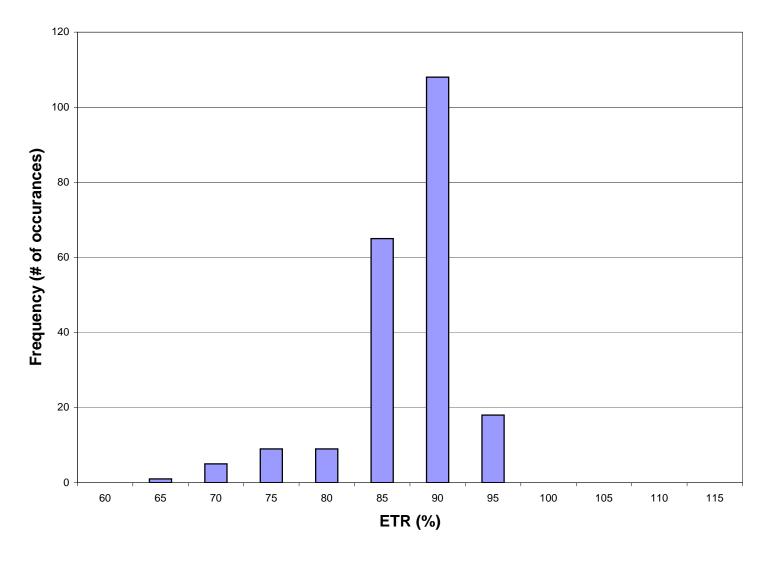
DMX

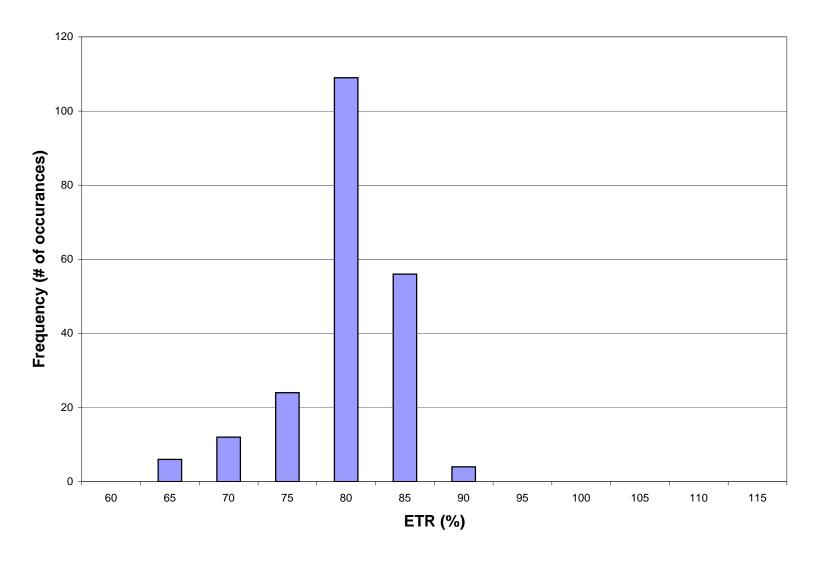
VTRANS RSCH011-703 - GD-9	2 INCH SS;MOBILE SAFETY DRIVE;SDI
OP: SPK	Test date: 29-Sep-2008
AR: 0.92 in^2	SP: 0.492 k/ft3

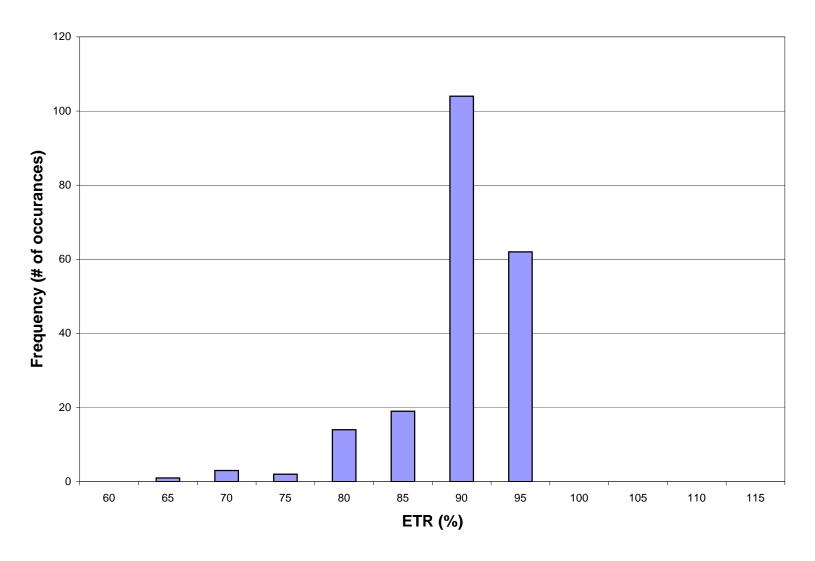
LE: 53.71 ft	EM: 30,000 ksi
WS: 16,807.7 f/s	JC: 0.00
EMX: Max Transferred Energy	VMX: Maximum Velocity
EF2: Energy of F^2	DMX: Maximum Displacement

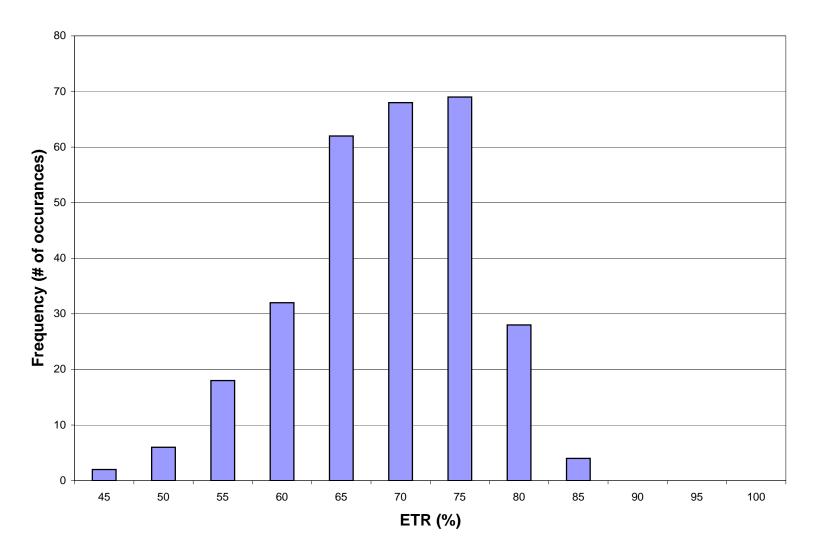
EMX:	Max Transferred Energy	VMX:	Maximum Velocity
EF2:	Energy of F^2	DMX:	Maximum Displacement
ER:	Hammer Energy Rating	DFN:	Final Displacement
ETR:	Energy Transfer Ratio	BPM:	Blows per Minute
FMX:	Maximum Force		·

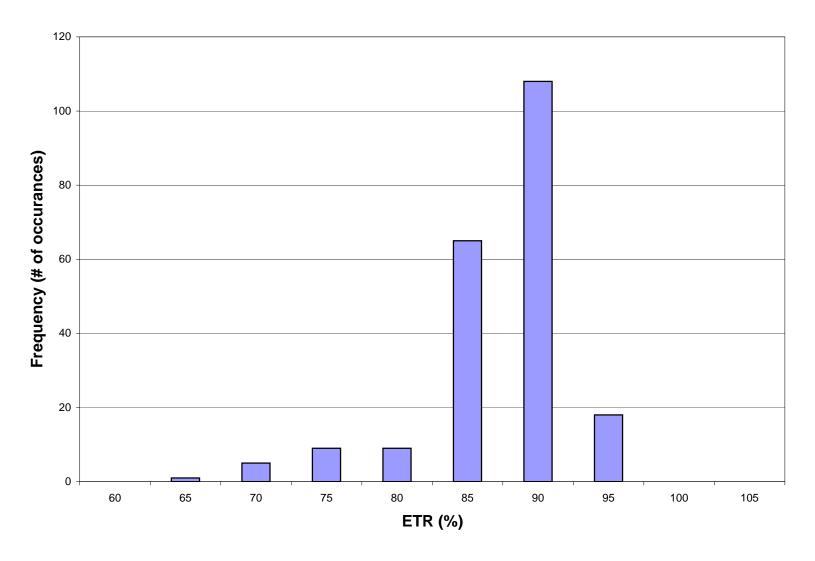

ETR

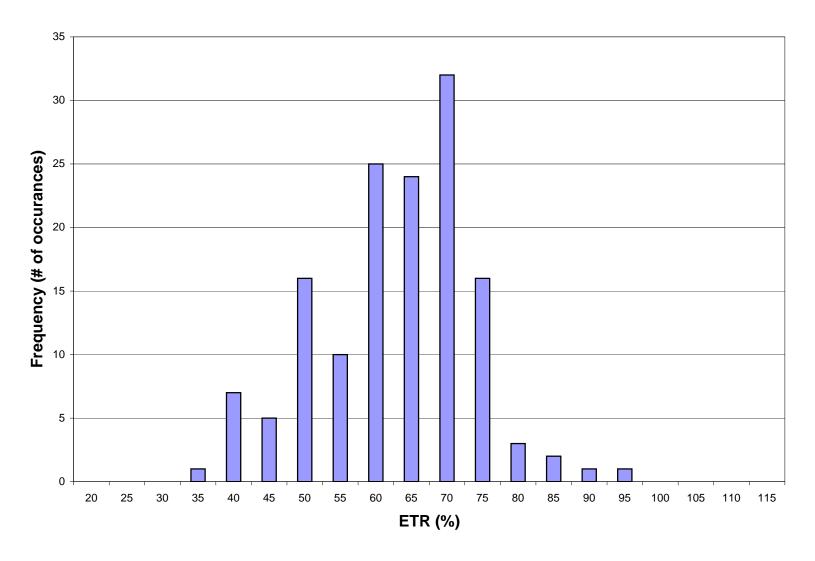

FMX

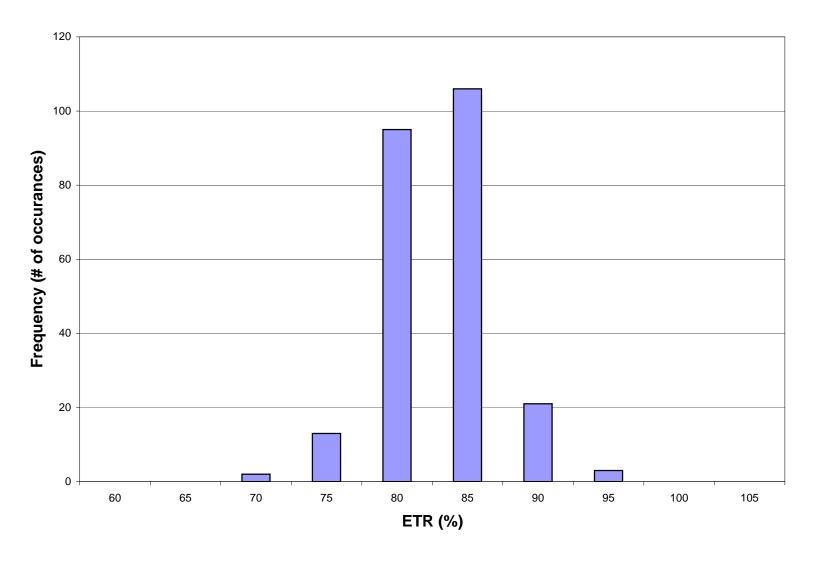

VMX

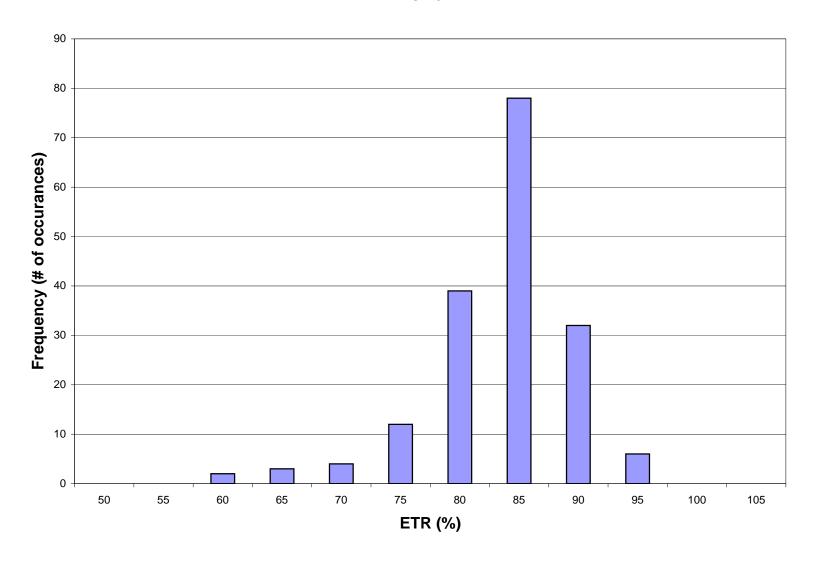

ER

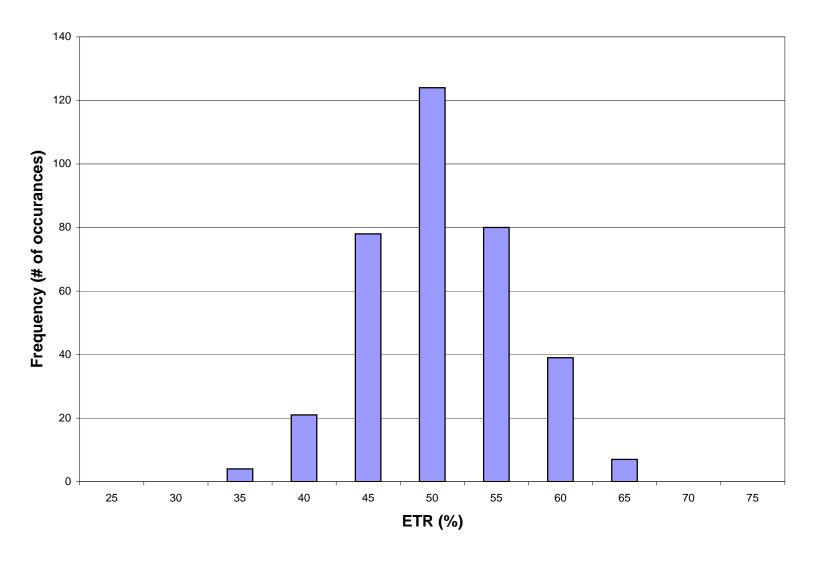

	ft	bl/ft	k-ft	k-ft	k-ft	(%)	kips	f/s	in	in	**
357	45.00	0	0.142	0.227	0.350	40.5	18.9	12.1	0.32	-2.37	0.0
358	45.04	27	0.200	0.233	0.350	57.0	19.3	14.7	0.92	-0.30	47.2
359	45.08	27	0.203	0.242	0.350	57.9	19.5	13.5	1.16	1.09	49.6
361	45.15	27	0.219	0.218	0.350	62.6	18.0	12.7	2.07	2.07	45.7
367	45.38	27	0.189	0.225	0.350	53.9	18.9	15.4	1.49	1.49	45.3
374	45.64	27	0.190	0.244	0.350	54.2	19.0	12.0	0.75	0.75	47.2
	Average Std. Dev.		0.191	0.231	0.350	54.4	18.9	13.4	1.12	0.46	47.0
			0.024	0.009	0.000	6.8	0.5	1.3	0.56	1.45	1.5
	r	Maximum	0.219	0.244	0.350	62.6	19.5	15.4	2.07	2.07	49.6
		@ Blow#	361	374	357	361	359	367	361	361	359
	Minimum		0.142	0.218	0.350	40.5	18.0	12.0	0.32	-2.37	45.3
		@ Blow#	357	361	357	357	361	374	357	357	367

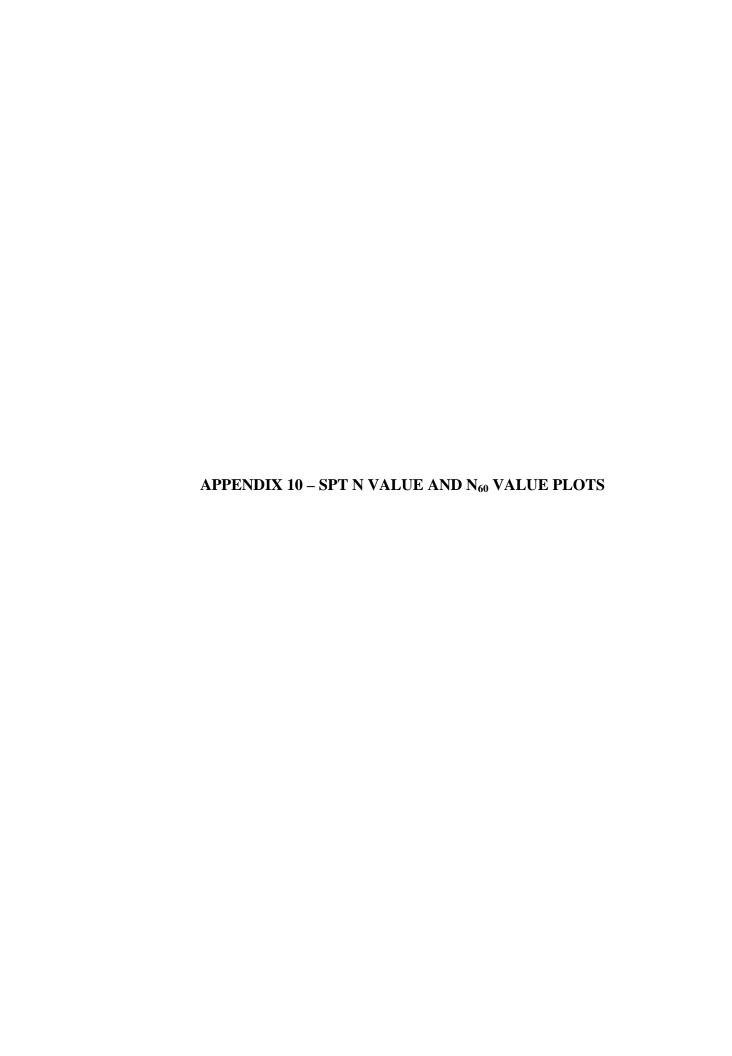


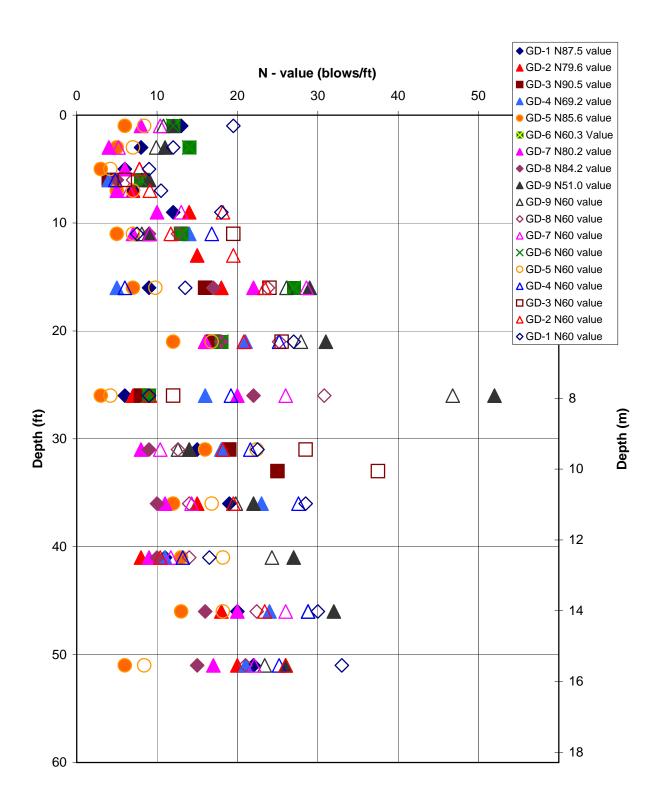


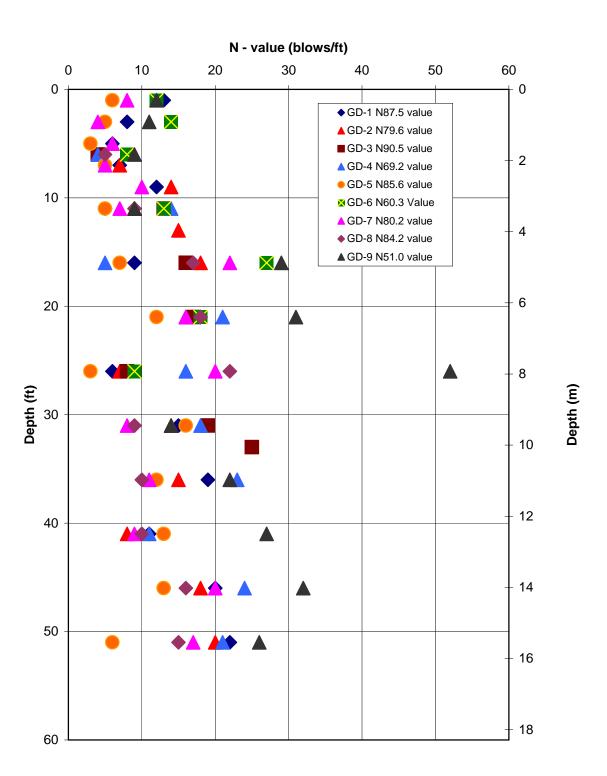


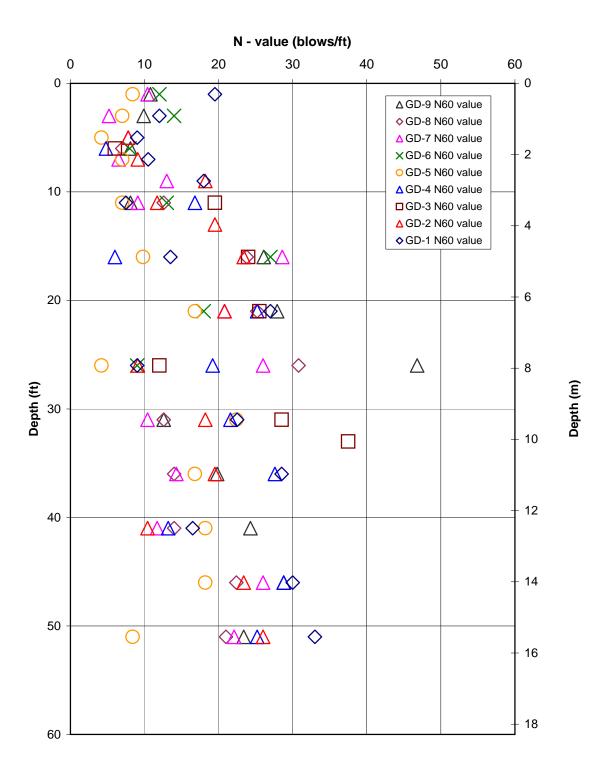


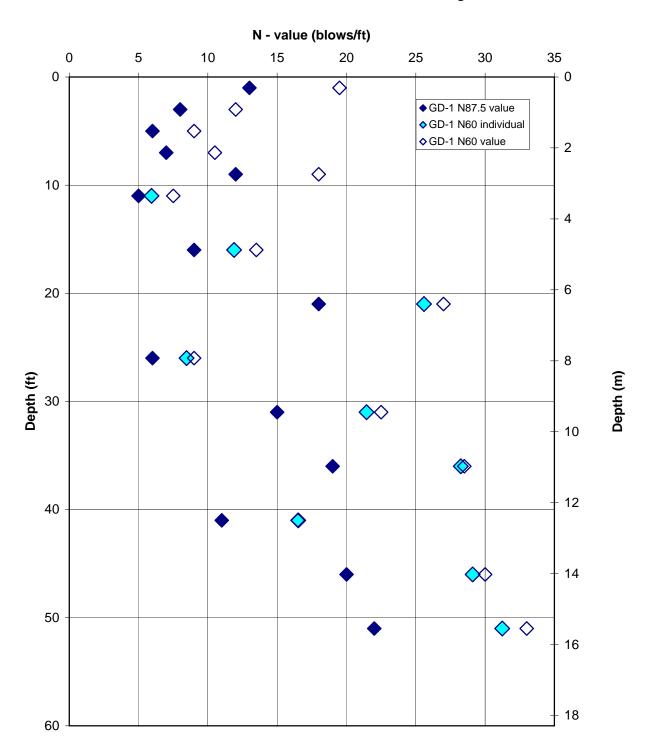


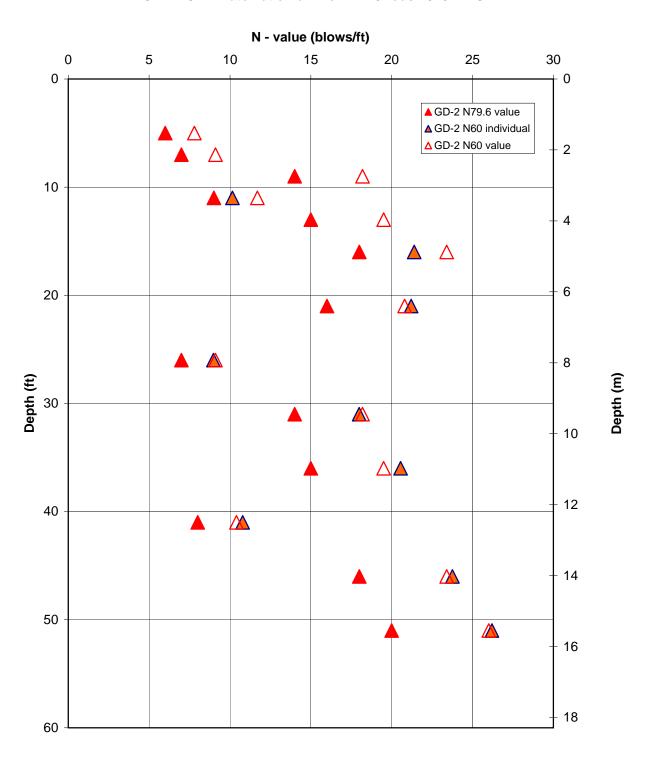


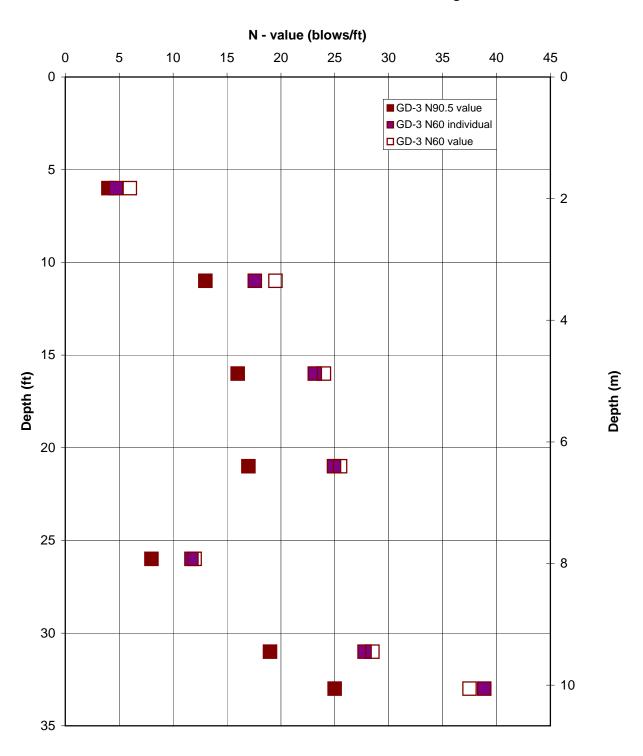


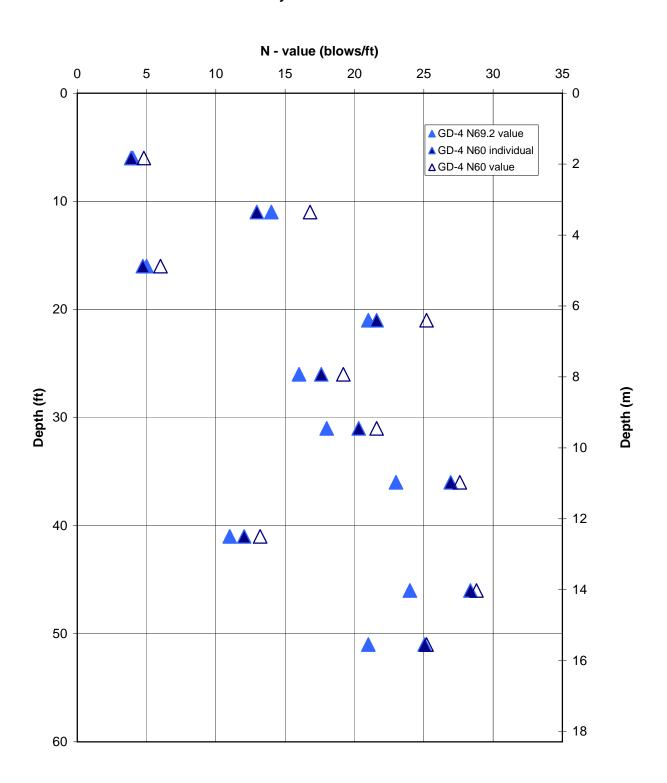


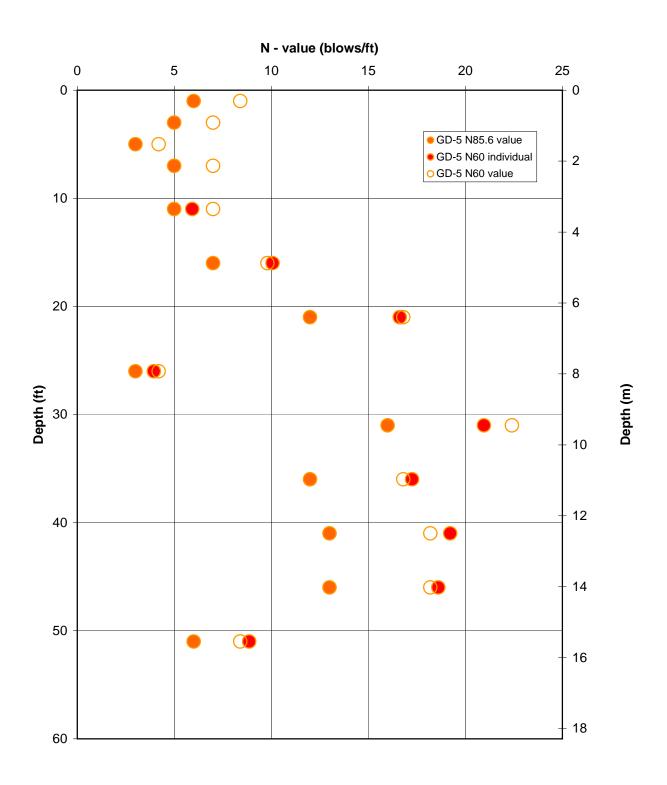


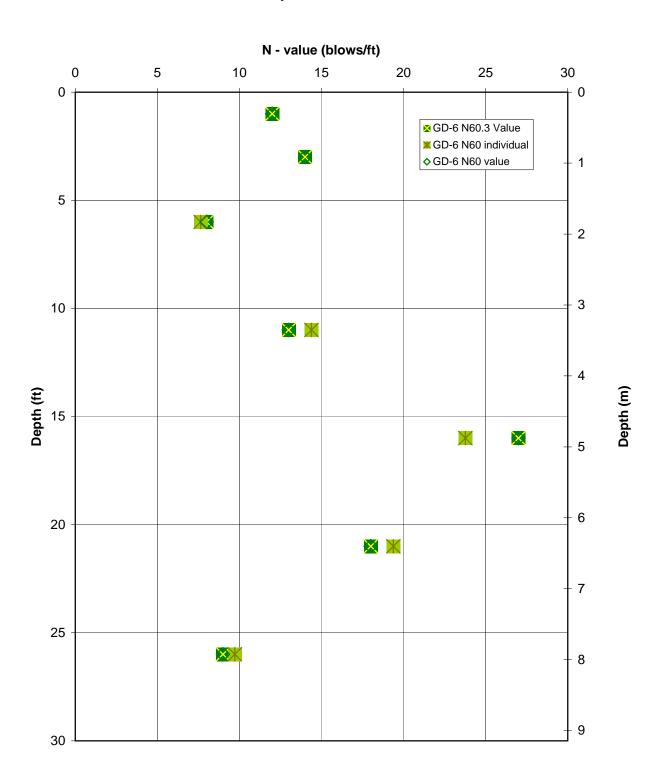


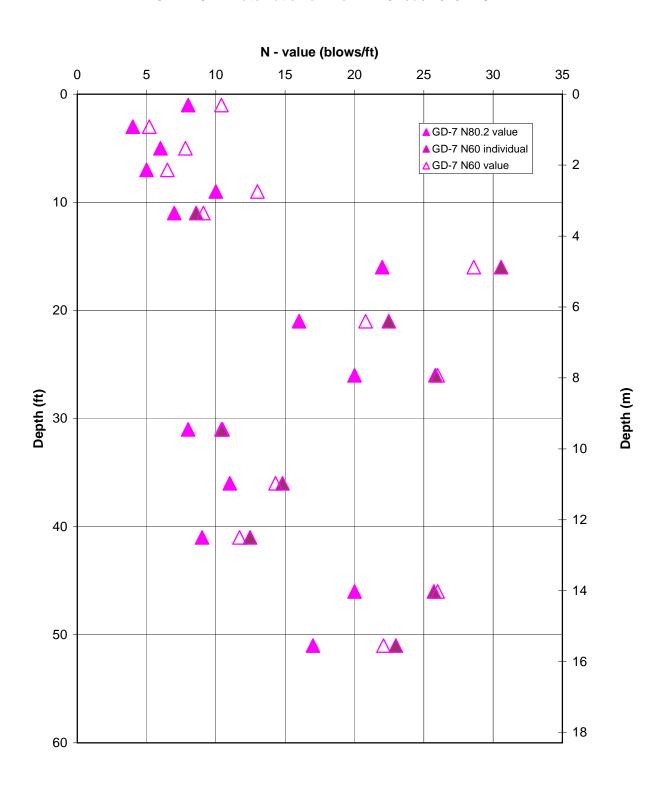


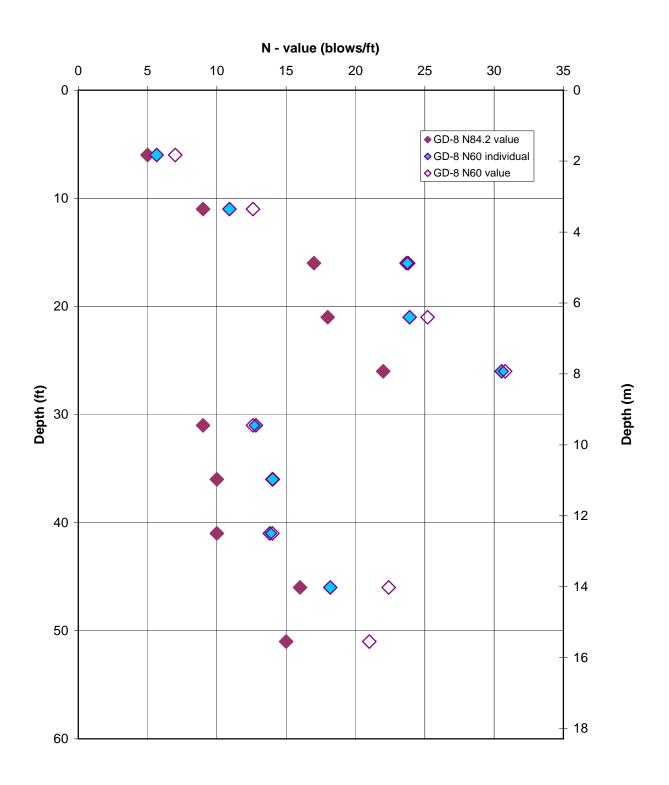

GD-1 - CME Automatic Hammer - AWJ rods - HW Casing with H2O

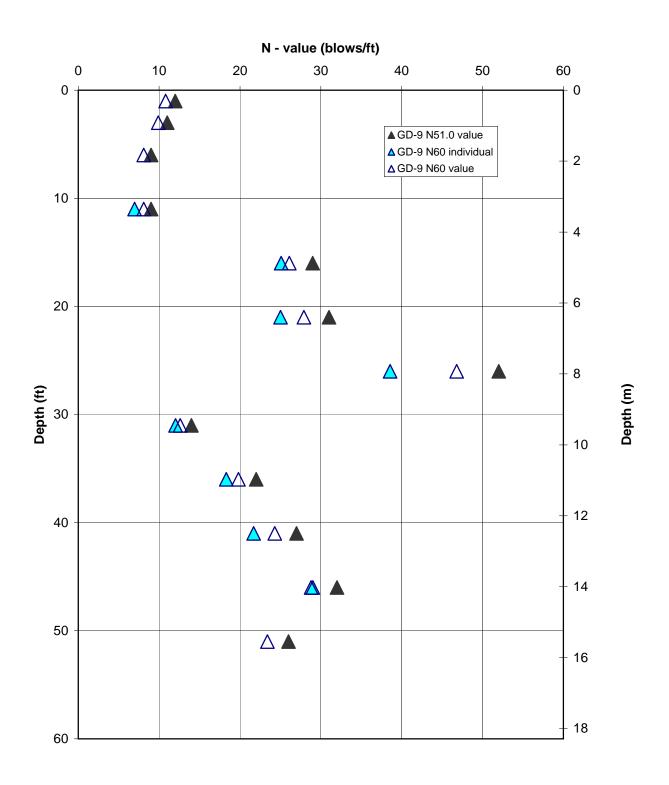

GD-2 - CME Automatic Hammer - AWJ rods - 3 1/4" HSA


GD-3 - CME Automatic Hammer - NWJ rods - HW Casing with H2O


GD-4 - Mobile Safety Hammer - AWJ rods - 3 1/4" HSA


GD-5 - CME Automatic Hammer - AWJ rods - 4 1/4 HSA


GD-6 - Mobile Safety Hammer - AWJ rods - 3 1/4 HSA


GD-7 - CME Automatic Hammer - AWJ rods - 3 1/4 HSA

GD-8 - CME Automatic Hammer - NWJ rods - 3 1/4 HSA

GD-9 - Wireline Safety Driver - Downhole Hammer - AWJ rods - 4 1/4 HSA

SUMMARY OF LITERATURE SPT HAMMER ENERGY VALUES

Test Agency	Hammer Type	Drill Rig	AVG ETR (%)	AVG C _E	Source	
	Diedrich Automatic	Christensen CS 1000	80	1.33		
	Diedrich Automatic	Christensen CS 1000	84	1.4		
	CME Automatic	CME-75	82	1.36		
	CME Automatic	Cme-85	87	1.46		
	Safety Driver	Acker 75 Soil Max	43	0.72		
	Safety Driver	Christensen CS 500	31	0.52		
	Safety Driver	Foremost Mobile B-47	56	0.94		
	Safety Driver	Foremost Mobile B-48	53	0.88		
	Safety Driver	Foremost Mobile B-49	50	0.84		
	Safety Driver	Foremost Mobile B-50	51	0.85		
Caltrans	Safety Driver	Foremost Mobile B-51	63	1.05	Caltrans "Drill Rig Hammer Evaluation", File 59-910683,	
	Safety Driver	Foremost Mobile B-52	68	1.13	12/7/2005 & August 2008	
	Safety Driver	Foremost Mobile B-53	51	0.85		
	Safety Driver	Foremost Mobile B-54	65	1.08		
	Safety Driver	Foremost Mobile B-55	70	1.17		
	Diedrich Automatic	CS 1000	80	1.33		
	Diedrich Automatic	CS2000	84	1.4		
	CME Automatic	CME-75	82	1.37		
	CME Automatic	CME-85	87	1.45		
	CME Automatic	CME-750	76	1.27		
	Boart/Longyear Automatic	Acker MP-8	74	1.23		
	Boart/Longyear Automatic	Acker MPCA	68	1.13		
	Safety	B-47	53	0.88		
	Safety	B-47	57	0.95		
	Safety	B-47	68	1.13		
	CME Automatic	CME 850	82	1.4		
	Auto-trip Safety, spooling winch, down hole	Mobile B-53	48	0.8		
	Safety; Cathead	Mobile B-50	78	1.3		
	Safety; Cathead	Longyear 24	62	1		
Oregon DOT Recommended SPT	CME Automatic	CME 750	78	1.3	"SPT Energy Measurements with the Pile Driving Analyzer"	
energy Correction	Safaty: Cathood	Mobile B-50	61	1	PowerPoint Presentation, Laura	
Factors, Theoretical	Safety; Cathead	เงเบมแล ค-วบ		1	Krusinski, P.E., Maine DOT	
	Automatic; Hydraulic Drive	Mobile	62	1		
	CME Automatic	CME 750	82	1.4		
	CME Automatic	CME 750	78	1.3		
	Automatic	CME ATV 550	81.4	1.36	"Research Report, SPT Correction"	
Maryland DOT	Safety Pin	Mobile B61	70.2	1.17	M. Sherif Aggour and Rose	
iviai ylallu DOT	Sprauge and Henwood Donut	Mobile B61	63.5	1.06	Radding, Department of Civil and Environmental Engineering,	

Page 1 of 4 Printed on : 1/10/10

_					
	Donut; Rope and Cathead	31		0.52	Schmertmann & Palacios (1979)
	Donut; Rope and Cathead	45		0.75	Kovacs et al. (1981)
	Donut; Rope and Cathead	43		0.72	Robertson et al. (1983)
	Donut; Rope and Cathead	47		0.78	Robertson et al. (1985)
Donut; Rope and Cat Donut; Rope and Cat Donut; Rope and Cat Donut; Tombi Donut; Tombi Donut; Rope and Cat Donut; Rope and Cat Donut; Rope and Cat Safety; Ro	Donut; Tombi	80		1.33	Kovacs & Salmone (1982)
	Donut; Tombi	80-90			Tokimatsu & Yoshimi (1983)
'	Safety; Rope and Cathead	52		0.87	Schmertmann & Palacios (1979)
	Safety; Rope and Cathead	55		0.92	Schmertmann & Palacios (1979)
Lutenegger, UMASS -	Safety; Rope and Cathead	61		1.02	Kovacs et al. (1981)
Amherst	Safety; Rope and Cathead	52		0.87	Kovacs & Salmone (1982)
	Safety; Rope and Cathead	62		1.03	Robertson et al. (1983)
	Safety; Rope and Cathead	55-115			Riggs et al. (1983)
	Safety; Rope and Cathead	71-91			Riggs et al. (1984)
		56-115			Riggs et al. (1983)
		90		1.50	Riggs et al. (1983)
		86-91		1.50	Schmertmann (1984)
		84-106			Frost (1992)
	Automatic	0.1100			11030 (1932)
	CME Automatic	86	86	1.43	1990 Globe CDOT-USBR
	Safety; NW guide	54	60	1.00	1991, Sy, UBC study
	Diedrich Automatic	100 (area probably wrong)	89	1.48	1992 Frost, Diedrich Drill
	Diedrich Automatic	85	64	1.07	1993 Frost, Diedrich Drill
	Safety	51	50	0.83	1993 GRL Texas A&M
	,	67	66	1.10	1994 ASCE Seattle
		56	51	0.85	1995 ASCE Seattle
	·	81	81	1.35	1996 ASCE Seattle
Compiled "Summary of	Safety; Spooling Winch	21	23	0.38	1997 ASCE Seattle
SPT energy	,, , ,	74	73	1.22	1998 ASCE Seattle
measurement		61	82	1.37	1995 GRL Oregon DOT
experience" Jeffrey A.	·	61	61	1.02	1996 GRL Oregon DOT
Farrar, U.S.	,	82	78	1.30	1997 GRL Oregon DOT
Department of	,	65	65	1.08	1998 GRL Oregon DOT
Interior, Bureau of	·	54	48	0.80	1999 GRL Oregon DOT
Reclamation (1998)		58	67	1.12	1995 Jackson, B.C. Hydro
	'	89	95	1.12	1996 Jackson, B.C. Hydro
		60	62	1.03	1995 GRL Oregon DOT
		95	82	1.03	1996 GRL Oregon DOT
		93			·
			78	1.30	1997 GRL Oregon DOT
	CME Automatic	118	78	1.30	1998 GRL Oregon DOT
	CME Automatic	102	82	1.37	1999 GRL Oregon DOT
	CME Automatic	66		1.10	1997 Lamb, Minn.DOT
	CME Automatic	78		1.30	1997 Lamb, Minn.DOT
	CME Automatic	86		1.43	1997 Lamb, Minn.DOT
	Rupe Spooling	75		1.25	1997 Lamb, Minn.DOT
	Mobile Spooling Winch	43		0.72	1997 Lamb, Minn.DOT
1	Safety	67		1.12	1997 Lamb, Minn.DOT

	Donut; Hydraulic Lift Steel		44.9	57.9	0.97	
	wire; <10 m depth		74.5	37.3	0.31	
	Donut; Hydraulic Lift Steel		F0.0	CO 2	1.00	
	wire; >10 m		58.9	60.2	1.00	
Department of Civil &						1
Environmental	CME Automatic; <10m		57.4	60	1.00	
Engineering, Korea						Energy Ratio Measurements of SPT
Advanced Institute of	CME Automatic; >10m		64.9	66.4	1.11	equipment", Dong-Soo Kim et al.
Science and	<u> </u>					(2004)
Technology, Daejon,	Safety; < 10 m		54.7	58.2	0.97	, ,
Korea	Safety; > 10 m		58	59	0.98	1
			36	39	0.96	
	Donut; Rope and Pulley; < 10		36.9	38	0.63	
	m					-
	Donut; Rope and Pulley; > 10		38.6	41.4	0.69	
	m		45		0.75	
Argentina	Donut; Rope and Pulley		45 72		0.75	-
Brazil	Pinweight		60		1.20	-
China	Pilcon type				1.00	-
China Columbia	Donut; manual		55 50		0.92	-
	Donut; Rope and Pulley				0.83	Tunical CDT Engrave by sounds
Italy	Donut; free fall		65		1.08	Typical SPT Energy by country,
Japan	Donut; free fall		78 68		1.30	"Case History of SPT Energy ratio for automatic hammer in
Japan	Donut; Rope and Pulley		68 72		1.13 1.20	northeastern U.S. practice", S.O.
Paraguay U.K.	Pinweight Donut; free fall		60		1.20	Akbas & F.H. Kulhawy
U.K.	Donut; Rope and Pulley		50		0.83	AKDAS & T.H. Kulliawy
U.S.A.	Donut; Rope and Pulley		45		0.85	1
U.S.A.	Safety; Rope and Pulley		60		1.00	1
U.S.A.	Safety; Free fall		85		1.42	-
Venezuela	Donut; Rope and Pulley		43		0.72	-
Venezacia	Bonat, Rope and Falley				0.72	
	Rope and Cathead (Safety?)	Mobile B-57	62.2		1.04	
						1
	Rope and Cathead (Safety?)	Mobile B-53	58.2		0.97	
						1
	Rope and Cathead (Safety?)	Mobile B-53	55.4		0.92	
						1
	Rope and Cathead (Safety?)	Mobile B-80	74.8		1.25	
						1
	Rope and Cathead (Safety?)	Mobile B-80	61.2		1.02	
	Automatic	CME 750	86.6		1.44	1
	Automatic	CME 170	87.1		1.45	1
	Automatic	CME 75	81.7		1.36	1
	Automatic	CME 75	78.7		1.31	1
	Wire Line	CME 75	49.8		0.83	1
	Automatic	BK-66	70.8		1.18	1
	Automatic	BK-66	68.6		1.14	
	Automatic	CME 55	85.3		1.42	1
	Automatic	CME 75	94.6		1.58]
	Automatic	CME 55	85.4		1.42]
	Automatic	CME 55	81		1.35]
Utah DOT			75.4			SPT Energy Measurements with
July 1	Rope and Cathead (Safety?)	Saitech GH3	75.4		1.26	the PDA, Darin Sjoblom et al.
	Rope and Cathead (Safety?)	Saitech GH3	69.7		1.16	
	Rope and Catheau (Salety:)	Saitech Gris	03.7		1.10	
	Rope and Cathead (Safety?)	Saitech GH3	76.3		1.27	
	Automatic	CME 75	58.3		0.97	
	Automatic	CME 75	64.5		1.08	
	Rope and Cathead (Safety?)	Mobile B-61	66.3		1.11	
	. , , ,					-
	Automatic	Mobile B-57	75.5		1.26	
	Automatic	Mobile B-80	70.4		1.17	-
	Rope and Cathead (Safety?)	CME 55	69.1		1.15	
						-
	Automatic	BK-81	83.7		1.40	-
	Automatic	CME 850	62.7		1.05	-
	Rope and Cathead (Safety?)	Terramec 100	63.7		1.06	
		CME 750			1 11	-
	Automatic	CME 750	66.6		1.11	-
	Automatic	CME 850	82		1.37	-
	Automatic	Diedrich D-120	88.8		1.48	1
	Automatic	Diedrich D-120	46 80		0.77	1
	Automatic	Diedrich D-120	60		1.33	1

	1					
	CME Automatic		90			Schmertmann and Smith (1977)
	CME Automatic	CME 750	83			Riggs (1982)
	CME Automatic		100	100		Riggs et al. (1983)
	CME Automatic		88-91			Riggs et al. (1984)
	CME Automatic	CME 750	92			Kovacs (1984)
	CME Automatic	CME 750, 55	95			Farrar (1990)
	CME Automatic		86	86	1.43	Goble (1990)
	CME Automatic	CME 75	92-97			Farrar (1991)
U.S. Department of	CME Automatic	CME 75	81	81	1.35	GRL ASCE Seattle (1994)
Interior Bureau of	CME Automatic		74	73	1.22	GRL ASCE Seattle (1994)
Reclamation, 1999	CME Automatic		74	73	1.22	GRL ASCE Seattle (1994)
	CME Automatic	CME 750	95	82	1.37	GRL Oregon DOT (1995)
	CME Automatic	CME 750	93	78	1.30	GRL Oregon DOT (1995)
	CME Automatic	CME 750	118	78	1.30	GRL Oregon DOT (1995)
	CME Automatic	CME 850	102	82	1.37	GRL Oregon DOT (1995)
	CME Automatic			86-66	1.43	Lamb (1997)
	CME Automatic		75	81	1.35	GRL Wyoming DOT (1998)
	CME Automatic		76	81	1.35	GRL Wyoming DOT (1998)
	CME Automatic		76	78	1.30	GRL Wyoming DOT (1998)
	CME Automatic		75	81	1.35	GRL Los Angeles USACE (1998)
Maine DOT	CME Automatic	CME 75	77		1.28	"SPT Energy Measurements with the Pile Driving Analyzer" PowerPoint Presentation, Laura Krusinski, P.E., Maine DOT
Legend						
	F^2					
	FV					
	Collected from other sources					
	Theoretical					

Calibration Data Sheet for SFT rod #:137AWJ Calibrated: 01-Jul-08 Page 1 of 2

Cycle No. 1 Sample No.	lbs	ME	Bridge 1 Volts	Bridge 2 Volts
				
	2.61	04	.00	.00
2	1085.70	39.67	.18	.18
3	2054.64	74.74	.34	.34
4	3120.01	113.92	.51	.52
5	4090.41	148.92	.67	67
.6	5035.82	183.09	.83	.83
	6316.13	229.35-	1.04	1.04
. 8 ,	7141.29	259.01	1.18	1.1B
· 9	8100.94	294.18	1.34	1.33
10	9017.60	327.46	1.49	1.49
11	10192.18	369.92	1.68	1.68

Bridge 1	Force Cal	Strain Cal	Bridge 2	Force Cal	Strain Cal
Offset Corr Coe	6075.88 lbs/V -8.72 .999996 in Calibration	221.23 ME/V .01 .999994		6070.87 lbs/\53 .999999	7 221.05 ME/V .31 .999999

EA Factor 27463.67 Kips Offset -9.01

.999998 Corr Coe

Offset

Corr Coe

-12.47

.999997

Cycle No. 2 Sample No.	lbs	ME	Bridge 1 Volts	Bridge 2 Volts
, 1 ,	3.78	.04	.00	.00
2	1095.87	39.93	.18	.18
<i>∞</i> , 3	2114.48	76.70	.35	.35
4	3039.56	110.71	.50	. 50
5	4021.28	145.67	.66	.66
6	5303.62	191.79	.88	.87
7	6187.75	223.44	1.02	1.02
. 8	7007.11	253.35	1.16	1.16
9	8334.17	300.87	1.37	1.38
10	9041.71	326.31	1.49	1.49
11	10346.99	373.21	1.71	1.71

Bridge 1	Force Cal	Strain Cal	Bridge 2	Force Cal	Strain Cal
Cal Factor Offset Corr Coe	6065.42 lbs/V -1.28 .999999	219.46 ME/V .41 .999998		6055.81 lbs/V 7.23 .999998	219.11 ME/V .71 .999993
Force Stra	in Calibration				V.
EA Factor 2	7637.54 Kins				

Calibration Data Sheet for SPT rod #:137AWJ

Calibrated: 01-Jul-08

Page 2 of 2

Corr Coe

Cycle No. 3	•	•	Bridge 1	Bridge 2
Sample No.	lbs	ME	Volts	Volts
				·
1	1.74	.00	- 00	.00
2	1107.53	40.66	.18	.18
3	2001.05	72.41	.33	.33
4	3241.00	115.21	. 54	.54
5	4067.44	144.67	.67	. 68
6	5164.23	184.56	.85	.86
ancertain and the second secon	6134.42	219:39	1.01	1.02
В	7149.03	256.18	1.18	1.18
9	8001.31	287.60	1.32	1.33
10	9077.48	326.55	1.49	1.50
11	10022.40	361.17	1.65	1.66

Bridge 1	Force Cal	Strain Cal	Bridge 2	Force Cal S	train Cal
					=
Cal Factor Offset	-3.42	219.92 ME/V 52		6050.98 lbs/V -20.62	218.82 ME/V -1.14
Corr Coe	.999996	.999952		.999995	.999946
Force Stra	in Calibration		•	,	
EA Factor 2	7650.64 Kips				
Offset	11.37			•	;

Bridge Excitation: 6.4 Volts A 60.4K Ohm shunt resistor produces 5.0 Volts output.

Bridge 1 Bridge 2

Calibration Factor: 220.20 ME/V 219.66 ME/V
EA Factor: 27583.95 Kips

Calibrated by:

.999972

Pile Dynamics, Inc. Calibrated on: 02-Jul-08 Traceable to N.I.S.T. Calibration Data Sheet for SPT rod #:136NWJ Calibrated: 11-Jul-08

Page 1 of 2

Cycle No. 1 Sample No.	lbs	ME	Bridge 1 Volts	Bridge 2 Volts
1	-2.61	~.05	.00	.00
2	1099.42	23.77	.11	11
.3	2211.62	49.06	. 23	.23
4	3002.36	67.31	.31	.31
5	4109.92	92.36	.43	. 43
6	5162.01	116.76	. 54	.54
	6229.20-	141-21	65	
8	7020.80	159.40	. 73	.73
9	8132.13	184.76	. 85	. 85
10	9109.01	207.10	. 95	. 95
1.1 ,	10113.48	230.04	1.06	1.05

Bridge 1	Force Cal	Strain Cal	Bridge 2 Force	Cal Strain Cal	, *
	<u> </u>				
Cal Factor	9558.69 lbs/V	219.09 ME/V	9606.8	2 lbs/V 220.19 1	ME/V
Offset "	7.30	84	.3:	2 -1.00	
	1	.999983	.99999	8 .999990	
Force Strai	in Calibration				

EA Factor 43627.99 Kips Offset 43.93

Corr Coe .999986

Cycle No. 2	• .	i	Bridge 1	Bridge 2
Sample No.	lbs	ME	Volts	Volte
	- 			
1.	1.16	.12	.00	.00
2	1093.70	24.90	.12	.11
3	2049.79	47.22	.21	.22
. 4	3036.36	69.66	.31	.32
5	4011.31	92.10	42	42
6	5028.37	115.07	.52	.53
7 .	6036.71	138.43	.63	.63
8	7022.99	160.59	. 73	.74
9	8006.36	183.13	. 84	.84
10	9143.62	209.42	.96	.96
11 .	10081.41	230.86	1.05	1.06

Bridge 1	Force Cal	Strain Cal	Bridge 2	Force Cal	Strain Cal
					
Cal Factor	9566.27 lbs/V	219.59 ME/V		9526.04 lbs/V	218.66 ME/V
Offset	8.33	.29	4	-2.91	.03
Corr Coe	. 999990	.999987		.999998	.999999
Force Stra	in Calibration			•	•

EA Factor 43564.55 Kips

Offset -4.08 .999998 Corr Coe

Calibration Data Sheet for SPT rod #:136NWJ Calibrated: 11-Jul-08

Page 2 of 2

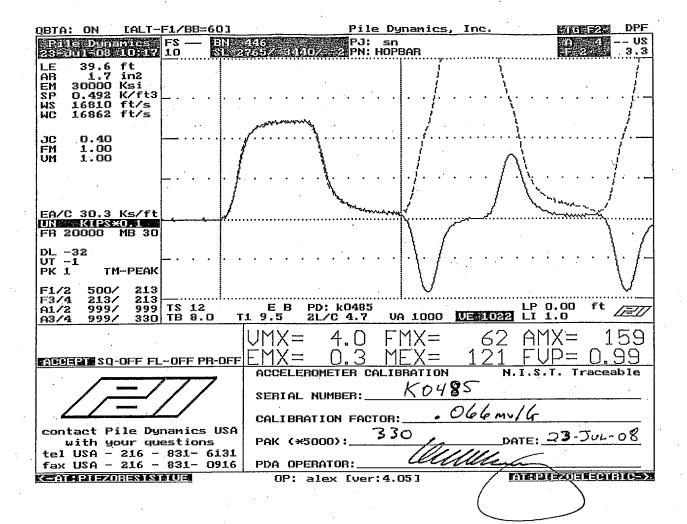
Cycle No. 3 Sample No.	lbs	`ME	Bridge 1 Volts	Bridge 2 Volts
1 1	2.32	.05	.00	.00
2	1072.88	24.43	.11	.11
. 3	2040.62	46.38	.22	.21
4	3031.01	68.89	.32	.32
5	4033.89	91.56	.43	.42
6	5251.99	119.50	.56	.55
7	6013.52	137.33	63	63
8	7055.61	160.96	74	.74
9	8022.47	182.83	- 85	.84
10	9077.05	206.83	.96	,95
11	10076.45	229.83	1.06	1.05

Bridge 1	Force Cal	Strain Cal	Bridge 2	Force Cal S	train Cal
•					
Offset Corr Coe		217.49 ME/V 33 .999990		9558.05 lbs/V 54 .999999	218.88 ME/V 16 .999997
	3667.55 Kips 6.54		•		

Bridge Excitation: 6.4 Volts

A 60.4K Ohm shunt resistor produces 5.0 Volts output.

Bridge 1 Bridge 2


Calibration Factor: 218.72 ME/V 219.25 ME/V
EA Factor: 43620.03 Kips

Calibrated by:

Pile Dynamics, Inc.

Calibrated on: 11-Jul-08

Traceable to N.I.S.T.

Paul Kicker Jim-POI 9/23/02