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EXECUTIVE SUMMARY 

The Vermont Agency of Transportation sponsored this research in an effort to evaluate if 
our current design practices for the backfill of cast-in-place concrete cantilevered retaining walls 
and bridge abutments are appropriate and cost effective.  The VTrans Geotechnical Section was 
principal liaison and expert support for this research.  Specifically, the research objectives were 
to: (1) verify that the backfill and drainage details currently used in cast-in-place concrete 
cantilevered retaining walls and bridge abutments on VTrans projects perform as expected, i.e. 
differential hydraulic pressures do not develop in the backfill; and (2) assess if the current 
backfill specifications are adequate and cost-effective. 

Backfill strength, hydraulic conductivity and compactability are critical parameters to the 
substructure design.  To assess if any differential hydraulic pressures develop in existing cast-in-
place reinforced concrete retaining walls installed by VTrans, a field-monitoring program was 
implemented at two sites in Vermont.  To evaluate the current backfill specification, a laboratory 
investigation was conducted that included flexible wall, hydraulic conductivity tests on a 
granular structural backfill.  The field investigation results were not sufficiently conclusive.  The 
laboratory assessment suggested that a fines content of up to 10% is potentially allowable as 
compared to the currently allowed fines content of 6% in VTrans specifications.  Earlier 
research, reported in “Evaluation of a Proposed Sand Borrow to Include the Percentage Passing 

the 0.02mm Size” (Report 1990-04, March 1990, Adams and A-Baki) conducted by VTrans 
established  that a reliable correlation between the fines that contribute to frost susceptibility and 
fines measured by sieve analysis is adequately protective.  If greater fines content is allowed, it 
may increase availability and decrease cost of suitable borrow materials.  The survey results of 
other state transportation agencies and experimental results led to a recommendation that the 
structural backfill specification should require 95% of maximum dry density as determined by 
AASHTO T99.  Based on these recommendations, the Agency will implement two changes. 

The specifications will be revised for compaction to 95% of maximum dry density as 
determined by AASHTO T99.  The revision will assure better compaction at lower costs and 
enhanced embankment to bridge transition performance.  As a follow up, an experimental 
installation on three new projects will deploy a granular structural backfill with up to 8% fines.  
In such cases, a field-monitoring program must be implemented to evaluate if the backfills 
function as largely free draining materials without development of differential hydraulic 
pressures. 

 

- Christopher Benda, P.E., Geotechnical Engineering Manager 
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ABSTRACT 

The American Association of State Highway and Transportation Officials (AASHTO), 
along with some other federal and state guidelines, suggest a maximum soil fines (particles finer 
than 0.075 mm) content in granular structural backfill be used behind bridge abutments and 
retaining walls.  This fines content limit is currently set at 6 percent (by weight) by the Vermont 
Agency of Transportation (VTrans) and is usually between 5 and 12 percent in most states, 
according to a canvassing of state Department of Transportation (DOT) practices.  The fines 
content limit is an attempt to assure a free-draining backfill condition so water is not retained 
behind the structure, thereby eliminating the need to design the abutments and retaining walls for 
hydrostatic pressures.  It appears that this maximum fines content is adopted largely as a rule-of-
thumb considering that hydraulic conductivity of a soil is expected to decrease with increasing 
fines content.  In Vermont and many other regions the availability of high-quality structural 
backfill with naturally low fines content is declining, which warrants an evaluation of whether 
granular backfill materials with greater than 5% fines content could be successfully used in 
practice. 

This research project was set up with two broad over-arching goals.  The first goal was to 
verify that the backfill and drainage details currently used in cast-in-place concrete cantilevered 
retaining walls and bridge abutments on VTrans projects perform as expected and that the 
backfill has the engineering properties assumed in the design.  The second goal was to find the 
most cost effective backfill details.  To evaluate the above two overarching goals, the specific 
objectives of this research were to:  

(1) Survey other state Departments of Transportation on their practices for abutment 
and retaining walls; 

(2) Study the effects of fines on a typical granular structural backfill by performing 
hydraulic conductivity and shear strength tests at varied non-plastic fines contents; 

(3) Monitor differential water levels between the stream and the backfill at two field 
sites; 

(4) Analyze the collected data and develop specific recommendations for VTrans; and 
(5) Prepare the final report 

To assess if any differential water pressures exist in existing cast-in-place reinforced 
concrete retaining walls installed by VTrans, a field-monitoring program was implemented at 
two sites in Vermont.  The laboratory investigation included flexible wall, hydraulic conductivity 
tests on a granular structural backfill with 0, 5, 10, 15, 20, and 25% non-plastic fines content at 
41, 83, and 124 kPa (6, 12, and 18 psi) confining pressures followed by consolidated drained 
triaxial compression tests for obtaining associated drained shear strength parameters of these 
gradations.  The 15.2 cm (6 in.) diameter specimens were prepared at optimum moisture content 
and 95% of maximum standard Proctor density.  Some tests were conducted at 90% of maximum 
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standard Proctor density.  To enable a comparison with respect to modified Proctor maximum 
densities, modified Proctor tests were also performed for all base soil-fines content mixtures.  
The experimental results were compared with relevant studies found in the literature.  

The results of the field-monitoring program were inconclusive.  The results of the 
laboratory investigation indicated that a non-plastic fines content up to 10% may be justified in 
structural backfill specifications for retaining walls and abutments. 
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1. INTRODUCTION 

 

1.1 MOTIVATION 

The analysis and design of retaining walls and bridge abutments have structural (e.g., 

selection of stem and foundation dimensions, reinforcement details) and geotechnical (e.g., 

backfill soil permeability and shear strength, the extent of structural backfill behind the structure, 

drainage provision, depth of foundation) engineering components among others. The choices 

made in the geotechnical aspects of analysis and design affect the design of structural 

components and costs.  This research evaluated two specific geotechnical engineering aspects of 

structural backfills – (1) their hydraulic conductivity and shear strength properties; and (2) field 

observations of differential water levels between the stream and the backfill.  

Typically, the design of retaining walls and bridge abutments relies on the assumption 

that the soil material used to backfill the structure is ‘free-draining’ and will not produce 

hydrostatic pressure. If the backfill is not expected to be drained, the abutment or retaining wall 

must be designed for earth pressure loads plus hydrostatic pressure due to the presence of water. 

However, there is insufficient readily accessible information regarding the limits of what 

constitutes free-draining backfill and which current design practices satisfactorily avoid the 

potential for unexpected hydrostatic pressure. Differential water pressures, as depicted in Figure 

1.1, could be of concern particularly for retaining structures near water bodies such as bridge 

abutments over rivers and streams. 
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Figure 1.1: Typical Lateral Pressures Acting on a Retaining Wall 

 

 

A survey conducted in 2011 by the Vermont Agency of Transportation (VTrans) to 

determine common abutment wall design practices at transportation agencies throughout the 

United States, received a total of 53 responses; representing 35 states (see Chapter 2 for details). 

Questions on the fines content allowed in structural backfills, hydrostatic pressure assumptions, 

typical details and specifications were asked in relation to abutment designs. The majority of 

responses indicated that drainage systems were used to allow designers to neglect hydrostatic 

pressure or else the thickness and size of the abutment wall were increased. Additionally, 70% of 

respondents indicated that backfill with greater than 5% fines content was currently utilized – 

most states were between 10 – 15% fines content.    
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The American Association of State Highway and Transportation Officials (AASHTO) 

recommends that hydrostatic water pressure should be avoided, if possible, in all abutment and 

retaining wall designs by means of an appropriate drainage system. AASHTO advises that the 

use of weep holes or drains at the wall face do not assure fully drained conditions. It 

recommends that an effective design will use pipe drains, gravel drains, perforated drains, 

geosynthetic drains, or backfilling with crushed rock. However, in a follow-up survey, many 

states indicated the use of weep-holes and wall face drains as their primary drainage provision. 

Typical details and specifications standards were then compiled and analyzed.  

It was apparent from the survey results that it has generally been recognized that the soil 

material used as backfill must be drained either through the use of permeable material or by use 

of an effective drainage system, or both. If not, the wall must be designed for earth pressure 

loads plus hydrostatic pressure. AASHTO, along with some other federal and state guidelines, 

recommend a maximum soil fines (particles finer than 0.075mm) content for granular structural 

backfill behind bridge abutments and retaining walls. The fines content limit is set at 6 percent 

by VTrans and is usually limited to between 5 and 12 percent in most states, according to the 

previously mentioned survey results.  The fines content limit is an attempt to assure a free-

draining backfill condition so water is not retained behind the structure, thereby eliminating the 

need to design the abutments and retaining walls for hydrostatic pressures. It appears this 

maximum fines content is adopted largely as a rule-of-thumb considering that hydraulic 

conductivity of a soil is expected to decrease with increasing fines content. In Vermont and many 

other regions the availability of high-quality structural backfill with naturally low fines content is 

declining, which warrants an evaluation of whether granular backfill materials with greater than 

5% fines contents could be successfully used in practice.  Limited resources and a continually 
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aging transportation system require verification of these design assumptions made in current 

practice. In some cases, it is possible design assumptions are too conservative; and as a result, 

construction costs are unnecessarily increased.  

 

1.2 RESEARCH OBJECTIVES 

This research project was set up with the following two broad over-arching goals: 

(1) The first goal of this research was to verify that the backfill and drainage details currently 

used on cast-in-place concrete cantilevered retaining walls and bridge abutments on 

VTrans projects perform as expected and that the backfill has the engineering properties 

assumed in the design. 

(2) The second goal was to find the most cost effective backfill details. 

 

To evaluate the above two overarching goals, the specific objectives of this research were to:  

(1) Survey other state Departments of Transportation on their practices for abutment and 

retaining walls; 

(2) Study the effects of fines on a typical granular structural backfill by performing hydraulic 

conductivity and shear strength tests at varied non-plastic fines contents;  

(3) Monitor differential water levels between the stream and the backfill at two field sites; 

(4) Analyze the collected data and develop specific recommendations for VTrans; and 

(5) Prepare this final report.  
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1.3 ORGANIZATION OF THIS REPORT 

Chapter 2 presents the results of the survey conducted of state DOTs. Chapter 0 presents 

the literature review of previous relevant studies. Chapter 0 presents the laboratory methods used 

to investigate the hydraulic conductivity and shear strength of a representative granular backfill 

with varying non-plastic fines content, test results, and their analysis.  Chapter 5 presents the 

results of the field monitoring. A summary of the overall conclusions and recommendations for 

future work is presented in Chapter 6. 
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2. STATE SURVEY OF DESIGN PRACTICES 

The Vermont Agency of Transportation (VTrans) created a survey (Appendix A) 

regarding backfill practices of state transportation agencies, and an invitation to take this survey 

was emailed by VTrans to state geotechnical and structural experts in July 2011. The survey had 

a good response rate with 53 complete responses.  Four of these did not give contact information, 

so it could not be determined which states these responses represent.  The 49 remaining 

responses represented 35 states.  The survey results were aggregated by state to determine 

general trends.  In some cases, respondents for the same state gave contradictory answers, and 

the responses were analyzed considering both answers.  For example, if the answers to a survey 

question were as follows: 

State Response 

State 1 Yes 
State 2 Yes 
State 2 No 
State 3 Yes 
State 3 Yes 

 

The five responses would be aggregated by state into three responses.  Since State 2 

answered both “Yes” and “No,” “Yes” responses would have a range between 2 out of 3 states 

and 3 out of 3 states. The survey results would be displayed in this way: 

Yes 67-100% 
No 0-33% 
 

Overall, these contradictions had little effect on the trends of the data. 
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2.1 SURVEY RESULTS 

Each survey question is followed by the results and then any relevant commentary.   

1. How do you account for hydrostatic pressure in your design assumptions? 

Ignore it.       9% 
Design for it.       23% 
Install a drainage system in order to not design for it.              89% 
None of the above.      0% 

 

The trend among the states is clearly to install a drainage system.  Note that the 

percentages above total to greater than 100%.  Some respondents chose more than one answer.     

2. Do you utilize backfill material with greater than 5% fines?  

Yes 63-77% 
No 23-37% 
 

A majority of states allow greater than 5% fines in their backfill, but this finding does not 

take into account states that allow a little more than 5%.  Respondents were asked about their 

allowable percent fines in follow-up interviews, and answers ranged from 8% (a New England 

state) to clay (a Midwestern state) with most states falling in between 10% and 15%.  On the 

other hand, some states only allow gravel or use low-strength concrete, so there is no clear trend 

across states. 

3. Has your organization done formal studies to investigate if greater fines contents could be used 
or if alternative materials could be used/added? 
 

Yes 6-14% 
No 86-94% 
 

The analysis of this question was a bit complicated because it asked about two items. Six 

respondents answered “Yes,” but one of them did not give contact information.  UVM followed 
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up on each “Yes” respondent by examining that state’s backfill guidelines and relevant reports 

that could be found online.  Several reports on alternative backfill materials were found but no 

reports on allowing greater fines content.  Next, each respondent was contacted requesting 

information about their studies and, in some cases, asking for clarification on their backfill 

guidelines.  None of the five respondents could remember his/her state studying additional fines 

content in backfill for cantilevered cast-in-place (CIP) abutments. 

4. Please check all applicable backfill materials your DOT uses or would consider using in the future:  
 

Shredded tires  29-31% 
Geofoam Blocks 57-71% 
Recycled concrete 17-31% 
Recycled pavement 20-26% 
Granular backfill 91-97% 
In-situ soils  37-49% 
Other   23-26% 
 

Granular backfill is the most commonly accepted material.  Geofoam blocks are also 

popular, and many states use or would consider using in-situ soils.  Given that 80% of the states 

have standard specifications for backfill material (see Question 6 below), it seems likely that in 

situ soils would still need to meet a state’s specifications to be allowed.  The other materials 

listed are allowed or would be considered by about 25% of the states.  If a respondent selected 

one of these alternative materials, more often than not s/he selected all of them.  These results 

suggest that such states are open to many different types of alternative backfill. 

5. Do you have standard details for abutment and wingwall backfill?  

Yes 69-74% 
No 26-31% 

 

Most states have standard details for abutment and wingwall backfill.   
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6. Do you have standard specifications for abutment and wingwall backfill methods and materials?  
 

Yes 77-80% 
No 20-23% 

Most states have standard specifications for abutment and wingwall backfill methods and 

materials, and standard specifications were slightly more common than standard details.  Most 

states that have one, have the other; although 7 out of the 35 states have only one or the other. 

7. Have you changed your details in the past to provide a more cost-effective backfill detail, or do you 
currently vary your details on a project by project basis based on cost?  

 
Yes 23-31% 
No 69-77% 
 

About a quarter to a third of states have factored cost into their details.  

8. Do you vary your design and details for backfill based on other non-geotechnical parameters, such as 
the average daily traffic (ADT)?  

 
Yes 6-9% 
No 91-94% 

Most states do not use non-geotechnical parameters when considering backfill details. 

 

2.2 RESPONDENTS’ COMMENTS 

In corresponding with some respondents, some relevant information not associated with a 

specific question came to light.  These findings are detailed below.  

In 2005, Virginia Tech conducted a study on using less-than-ideal soils in non-critical 

mechanically stabilized earth (MSE) walls, but the report focused on MSE walls and did not 

characterize hydraulic conductivity of the soils.  Some states participated in the National 

Cooperative Highway Research Program (NCHRP) study 24-22 “Selecting Backfill Material for 
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MSE Walls.”  The report from this project is not yet available, but a representative of NCHRP 

said that their study would be of marginal relevance to the study presented here. 

A number of respondents volunteered that they rarely use CIP walls due to their cost and 

use MSE walls instead.  An engineer from a Miswestern state explained that CIP walls usually 

cost $110-150/sf while MSE walls cost $35-45/sf.   He also explained that these numbers are 

based on final costs of their previous DOT projects and may differ due to costs associated with 

individual projects (piles, ground improvement, etc.).  His state requires that CIP walls be 

designed assuming full hydrostatic pressure in the backfill, so they would require more concrete 

than Vermont.  However, their backfill specifications are broader than Vermont’s (clay is 

allowed), so their backfill may be cheaper as well.  This engineer believed that forming is 

responsible for the extra costs of CIP walls, and MSE walls avoid the additional labor and time 

to cure.  He also commented that MSE walls are not part of the structural integrity of the bridge.  

Rather, the abutment is founded on piles and the MSE is simply to fill in space.  The bridge will 

stand even if the MSE is washed away.  Slopes may be armored to resist scour, but it is not 

crucial to the structure.  However, scour has not been a particular problem for MSE walls in wet 

environments in his opinion.  This engineer also provided a report on a project that used an MSE 

wall to stabilize an eroding bank in a river near a highway, so migration of soil behind an MSE 

wall is not a large concern of them.  The engineer could not recall if this project has faced any 

difficulties with soil migration. 

An engineer from a Southern state stated that his department tries to avoid abutments 

near water.  He has found that it is often cheaper to build longer bridges that avoid scour issues 

as well as channel constriction and FEMA water surfaces.  When it cannot be avoided, they 
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choose cantilevered walls about as often as they choose MSE walls.  He could not pin down why 

one would be chosen over the other because every project was site specific, noting that MSE 

walls are more flexible while cantilevered walls are more resistant to flow.  In his experience, 

MSE walls have performed fine.  To protect against scour, they may use sheet piling, tangent 

drilled shafts, embed the wall, or other methods.  Typically, 10 feet of scour is accounted for in 

their designs. 

Similarly, an engineer from another Southern state explained that they also try to avoid 

abutments in stream crossings.  Instead, they use slopes plated with riprap.  If an abutment near a 

stream is unavoidable, they use MSE walls and bury the bottom of panels 2 feet below scour 

depth.  They also found MSE walls consistently less expensive than CIP walls so they rarely use 

the latter.  Both of the above-mentioned engineers said they only use CIP walls when horizontal 

space is at a premium, such as in mountainous terrain.   

The respondents from the Northeast states were also contacted about their experience 

with MSE walls in stream crossings.  Not all states responded to the survey, but two other 

Northeast states DOTs appear to avoid MSE walls in stream crossings due to a strong possibility 

of washout.  An engineer from another Northeast state said that MSE walls are significantly 

cheaper than CIP walls, but, similar to the two Southern states above, they prefer not to make the 

reinforced soil a structural component of the bridge in case the soil washes out. 

None of the states contacted have standard details for MSE walls in wet crossings.  It 

appears that one Northeastern state uses the FHWA manual (FHWA-NHI-10-024/025) for 

design of MSE walls. 
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In summary, state DOTs follow a wide variety of abutment wall practices.  A variety of 

backfill types and qualities are used including gravel, low-fines granular material, and materials 

with high fines content.  Other materials include low-strength concrete and geofoam blocks. 

While some states appear to be moving away from cantilevered cast-in-place walls, other states 

still find them useful, and some states, appear to be reluctant to use MSE walls in wet 

environments.  There appears to be a common thought that MSE walls should not be part of the 

structural integrity of a bridge, but some states have found it more cost effective to use piles and 

MSE walls rather than CIP walls.  Many states are moving abutments and approaches away from 

wet environments both for the benefits of not infringing on the channel and avoiding scour 

concerns. 

2.3 STANDARD DETAILS AND SPECIFICATIONS 

A follow-up survey was conducted because several respondents to the original survey 

indicated that standard details and specifications are currently in use within their DOTs.    

Construction drawings of typical details of cast-in-place cantilever bridge abutments were 

obtained when possible. 

Table 2.1 summarizes the follow-up survey responses from the states, as well as 

information obtained independently. The information obtained independently was typically 

based on some project information found online, and has not been verified to be a standard 

practice. The data summarized in Table 2.1 indicate that the range of allowable percent fines 

varies between 0 and 15% among the states that responded, but the survey respondents did not 

know the basis that led to the specific fines content specification.  Also, the specified minimum 

relative compaction varies between 90 and 100% based on standard Proctor maximum dry 
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density or between 95 and 97% based on modified Proctor maximum dry density. A related 

question is how far the structural backfill should extend behind an abutment or a retaining wall. 

State DOTs have differing specifications ranging from a vertical limit to a 1.5H:1V slope from 

the heel of the wall footing as summarized in Table 2.1. 

Table 2.1: Summary of State Survey Responses 

State % 
Fines 

Backfill 
Slope  
(H:V) 

Backfill 
Offset 
from 

Footing 
Heel (in.) 

In-Place 
Relative 

Compaction 
Required 

(%) 

In-Place 
Moisture 
Content 

Required (%) 

Proctor 
Type* 

1 (Vermont) 0 – 6 Vertical 24" 90, 95, 100 Optimum ± 2 
% 

Standard 
2+ 0 – 5 1.5 : 1 0" 95 Optimum Modified 
3 0 – 

10 
Vertical 12" 95 Optimum Standard 

4 0 – 
12 

Vertical 12" 95, 98 Optimum ± 2 
% 

Standard 
5 0 – 

15 
1.5 : 1 0 - 39" 95 Optimum Standard 

6 0 1: 2 0" 92, 97 Optimum ± 2 
% 

Modified 
7 0 – 2 Vertical 0" 90, 93, 95 Optimum Standard 
8 0 – 7 1 : 1 18" 95 Optimum ± 3 

% 
Standard 

9 0 Vertical 24" 98 Optimum 
 

Standard 
10 0 1.5 : 1 12" 90, 95 unavailable Modified 
11 5 – 

20 
1.5 : 1 48” 95 Optimum ± 2 

% 
Modified 

 

 

 

Table 2.2 summarzies the drainage provisions specified by various states. Table 2.2 

indicates that the majority of the states utilize multiple drainage provisions in an effort to 

minimize hydrostatic pressure behind the abutment wall. 

 

Note:       
*Modified refers to ASTM D1557 and AASHTO T180 Proctor test or equivalent. 

    Standard refers to ASTM D698 and AASHTO T99 Proctor test or equivalent. 
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Table 2.2: Drainage provisions for bridge abutments used in various states 

State Weep holes Underdrain1 Composite2 

1 (Vermont) X -- -- 
23 X X X 
3 X X -- 
4 X X X 
5 X X -- 
6 X X -- 
7 -- -- -- 
8 X -- -- 
9 X X X 

10 --  X -- 
11 --  X -- 

 
Note: 
1. Underdrain refers to a pipe placed behind abutment wall, daylighting at 

weepholes or sides of abutment. 

2. Composite drainage consists of geotextile /geocomposite materials placed 

against the face of the backfilled wall - to direct water to weepholes or 

underdrain locations. 

3. This state specifies a 3 foot minimum differential hydrostatic pressure to 

be  considered for design of structures along rivers.  

 

 

Figure 2.1 and Figure 2.2 compare gradation limits for backfill material prescribed by 

VTrans and some other states. Specifically, Figure 2.1 shows the gradation specifications for 

VTrans compared to two other New England DOTs. The three sets of gradation requirements are 

fairly comparable. Figure 2.2 shows the gradation specifications of VTrans compared to a 

Northeastern DOT and Midwestern DOT – illustrating the wide acceptance range of the 

Northeastern state and the lower restrictive acceptance range of the Midwestern state. 
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2.4 ANALYSIS OF DATA FROM PAST VTRANS BRIDGE ABUTMENT PROJECTS 

VTrans provided grain size analysis and field compaction test data from a number of their 

bridge abutment projects.  These data are analyzed in the following. 

Soil gradation data from a total of 12 past VTrans bridge abutment projects were made 

available. The data contained the results of sieve analyses performed on backfill soil samples of 

in-place material, located at either abutments or stockpiled material on-site. In Figure 2.3, all of 

the project data have been plotted with the specification requirements. The soil gradation from 

the Bridgewater project has been indentified since, because this borrow material was used as the 

base soil in the experimental investigation presented later in this report. Data on gradations from 

55 granular backfill sources available for abutment projects in Vermont have been plotted in 

Figure 2.4. This plot also includes the VTrans gradation specification for comparison.     
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Figure 2.1: Backfill gradation specification of VTrans compared to that of two other New 
England states 

 

0

10

20

30

40

50

60

70

80

90

100

0.010.1110100

Pe
rc

en
t P

as
si

ng
 b

y 
M

as
s 

Grain Size (mm) 

another New 
England state 2 

Vermont 

another New 
England state 1 

Approximate Limit 



 - 18 - 

 

Figure 2.2: Backfill gradation specification of VTrans compared to a Northeast state and a 
Midwest state 
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Figure 2.3: Gradations of backfills of past abutment projects of VTrans  
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Figure 2.4: Gradations of some source soils available in Vermont 
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Moisture-density reports were also analyzed to investigate the compaction of granular 

backfill material used in past VTrans projects. Data were available from a total of 52 projects. 

For each site, relative compaction and moisture content measurements were available for 

between 1 and as many as 18 locations. A total of 211 data points were available from the 52 

projects. The data contained field density and mositure content measurements made using 

nuclear gauges within abutment backfills during construction. The data sheets often included the 

minimum compaction required by VTrans at the measurement locations. These were specifically 

reported for 165 measurements. Figure 2.5 presents results of the relative compaction tests 

achieved in a histogram format. Figure 2.6 summarizes the minimum relative compaction 

required by VTrans at the measurement location again in a histogram format. 

The results of Figure 2.5 indicate that a range of minimum relative compaction values 

(based on standard Proctor test) were obtained on past VTrans bridge abutment projects. 

Approximately 75% of the measurements recorded relative compaction between 95 and 100%. 

The mean for the relative compaction test data is approximately 97.25%. Figure 2.6 shows that 

the majority of tests have a specified minimum relative compaction of 95%. Approximately 40 

tests were excluded because they did not report minimum required relative compaction. As seen 

in Figure 2.7, about 70% of the data points recorded a moisture content more than 2% below the 

optimum. 
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Figure 2.5: Histogram of relative compaction achieved in the field for VTrans abutment 
projects 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.6: Histogram of the specified minimum relative compaction (based on standard 

Proctor test) for dry density measurements made in VTrans abutment projects 
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Figure 2.7: In-place optimum moisture (based on standard Proctor test) difference for past 
VTrans abutment projects 
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3. LITERATURE REVIEW 

 

3.1 BACKGROUND  

The Vermont Agency of Transportation (VTrans) currently limits the maximum 

allowable fines content, within granular structural backfill for cantilever retaining walls, to 6%. 

The American Association of State Highway and Transportation Officials (AASHTO) and other 

federal guidelines generally recommend a limit of 5%. The assumption appears to be that 

reduced fines content within the structural backfill will promote a free-draining condition, 

thereby eliminating the need to design an abutment or retaining wall to withstand additional 

hydrostatic pressure. There appears to be limited information or data to justify this maximum 

fines content recommendation made by various agencies, as well as the current maximum 

specified by VTrans. Therefore, this research included:  

(1) An experimental study on a natural granular backfill material currently used by 

VTrans. The effects of increased fines content and confining pressure on hydraulic 

conductivity and shear strength parameters of the backfill material were determined 

using a flexible wall triaxial apparatus fitted with flow pumps; and  

(2) Field observations of differential water levels between the stream and the backfill at 

two sites. 

In this chapter, a summary of relevant literature on various aspects of the effects of non-

plastic fines content on saturated hydraulic conductivity and shear strength of granular soils and 

associated experimental techniques is presented. 
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3.2 MAXIMUM ALLOWABLE FINES CONTENT 

 The maximum allowable fines content refers to the percentage of soil mass particles 

passing a No. 200 sieve (<0.075mm) compared to the total mass of the soil. Maximum allowable 

fines content is specified to limit the uncertainty introduced by certain fines types. The 

evaluation of the stress induced by cohesive soils is highly uncertain due to their sensitivity to 

shrinkage and swelling as well as a varied degree of saturation (AASHTO 2010). Furthermore, 

higher fines content can reduce the ability of the backfill to drain properly. The term ‘free-

draining’ is commonly used in test method standards and design specifications to describe the 

ability of water to drain from soil.   

Various Federal guidelines from the literature were reviewed for their recommendations 

regarding backfill materials.  Most of these sources mentioned free-draining but no specific 

hydraulic conductivity was found to be associated with this term.  Table 3.1 summarizes backfill 

recommendations from five different sources: 

Table 3.1: Summary of fines limitations from various publications 

Source Maximum 
Fines Content 

Notes 
(regarding fines) 

AASHTO (2010) 5% Free-draining defined as < 5% 

FHWA (2006) 5% 15% if rapid drainage is not required 

NAVFAC  (1986) 15% Ensure proper drainage 

UFC (2005) 5% Free-draining defined by soil type 

USACE (1989) Not Prescribed Clean Sands and Gravels 
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The U.S. Army Corps of Engineers (USACE) and Naval Facilities Engineering 

Command (NAVFAC), along with the Air Force Civil Engineer Support Agency (AFCESA), are 

responsible for administration of the Unified Facilities Criteria (UFC) documents, which is 

primarily responsible for providing technical criteria for military construction. Although USACE 

(1989) did not prescribe a maximum fines limit of 5% fines, clean sands and gravels are limited 

to 5% fines by definition, as per the Unified Soils Classification System (USCS). NAVFAC DM 

7.02 suggests up to 15% fines; however, clays and other fine-grained soils, as well as granular 

soils with considerable amount of clay and silt (greater than or equal to 15%) are not commonly 

used as backfill material for retaining walls or abutments. Where they must be used, it is 

typically recommended that the earth pressure should be calculated using at-rest conditions or 

higher pressure – to account for the potentially poor drainage conditions, swelling, and frost 

action that may occur (NAVFAC 7.02, 1986). 

AASHTO (2010) advises caution in the determination of lateral earth pressures when 

using cohesive soils and recommends that if possible, cohesive or other fine-grained soils should 

be avoided as backfills. AASHTO defines a free-draining backfill as a material containing less 

than 5% passing a No. 200 sieve. If the material is free-draining (a fines content limited to 5%), 

the need to design the structure to withstand hydrostatic pressure is eliminated (AASTO 2010). 

To account for hydrostatic pressure, the majority of respondents from the previously 

mentioned state survey indicated that drainage was incorporated in the design rather than 

assuming the presence of water pressures. The California Department of Transportation 

(Caltrans) Bridge Design Specification (2004) requires drainage provision and restrictions to 

high plasticity materials as backfill in locations where retaining walls and abutments are used so 
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that hydrostatic pressure does not need to be considered. However, the design specifications also 

state that structures along rivers and canals shall require a minimum differential hydrostatic 

pressure equal to 3 ft of water be considered for design. It also states that in situations of rapid 

drawdown or significant river fluctuations, a greater differential may be required or a more 

rapidly free-draining backfill material may be used, such as open graded coarse gravel or shot 

rock (rip-rap). 

Merriman (1955) showed that soil types can be grouped by effectiveness of vibratory 

compaction ( 

Table 3.2). The compaction of a soil relies on the ability of water to move through soil 

pores as the void space decreases. Hydraulic conductivity tests performed by Merriman (1955) 

on these soil types revealed that due to the strong variation in hydraulic conductivity with little 

variation in gradation, it cannot be used as a measure for how well a soil may compact. In  

Table 3.2, the soil types GW-GM, GW-GC, GP-GM, GP-GC are considered generally 

suitable with less than 8% fines; and soils SM and SC can contain up to 16% fines, requiring 

special consideration. The two primary factors that affected the compaction of these materials 

were the gradation and the plasticity of the fines present.  The larger the particle size and the 

more uniform the gradation, greater is the allowable fines content to obtain satisfactory densities. 

Also, with less plasticity of the fines, a greater fines content was allowed (Merriman, 1955).  

The soil types presented in Table 3.2 are also discussed in UFC (2005). Soil types GW, 

GP, SW and SP are defined as free-draining, pervious soil types with a maximum of 5% fines. 

This maximum fines content is defined by the Unified Soil Classification System (USCS), and 

therefore, contains less than 5% fines by definition. 



 - 29 - 

The current ASTM test method (D4254 and D4253) for determining the minimum and 

maximum dry densities, respectively, defines free-draining as a cohesionless material with less 

than 15% fines content. The ability of the soil to drain without developing pore pressure allows 

the soil to be effectively compacted.  

Table 3.2: Suitability of soils for compacted backfill (Merriman 1955) 

 

 

3.3 TESTING METHODS 

Testing of granular, cohesionless material can produce high variation and difficulty in 

reproducibility. A cooperative study was performed under the sponsorship of the American 

Society for Testing and Materials (ASTM), where 41 soil laboratories carried out typical soil 

mechanics tests to determine the variation associated with gradation, minimum and maximum 

density, and Proctor compaction tests on identical specimens of fine sand and gravelly sand 

(Tavenas, 1973). All tests indicated a large variability and low reproducibility within the 

different types of tests performed. Also, variation among different laboratories was as high as 
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two to three times greater than variation between duplicate tests. Some of the factors that have 

the largest effect on the variation and reproducibility on identical tests include the size of the 

sample and the method of physically sampling or handling the soil material (Tavenas, 1973).  

Current ASTM standard D6913 addresses the sample size to account for the maximum 

particle within the soil.  The ASTM standard D6913 addresses the issue related to sampling by 

suggesting that the splitting or partitioning of samples for various tests be excluded or limited to 

no more than a few times, otherwise the sample will no longer be representative. This will limit 

the segregation of particles where samples would have decreased fines and increased larger 

particle sizes. The standard suggests using moist sampling to provide temporary cohesion and is 

especially recommended if the maximum particle size is less than 19 mm (¾” sieve). 

 

3.4 EFFECT OF FINES ON SOIL PROPERTIES 

3.4.1 COMPACTION  

Table 3.3 presents recommendations for compaction of various USCS soil types made by 

UFC (2005) along with a comparison of compaction test types described in Table 3.4. As seen in 

Table 3.4, the CE 55 test is comparable to the AASHTO T-180 (ASTM D1557).  For the GW, 

GP, SW and SP soil types, the in-place water content for compaction is 100% saturation. The 

NAVFAC 7.02 (1986) manual describes soils that are sensitive and not sensitive to compaction 

moisture. Silts and silty-sands typically have steep moisture-density curves and can be more 

difficult to compact to the specified relative compaction in the field due to their sensitivity to 

moisture. Soils that are coarse-grained and well-graded with less than 4% fines (or less than 8% 

fines for soil of uniform gradation) are typically not sensitive to compaction moisture. These 
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materials are capable of being compacted at near fully saturated moisture contents in the field. If 

a soil has a hydraulic conductivity greater than 1 x 10-3 cm/sec, it is considered to be insensitive 

to compaction moisture (NAVFAC 7.02 1986).  

Table 3.3: Summary of compaction criteria (UFC, 2005) 
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Table 3.4: Compaction test comparison (UFC, 2005) 

 

The ASTM test methods for standard and modified Proctor densities (ASTM D698 and 

D1557) state that the test methods will generally produce a well-defined maximum dry density 

compaction curve for non-free draining soils (fines content greater than 15%). However, if either 

method is used for free-draining soils, the maximum dry density may not be well defined and 

may be more easily obtained using ASTM D4253 Standard Test Methods for Maximum Index 

Density and Unit Weight of Soils Using a Vibratory Table (ASTM D698 and D1557). The 

D4253 test method is suggested for use on free-draining materials, which is defined as having a 

maximum fines content of 15%.  

In the study performed by Tavenas (1973), the results of their standard and modified 

Proctor compaction tests showed better reproducibility than maximum densities obtained using a 

vibratory table. The use of the vibratory table method can reduce crushing of particles and was 

expected to show higher reproducibility. Due to the magnification of error in the maximum and 
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minimum densities, Tavenas (1973) recommends using relative compaction based on the 

modified Proctor density as a good evaluator for compactness in cohesionless soils.  

For many types of free-draining, cohesionless soils, the Proctor test methods can cause a 

moderate amount of degradation due to the amount of compaction energy. When degradation 

occurs, typically there is an increase in the maximum dry density that is recorded in the 

laboratory. Therefore, the laboratory dry density obtained will not be representative of field 

conditions and in some cases may not be achievable in the field due to the misleading maximum 

dry density measurement (ASTM D1557). 

In previous studies, the increase in fines content has produced higher maximum dry 

densities for natural granular soils. Merriman (1955) tested sands and granular soils with fines 

ranging from 0-18% and showed that maximum dry density increased with an increase in fines 

content for relative density measurements. For the 95% standard Proctor density tests, the 

density of the sand-gravel mixture reached a maximum at 13% fines content and remained 

unaffected by an increase in fines between 13 – 18%.  For relative density tests, compacted with 

a vibratory table, the densities began decreasing at 9% fines content. 

Siswosoebrotho et al. (2005) showed that a critical fines content existed for a sand with 

added non-plastic fines ranging from 0 – 16%. The maximum dry density increased with 

additional fines and began to decrease at a fines content of 9%. 
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3.4.2  HYDRAULIC CONDUCTIVITY 

 Published data in the open literature on the effects of fines on the hydraulic conductivity 

and shear strength of compacted granular backfill soils by systematically varying the fines 

content appears to be sparse. Relevant laboratory data found in the literature on hydraulic 

conductivity measurements of granular soils with varying fines content (non-plastic or nearly 

non-plastic) are summarized in Table 3.5. For brevity the ranges of hydraulic conductivity are 

provided in the last column of Table 3.5. The smaller hydraulic conductivity is typically 

associated with higher end of fines content. 

Table 3.5: Comparison of hydraulic conductivity testing with other investigations 

Investigation 

Base Soil 
Type 

AASHTO (8)    
(USCS) (9) 

Fines 
Content      

(%) 

Moisture 
Content Density 

Permeameter 
Type and 
Sample 

Diameter 

Confining 
Pressure     
kPa (psi) 

Hydraulic 
Conductivity 

(cm/s) 

Merriman 
(1955) 

Fine sand and 
coarse sand 
A-3 (SP); 

sand-gravel 
mixture A-1-b 

(SP*) 

0-18 Optimum 

95% of 
std. 

Proctor 
or 70% 

RD 

Consolidometer, 
falling head    

10.8 cm (4.23 in.) 

138 (20) 
Normal 
Stress 

Fine sand: 
1 x 10-3 to 4 x 10-4 

Coarse sand: 
2 x 10-3 to 8 x 10-4 

Sand-gravel 
mixture: 

9 x 10-3 to 2 x 10-5 

 

Siswosoebrotho 
et al. (2005) 

A-1-a 
(SP*) 0-16 Optimum 

95% of 
mod. 

Proctor 

Rigid 
compaction, 
falling head    

15.2 cm (6.0 in.) 

NA 9.6 x 10-3 to 1.3 x 
10-3 

Bandini and 
Sathiskumar 

(2009) 

50-50 sand A-
1-b (SP); 

ASTM  sand 
A-3 (SP) 

0-25 NA NA 

Flexible wall, 
constant and 
falling head 

7.0 cm (2.75 in.) 

50 (7), 
100 (15), 
200 (29), 
300 (44) 

2 x 10-3 to 2.2 x 10-5 

* Although the authors do not specifically report, particles greater than 19 mm (3/4 in.) were probably removed 
from the base soil prior to testing. 
NA: not applicable 

 

Merriman (1955) conducted falling head permeability tests in a rigid permeameter on 

three types of compacted natural soils (a fine sand, a coarse sand, and a sand-gravel mixture). 

Figure 3.1 shows the gradations of soils tested by Merriman (1955). The soils were first washed 

to remove the natural fines and then incremented with natural non-plastic 0 – 18% silt. Results 
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showed that the addition of non-plastic fines between 0 - 18% reduced the hydraulic conductivity 

significantly as summarized in Table 3.5.  Merriman (1955) concluded hydraulic conductivity to 

be an unreliable indicator of how well a soil could be compacted. Additionally, the higher 

plasticity fines tended to reduce the hydraulic conductivity more than non-plastic fines. 

 

Figure 3.1: Soil types tested by Merriman (1955) with VTrans gradation specification limits 
shown 

 

Tests performed by Siswosoebrotho et al. (2005) on granular aggregate with fines 

contents of 0 – 16% showed hydraulic conductivity decreases with the addition of fines. Values 

of hydraulic conductivity varied within one order of magnitude for the non-plastic fines between 

9.6 x 10-3 to 1.3 x 10-3 cm/s for 0 – 16% fines. Mixtures of plastic fines, with a plasticity index 

range of 5 to 13, had a range of hydraulic conductivity between 1.2 x 10-3 to 2.6 x 10-5 cm/s. 
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Tests were performed in a 150 mm compaction permeameter using constant head and falling 

head tests with samples prepared with the modified Proctor method. 

Laboratory hydraulic conductivity tests performed by Bandini and Sathiskumar (2009) on 

fine sand with fines contents of 0-25% showed that hydraulic conductivity decreased with an 

increase in fines content and confining pressure (Figure 3.2 and Figure 3.3, respectively). 

Comparisons were made between two types of fine sand, an Ottawa sand and ASTM 20-30. Both 

materials are poorly graded. The silt used was a ground silica Sil-Co-Sil manufactured material. 

Their tests were performed using a flexible wall permeameter on specimens prepared at 160 mm 

(6.3 in.) height by 70 mm (2.8 in.) diameter. Tests were performed using a pressure control panel 

with burettes. As seen in Figure 3.2 and Figure 3.3 hydraulic conductivity decreased with 

increasing fines content and confining stress, respectively. It appears that at fines contents 

greater than about 15%, the decrease in hydraulic conductivity was more pronounced. However, 

comparison of the effects of fines on hydraulic conductivity at specified relative compaction 

(which could be related to field compaction) was not done in this study.  
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Figure 3.2: Hydraulic conductivity versus silt content (Bandini and Sathiskumar, 2009) 

 

Figure 3.3: Hydraulic conductivity versus confinement (Bandini and Sathiskumar, 2009) 
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NAVFAC DM 7-1 (1986) has guidelines for coarse grained materials mixed with 

different types of fines, shown in Figure 3.4. For silt contents between 0 – 15% the hydraulic 

expected conductivity ranges from 5 x 10-3 cm/s to 5 x 10-8 cm/s, respectively. This guideline 

does not mention how the hydraulic conductivities were measured; using a flexible wall 

permeameter or a rigid wall compaction permeameter.  As mentioned in the previous section, 

NAVFAC 7.02 (1986) defines soils that are not affected by compaction moisture as having 

hydraulic conductivities greater than approximately 1 x 10-3 cm/sec. 
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Figure 3.4: Grain size distribution and hydraulic conductivity (NAVFAC DM7-1, 1986) 

 

NAVFAC DM 7-2 (1986) has typical values of compacted soils based on soil type 

classification in  
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Table 3.6.  The values shown for hydraulic conductivity were tested at maximum dry 

density using the modified Proctor method. The soil types described as free-draining previously 

in UFC (2005) are shown. The hydraulic conductivities for GW and GP are 2.5 x 10-2 and 5 x 10-

2 cm/sec, respectively. Soils SW and SP are both characterized by hydraulic conductivities 

greater than 5 x 10-4 cm/sec. The hydraulic conductivity decreases with increasing fines based on 

soil types. Within the group of free-draining soils, the fines content does not change. However, 

with decreased gravel content (SW and SP types) the hydraulic conductivity increases. The 

hydraulic conductivity appears to be affected by the overall soil gradation as opposed to solely 

the fines content. For silty gravel (GM, containing greater than 12% fines), the hydraulic 

conductivity is greater than 5 x 10-7 cm/sec. Figure 3.5 shows the hydraulic conductivity could 

range from slightly less than 10-2 cm/s to almost about 10-8 cm/sec. Well graded gravel, (GW) 

containing less than 5% fines, is expected to have a hydraulic conductivity greater than 2.5 x 10-2 

cm/sec.  

Terzaghi and Peck (1967) discussed drainage properties of different soil types as seen in 

Figure 3.6. For soil types with a hydraulic conductivity range between 102 to 10-4 cm/s, the 

drainage performance was considered good. Soils with hydraulic conductivities as low as 10-3 

cm/s include clean gravel, clean sands and gravel mixtures. Hydraulic conductivity in a range of 

10-3 to 10-4 cm/s would indicate good drainage in soils including very fine sands, organic and 

inorganic silts, mixtures of sand silt and clay, etc. Terzaghi and Peck (1967) recommend that a 

constant head permeameter be used for testing hydraulic conductivity greater than 10-3 cm/s. A 

falling head permeameter is recommended for soils with hydraulic conductivities between 10-3 to 

10-6 cm/s, but Terzaghi and Peck (1967) caution that rigid wall permeameter tests are unreliable 

and user experience is needed for testing. They also recommend that for hydraulic conductivity 
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values less than 10-6 cm/s, falling head permeameter tests are fairly reliable, but even greater user 

experience is required for testing.  

Terzaghi and Peck (1967) recommend using soil filter materials with a maximum particle 

size of 3 in. and not containing greater than 5% passing the No. 200 sieve. The filter material 

refers to the material placed between the native soil and a drain pipe. This type of drainage is 

typically used behind retaining walls. The filter material should also be uniformly graded as 

opposed to gap graded. They found that filter material needs to have voids that are small enough 

to prevent the migration of fines but large enough to allow water to flow out. 

ASTM D2434 Standard Test Method for Permeability of Granular Soils (constant head) 

limits the test standard to granular material with a maximum fines content of 10% and for 

specimens with a hydraulic conductivity greater than 1 x 10-3 cm/s. This standard also indicates 

that the required porous stones should not have openings greater than the fines’ particle size 

(0.075mm). ASTM D5084 Standard Test Methods for Measurement of Hydraulic Conductivity 

of Saturated Porous Materials Using a Flexible Wall Permeameter, states that the porous stones 

must have a significantly greater hydraulic conductivity so they do not inhibit or control the 

measured hydraulic conductivity value of the soil. The standard, however, does not specify a 

maximum pore size for porous stones. 
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Table 3.6: Typical properties of compacted materials (NAVFAC DM7-2, 1986)  
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Figure 3.5: Typical hydraulic conductivity values for USCS soil types (USBR Earth manual 
part 1, 1998) 
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Figure 3.6: Hydraulic conductivity and drainage of given soil types (Terzaghi and Peck 
1967) 

 

The testing standards (D2434 and D5084) suggest that soils with up to 10% fines can 

have a hydraulic conductivity of 1 x 10-3 cm/s or greater and that soils with greater than 10% 

fines can have hydraulic conductivities smaller than 1 x 10-3 cm/s. The pores must be small 

enough for the porous stones to prevent the passage of fines, but large enough to allow water to 

flow. Typically, filter paper is included with the use of porous stones to prevent fines migration, 

but its effects on the overall hydraulic conductivity may lead to some error. A test should be 

performed using the intended apparatus without any specimen in the permeameter to evaluate the 

head losses (ASTM D5084).   
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ASTM D2434 suggests using a rigid wall permeameter for soils with hydraulic 

conductivity greater than 1 x 10-3 cm/s. ASTM D5084 suggests using a flexible wall 

permeameter for soils with hydraulic conductivity smaller than 1 x 10-3 cm/s. It appears that at 

the cut-off of 1 x 10-3 cm/s, there is the potential to obtain unreliable hydraulic conductivity 

measurements, which had been observed by Terzaghi and Peck (1967). ASTM D5084 stipulates 

that for testing such soils (with hydraulic conductivity around 10-3 cm/s) the tubing sizes of the 

apparatus must be increased along with the porosity of the porous stones. Increasing the porous 

stone porosity may not be possible due to the potential for fines to migrate through pores of the 

stones. If an increase in porous stone is not made, a test of the overall system head loss is 

recommended to ensure that the porous stones are not significantly limiting the measured 

hydraulic conductivity of the specimen (ASTM D5084). For a constant rate of flow, the system 

must be able to maintain a flow to +/- 5% as well as be capable of measuring head loss to this 

accuracy. This is not easily performed without the use of transducers and flow-pumps (ASTM 

D5084). Note that in the study presented in this report the head loss test was performed and the 

conditions were determined to be satisfactory. 

  

3.4.3 SHEAR STRENGTH PARAMETERS 

One of the most commonly used methods of measuring the friction angle of soils is to 

perform a series of triaxial compression tests. Different types of tests exist for this method based 

on the soil type and loading/drainage conditions expected in the field. For granular material, the 

consolidated drained (CD) test is typically used to measure the shear strength parameters. The 
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test condition represents soil that has been allowed to consolidate for sufficient time. During 

compression, the soil is then allowed to drain without developing any excess pore pressure.  

 Bowles (1982) stated that the results from the CD, CU and UU tests performed on 

granular free-draining material will produce very similar results; no data were found to verify 

this suggestion. 

Table 3.7 shows typical values of drained internal friction angles for granular soils. The 

internal friction angle for sands and gravels ranges from 26 to 48 degrees.  

Table 3.7: Friction Angles of Granular Soils (Lambe and Whitman, 1979) 

 

 

 

In   
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Table 3.6, the soil types defined by UFC (2005) have effective friction angle values from 

tests performed on samples compacted using the standard Proctor method at maximum dry 

density. For the GW and GP soils, the friction angle is greater than 38 and 37 degrees, 

respectively. Similarly, for SW and SP, the friction angle is 38 and 37 degrees, respectively.  

It appears that the term cohesionless is used for describing a free-draining soil in the 

more current publications. The Unified Facilities Guide Specifications (UFGS 2008) describes 

cohesionless soils as those classified in the USCS as GW, GP, SW, and SP. Cohesive materials 

include materials classified as GC, SC, ML, CL, MH, and CH. Materials that are classified as 

GM, GP-GM, GW-GM, SW-SM, SP-SM, and SM shall be identified as cohesionless only when 

the fines are non-plastic.  

NAVFAC DM 7-2 (1986) shows a relationship between friction angle and soil’s index 

properties (unit weight and void ratio) for different soil types (Figure 3.7). Friction angle values 

are effective values obtained from tests that involved cohesionless soils with non-plastic fines. In 

general, the plot indicates that internal friction angle decreases as soil is more uniformly graded, 

less dense, and has higher fines content. 

Thevanayagam (1998) performed consolidated undrained (CU) triaxial compression tests 

on sand samples of 10 cm diameter and 20 cm height with 0%, 10% and 25% fines to determine 

their strength.  Results showed that the friction angle decreased as fines increased but not 

significantly.  The difference between the average friction angle for soils with 0-2% Kaolin silts 

and 27% Kaolin silts was only about 3.  
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Figure 3.7: Friction Angle for Given Soil Type (NAVFAC DM7-2, 1986) 
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4. EFFECTS OF FINES ON HYDRAULIC CONDUCTIVITY AND SHEAR 
STRENGTH 

 

4.1 SOILS, SAMPLE PREPARATION AND TESTING METHODS 

The grain size distribution of the base granular soil used in this study (from the borrow 

source of the Bridggewater project) is shown in Figure 4.1. For reference, the VTrans current 

standard specification of structural backfill for abutments and retaining walls is also included. In 

addition, grain size distributions of the base soils used in other investigations found in the 

literature (Table 3.5) are also included.  

 

Figure 4.1: Grain size distribution of the base material of this study, compared to VTrans’ 
specifications (vertical bars); base soils used in relevant published studies are also included. 
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An abundant source of fines was identified within the same quarry pit where the base 

material was obtained to allow systematic variation of the fines content from 0 to 25%. 

Hydrometer analysis (ASTM D422) and Atterberg limit (ASTM D4318) results indicated that 

the fines had similar properties to the natural fines in the base material and were non-plastic or 

had very low plasticity. Prior to testing, the base material was first sieved and washed to remove 

the natural fines and then incremented with the selected fines.  

For the majority of the tests, the target specimen densities were 95% of maximum dry 

densities per standard Proctor test at optimum moisture content. The Standard Proctor density is 

most commonly specified, as per the survey (Table 2.1). Standard Proctor tests were performed 

on six combinations of the base soil and fines contents (0, 5, 10, 15, 20, and 25% by mass). For 

comparison purposes, modified Proctor tests were also performed. Specimen densities of 95% of 

maximum dry density per standard Proctor tests related to about 91% of maximum dry density 

per modified Proctor tests. All Proctor tests were performed in a 15.2 cm (6 in.) mold per 

standards ASTM D698 and D1557 because the soil contained particle sizes up to 19 mm (3/4 

in.).  An automated hammer mechanism was used. Table 4.1 summarizes maximum dry densities 

and optimum moisture contents obtained from the Proctor tests. In general, the maximum dry 

density increased and optimum moisture content decreased as the fines content increased. As 

expected, maximum dry densities and optimum moisture contents from modified Proctor tests 

were greater and smaller, respectively, than those from standard Proctor tests for a given fines 

content. A small number of tests were conducted at 90% relative compaction and optimum 

moisture content per standard Proctor test. 
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Table 4.1: Summary of standard and modified Proctor test results 

Fines 
Content      
(% by 
mass) 

AASHTO    
Soil 

Classification 

USCS          
Soil 

Classification 

Standard Proctor Modified Proctor 

Maximum 
Dry 

Density, 
g/cm3 
(pcf) 

Optimum 
Moisture 
Content 

(%) 

Maximum 
Dry 

Density, 
g/cm3 
(pcf) 

Optimum 
Moisture 
Content 

(%) 

0
 

A-1-b SP 2.01 (126)
 

10.5
 

2.11 (132)
 

7.7 
5 A-1-b SP-SM 2.09 (130)        

(8.08.5 

8.5 2.19 (137) 6.0 
10 A-1-b SP-SM 2.12 (132) 

 

8.0 2.23 (139) 5.3 
15 A-1-b SM 2.18 (136) 7.3 2.26 (141) 5.3 
20 A-1-b SM 2.22 (139) 7.4 2.24 (140) 7.0 
25 A-1-b SM 2.17 (135) 7.9 2.21 (138) 6.0 

 

Hydraulic conductivity and triaxial tests were performed using automated Geocomp 

Flowtrac II flowpumps, 4.4 kN (10 kip) load frame, and a triaxial cell that accommodated 15.2 

cm (6 in.) diameter and about 30.5 cm (12 in.) high specimens. Flexible wall permeability tests 

were chosen to allow for back pressure saturation and to reduce potential side leakage which is 

common in rigid permeameters. The specimens were prepared using a split mold to allow the soil 

mixture to be compacted to the desired initial density. The dry mass of base material and silt was 

added together, mixed, and then water was added to optimum moisture. This mixture was then 

compacted in equal layers in the split mold by hand to a fixed height, to the target density. A 

membrane thickness of 0.635 mm (0.025 in.) was used to reduce the chance of puncture during 

compaction, and membrane correction was applied in data reduction. After sample preparation, 

the tubing and pumps were de-aired while the sample was allowed to saturate with deaired water 

under a low gradient prior to being connected to flow pumps. Back pressure saturation was 

performed to verify the B parameter of 0.95 or greater using the automated flow pumps. 
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Hydraulic conductivity tests were performed using constant flow. No loss of fines was observed 

during or after testing and the porous stones were inspected and cleaned prior to each test. 

A head loss check was performed on the system prior to testing as suggested by ASTM 

D5084. This test was performed using a hollow Plexiglas cylinder, in place of the soil sample, 

with a membrane to observe the effect of the tubing and porous stones without any soil.  This 

check showed that the porous stones and losses in other components of the apparatus had little 

effect on the measured hydraulic conductivities of the soil specimens.  

For each combination of the base soil and fines content, three triaxial specimens were 

prepared. Tests were performed using ASTM D7181 for consolidated drained triaxial 

compression (CD) tests. Hydraulic conductivity was measured at 41 kPa (6 psi) confining 

pressure followed by a CD test for the first specimen. For the second specimen, hydraulic 

conductivity was measured at a confining pressure of 83 kPa (12 psi) after the 41 kPa (6 psi) 

measurement and then a CD test was performed. Hydraulic conductivities were measured at 41, 

83, and 124 kPa (6, 12, and 18 psi) confining pressures followed by a CD test for the third 

specimen. Occasionally, an additional specimen was prepared for repeating a test. All CD tests 

were conducted at a shearing rate of 0.01%/min. 

  

4.2 EXPERIMENTAL RESULTS 

The hydraulic conductivity measurements are plotted in Figure 4.2 through Figure 4.5. 

Hydraulic conductivities were measured on three specimens at 41 kPa (6 psi), on two specimens 

at 83 kPa (12 psi), and once at 124 kPa (18 psi), and were fairly repeatable. As expected, 

hydraulic conductivity decreased with increasing confining pressure as seen in Figure 4.2. As 
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seen in Figure 4.3, hydraulic conductivities of 0 - 10% fines contents were close to each other, 

and greater than 10-4 cm/s (0.14 in/hr) for up to 15% fines content. There is a distinct drop in 

hydraulic conductivity between 10 and 15% fines content and continued to decrease with higher 

fines content. Hydraulic conductivity of specimens compacted at 90% relative compaction was 

generally higher than that of specimens compacted at 95% relative compaction, as expected. 

This investigation included only one base soil. To evaluate if the above conclusions could 

be generalized to other granular soils, the results obtained here are combined in Measured 

hydraulic conductivity versus fines content (the dashed lines are based on judgment and not 

statistically determined) 

Figure 4.6 with other relevant results found in the literature (Merriman, 1955; 

Siswosoebrotho et al., 2005; Bandini and Sathiskumar, 2009). The gradations of the soils used by 

these investigators are included in Figure 4.1. Other specifics of their test conditions are 

summarized in Table 3.5. The base soil types and test conditions in the investigations varied 

significantly. For example, the base soils included fine sand to mostly gravelly soils. Both rigid 

and flexible wall permeameters were used and the techniques of measuring hydraulic 

conductivity also varied (constant head, falling head and constant flow). The confining pressures 

also differed. Despite these differences, the estimated best fit of the hydraulic conductivities 

summarized in Measured hydraulic conductivity versus fines content (the dashed lines are based 

on judgment and not statistically determined) 

Figure 4.6 are consistent with this study in that the hydraulic conductivity of the granular 

base soils did not change appreciably for non-plastic fines content of up to 10%. 
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As described earlier, a consolidated drained strength test was conducted on each 

specimen after the hydraulic conductivities were measured. The effective internal friction angle 

and effective cohesion values for peak and ultimate failure conditions are summarized in Table 

4.2. The internal friction angle decreased with an increase in fines content. The small effective 

cohesions are due to a slight decrease that occurred in peak friction angle with increased 

confinement and applying a straight-line fit to each of the corresponding failure circles.  The 

peak internal friction angle decreased from about 39o for zero percent fines to about 33o for 25% 

fines. For the same fines content range, the ultimate friction angle decreased from about 35o to 

32o. The data from triaxial compression tests are included in Appendix B. 

  
Figure 4.2: Measured hydraulic conductivity versus confining pressure for 95% RC 
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Figure 4.3: Effect of Fines on hydraulic conductivity at varied confinement for 95% RC 
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Figure 4.4: Measured hydraulic conductivity versus confining pressure for 90% RC 
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Figure 4.5: Effect of Fines on hydraulic conductivity at varied confinement for 90% RC 

 

0.00

0.01

0.14

1.42

14.17

1.0 E-06

1.0 E-05

1.0 E-04

1.0 E-03

1.0 E-02

0 5 10 15 20 25 30

H
ydraulic C

onductivity (in/hr) H
yd

ra
ul

ic
 C

on
du

ct
iv

ity
 (c

m
/s

) 

Fines Content (% mass) 

41 kPa (6 psi)

83 kPa (12 psi)

124 kPa (18 psi)



 - 58 - 

 

Measured hydraulic conductivity versus fines content (the dashed lines are based on judgment and not 
statistically determined) 

Figure 4.6: Hydraulic conductivities from this study compared to other relevant studies 

 

Table 4.2: Summary of drained shear strength parameters 

 

Fines Content 
(%) 

Peak Strength Ultimate Strength 
Cohesion, kPa 

(psi) 
Friction Angle, 

degrees 
Cohesion, kPa 

(psi) 
Friction Angle, 

degrees 
0 12.4 (1.78) 38.9 2.3 (0.34) 34.5 
5 11.9 (1.72) 39.7 0.0 (0.00) 35.3 
10 8.2 (1.19) 36.4 0.8 (0.12) 34.2 
15 19.1 (2.77)  34.1 0.4 (0.06) 35.5 
20 6.2 (0.90) 33.4 4.1 (0.60) 32.2 
25 5.2 (0.75) 33.1 4.3 (0.62) 31.7 

 

0.001

0.014

0.142

1.417

14.170

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 5 10 15 20 25 30

H
ydraulic C

onductivity (in/hr) H
yd

ra
ul

ic
 C

on
du

ct
iv

ity
 (c

m
/s

) 

Fines Content (%) 

This study
50:50 Sand (Bandini and Sathiskumar 2009)
ASTM Graded Sand (Bandini and Sathiskumar 2009)
Siswosoebrotho et al. (2005)
River Sand (Merriman 1955)
Creek Sand (Merriman 1955)
Sand and Gravel (Merriman 1955)



 - 59 - 

 

4.3 SUMMARY OF THE EXPERIMENTAL RESULTS 

For the soils investigated, the measured hydraulic conductivities for 0%, 5%, and 10%, 

fines contents were quite close to each other. Hydraulic conductivities were significantly lower 

for fines content in excess of 15%.  These results compared well with other relevant studies 

found in the literature that included varying granular soil types (fine sand to mostly gravel) and 

test conditions. A non-plastic fines content of up to about 10% for free-draining structural 

backfill is well supported by this study and data reported in published work by others.   
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5. FIELD MONITORING 

 

5.1 MOTIVATION 

Typically, the design of retaining walls and bridge abutments relies on the assumption 

that the soil material used to backfill the structure is ‘free-draining’ and will not produce 

differential hydrostatic pressure. If the backfill is not expected to be drained, the abutment or 

retaining wall must be designed for earth pressure loads plus hydrostatic pressure due to the 

presence of water. However, there is insufficient readily accessible information regarding what 

constitutes free-draining for purposes of preventing hydrostatic pressure against walls and 

abutments. Differential water pressures could be of concern particularly for retaining structures 

near water bodies such as bridge abutments over rivers and streams.  To assess if any differential 

water pressures exist in existing cast-in-place reinforced concrete retaining walls installed by 

VTrans, a field monitoring program was implemented, which is described below along with the 

measurements and analysis. 

 

5.2 MONITORING SITES AND INSTRUMENTATION 

 Two sites – Bridgewater and Williamstown, both in Vermont, were selected for installing 

field instrumentation by VTrans. The locations of these bridges are depicted in the map shown in  
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Figure 5.1. The Bridgewater abutment was new construction in 2012 whereas Williamstown site 

is an existing bridge (built in 2010). 
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Figure 5.1: Location map of Bridgewater and Williamstown 

Williamstown Site 

Bridgewater Site 
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 At each site, three piezometers were installed in the backfill and an additional pressure 

transducer was installed to measure stream water level elevation. Figure 5.2 shows a photograph 

during the installations of piezometers at Bridgewater and Figure 5.3 shows a plan view of the 

instrumentation.  

 

Figure 5.2: Bridgewater piezometer installation 
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Figure 5.3: Plan view of instrumentation at Bridgewater site 

 

Figure 5.4 shows a photograph during the installations of piezoemeters at Williamstown 

and Figure 5.5 shows a plan view of the instrumentation.  
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Figure 5.4: Williamstown piezometer installations 

 

Figure 5.5: Plan view of the instrumentation at the Williamstown site 
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5.3 MEASUREMENTS AND ANALYSIS 

Monitoring periods were from January 2012 through July 2014. Figure 5.6 and Figure 5.7 

show groundwater and river water level data from Bridgewater site. Figure 5.6 summarizes water 

levels in terms of elevations. Figure 5.7 shows differential water levels; the water level of the 

river is subtracted from the water level in the backfill. A positive number would indicate that the 

water level in the backfill was higher than that in the stream. Figure 5.8 shows a close-up of the 

data from Figure 5.6 for a shorter time period to assess if there is any time lag between the water 

level changes in the stream versus those in the backfill. 

Figure 5.9, Figure 5.10 and Figure 5.11 present data in formats similar to Figure 5.6, 

Figure 5.7 and Figure 5.8, but for Williamstown site. 

 

Figure 5.6: Measured water levels at Bridgewater site 
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Figure 5.7: Measured differential water levels at Bridgewater site 

 

Figure 5.8: Measured water levels at Bridgewater site (close-up of a portion from Figure 5.6) 
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Figure 5.9: Measured water levels at Williamstown site 

 

 

Figure 5.10: Measured differential water levels at Williamstown site 
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Figure 5.11: Measured water levels at Williamstown site (close-up of a portion from Figure 
5.9) 

 

5.3.1 PRECONSTRUCION WATER LEVELS 

Bridgewater 

Preconstruction ground water level data from three borings (B-101, B-102, and B-201) drilled 

for the project between 2005 and 2008 at the south abutment (abutment no. 1) were limited to 

observations during drilling.  The water level in boring B-201 taken during drilling (casing 

extent was not reported) was approximately at the river bed level shown on the plans.  The river 

is normally shallow in this stretch correlating with groundwater matching river level.  Caving 

was reported at boreholes B-101 and B-102 at about 8 and 3 feet higher, respectively, without 

specific groundwater level data.  Overall there is no direct data on prior water levels aside from 
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these reports.  Soils reported on the logs between ground level and below proposed Bottom of 

Footing elevation are granular with between 10 and 22 percent fines, indicating a relatively high 

conductivity in the stream bank and foundation soils. 

Williamstown 

Preconstruction ground water level data near the new observation wells is limited to observations 

during drilling at two borings (B-2 and B-4).  No ground water table was encountered at boring 

B-2.  At boring B-4, the ground water table was reported at 14.1 feet deep.  Based on this data it 

appears that ground water was near or below top of rock in the vicinity of the new monitoring 

wells, MW-1 through MW-3.  Backfill permeability is unclear based on the limited amount of 

sampling obtained and several cored boulders at boring B-4 could be interpreted as indicative 

either of low permeability glacial till or more pervious conditions.  The foundations are shown to 

be placed directly on top of the bedrock. 

 

5.3.2 POST-CONSTRUCTION WATER LEVELS 

Bridgewater 

Aside from what appear to be anomalous levels measured at observation well B-201 between 

January and July 2012, the ground water levels measured in the three observation wells nearly 

match the river levels.  As illustrated in Figure 5.7, the backfill water levels essentially match the 

river levels during river rise.  There is at most a six inch lag in the backfill ground water levels 

during river fall. 
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Williamstown 

Figure 5.10 illustrates that groundwater levels in the observation wells are between 12 and 18 

inches above the river level during relatively consistent river level conditions.  During periods of 

rapid river level fluctuations the groundwater levels have risen as much as 3 to 4 feet above river 

level.  The groundwater levels in observation wells B-201 and B-202 approximately match the 

amount of the river level rise and lag behind in their rate of rise.  The groundwater levels in 

observation well B-203 usually match the rate and often exceed the amount of the river level 

rise.  It is puzzling that B-203 levels are higher and more erratic than at the other observation 

wells.  

The river and groundwater levels during the July 9, 2013 flooding in Williamstown (Refer to 

Figure 5.9 for water level data) provide helpful data in comparing river and groundwater levels.  

Groundwater levels rose essentially as quickly as the river level although they lagged lower than 

the total river level rise.  Following that short burst of flooding the ground water levels gradually 

dropped over the course of about 2 months while river levels dropped in a matter of about a 

week.  Aside from the unusual July 2013 flooding period, the groundwater levels in all three 

observation wells have usually been about 12 inches and rarely more than 18 inches above the 

adjacent river level during the approximately 2 year monitoring record. 
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5.4 SUMMARY 

Bridgewater 

Groundwater levels in Bridgewater essentially match the river levels with a maximum difference 

of about 6 inches in the backfill groundwater above the river during falling river levels.  This 

appears to be the result of the abutment bearing on and being surrounded by relatively free 

draining natural soils and adequate drainage characteristics in the abutment backfill and weep 

holes within the abutment itself. 

Williamstown 

Groundwater levels in Williamstown have mostly been within 1 foot above the river level with 

the exception of the July 9, 2013 flooding.  Observation well B-203 water levels are higher and 

more erratic than expected for this well as compared to the other two wells which have more 

stable and typical groundwater level fluctuations.  Its response seems more likely of a well closer 

to the river and placed beside a weep hole.   

The groundwater flow regime in the backfill of this project’s unusually long abutment and wing 

wall configuration is unclear.   The extent to which surface water can infiltrate the wall backfill 

is important.  The groundwater monitoring data indicates that the water level in the backfill is 

usually between 1 and 3 feet above the river.  The extent to which this differential reflects typical 

retaining wall conditions versus a groundwater and surface water regime unique to this project 

configuration is unknown.   More data on the construction details described above, perhaps by 

means of project photographs, will be helpful.  In the end, it will most likely take comparison of 

Williamstown’s data with that from other projects to decide if and how to generalize this 

project’s findings to other backfill situations.  
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6. OVERALL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

6.1 MAIN CONCLUSIONS 

This report presented:  

(1) A laboratory study investigating effects of fines on the hydraulic conductivity and shear 

strength of a typical granular backfill, and  

(2) Results of field monitoring of river level and groundwater level in the backfill at two cast 

in place abutment wall sites in Vermont. The following conclusions are drawn: 

For the soils investigated, the measured hydraulic conductivities for 0%, 5%, and 10%, 

fines contents were quite close to each other. Hydraulic conductivities were significantly lower 

for fines content in excess of 15%.  These results compared well with other relevant studies 

found in the literature that included varying granular soil types (fine sand to mostly gravel) and 

test conditions. A non-plastic fines content of up to about 10% for free-draining structural 

backfill is well supported by this study and data reported in published work by others.  On an 

empirical basis, the survey of state transportation agencies indicates that some states are using 

fines contents from 5 to 15% (with one state at 20%) without reports of adverse effects. 

How much, if any, of a fines content above 10% can be justified is less clear.  Beyond 

about 10% there is both greater variability and decreasing permeability such that the free 

draining designation is perhaps not justifiable for a broadly applied specification for structural 

wall backfill.  In specific situations which warrant investing in the combination of additional 

testing, design effort, and attention to controlling material variability in construction, the 

permeability data reported here indicates that the fines content could potentially be increased a 
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small amount if the specific soils have favorable hydraulic conductivity. However, attention 

would need to be paid to the potential for greater frost susceptibility and material variability 

which would result in added quality control costs for the contractor and quality assurance 

expenses for the owner.  

The effect of fines on drained shear strength showed a decrease in the effective internal 

friction angle with increased fines. Values of peak and ultimate friction angles varied between 39 

and 33 degrees and between about 34.5 and 31.5 degrees, respectively, for fines content between 

0 - 25%. If the fines content of up to 10% was allowed, the peak internal friction angle may 

decrease from about 39° for zero percent fines to about 34.5° for 10% fines. For the same fines 

content range (0 to 10%), the ultimate friction angle may decrease from about 35 to 34 degrees. 

To generalize this conclusion however, shear strength tests should be conducted on additional 

soils.  

It is important to note that the objective of considering a backfill soil specification with 

higher fines content than presently used was for cost savings.  The abutment and retaining walls 

under consideration are considered to be primarily in river crossing settings and wall 

performance with the current backfill and bottom of wall weep hole configuration in Vermont 

has been satisfactory.   

The Vermont Agency of Transportation (VTrans) evaluated borrow source availability in 

1993 (Conrad and Dudley, 1993) finding that available sources were being depleted and that 

94.5% of Vermont’s remaining deposits are not available for extraction due to inaccessibility, 

conflicting land use, environmental sensitivity and poor quality. Personal communications with 

contractors in Vermont indicate that up to 20 percent savings in the unit cost price of the 
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retaining wall backfill item could be achieved by allowing a fines content by weight increase 

from the current Vermont standard specified maximum of 6% to 10%.  If the allowable fines 

content is increased from 6% to 10%, it is recommended that it is adopted on a trial basis at three 

or so sites and these walls be monitored for differential water levels. 

The effects of initially unsaturated conditions or aging and other characteristics of 

compacted soils on their permeability and strength and how these characteristics change with 

fines content were not specifically evaluated in the testing for this and the referenced studies, 

which could be a topic for future investigations.  

The field monitoring at Bridgewater site showed that groundwater levels in the backfill 

essentially matched the river levels with a maximum difference of about 6 inches in the backfill 

groundwater above the river during falling river levels.  This appears to be the result of the 

abutment bearing on and being surrounded by relatively free draining natural soils and adequate 

drainage characteristics in the abutment backfill and weep holes within the abutment itself. 

Groundwater levels in Williamstown were within 1 foot above the river level with the 

exception of the July 9, 2013 flooding.  Observation well B-203 water levels were higher and 

more erratic than expected for this well as compared to the other two wells which have more 

stable and typical groundwater level fluctuations.  Its response seems more likely of a well closer 

to the river and placed beside a weep hole.  The groundwater flow regime in the backfill of this 

project’s unusually long abutment and wing wall configuration is unclear.   The extent to which 

surface water can infiltrate the wall backfill is important.  The groundwater monitoring data 

indicates that the water level in the backfill was usually between 1 and 3 feet above the river.  

The extent to which this differential reflects typical retaining wall conditions versus a 
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groundwater and surface water regime unique to this project configuration is unknown.   More 

data on the construction details described above, perhaps by means of project photographs, will 

be helpful.  In the end, it will most likely take comparison of Williamstown’s data with that from 

other projects to decide if and how to generalize this project’s findings to other backfill 

situations.  

 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

Additional research into the following areas is recommended. For the experimental work, 

we recommend the following. 

(1) Additional granular backfill soils should be tested to study the effects of gradation 

properties in addition to the effects of fines content on compaction, hydraulic 

conductivity and shear strength.  

(2) In this investigation, grain size distributions of only the base soil were determined before 

and after compaction to examine if additional fine grained partciles generate because of 

compaction. In general, less than 1% fines were generated. In future, if additional backfill 

soils are investigated, the effects of compaction on soil gradation could be further 

investigated.  

(3) Constant and falling head hydraulic conductivity tests performed in a rigid compaction 

permeameter could be performed for comparison to the flexible wall permeameter. If the 

results compare well, the tests could be conducted much faster. 

(4) The effects of strain rate on shear strength could be investigated. In this research it was 

assumed that the effect of strain rate on a free-draining soil is negligible.  
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For field monitoring, we recommend supplementing the Bridgewater and Williamstown 

monitoring with additional project monitoring in order to more reliably conclude how well the 

currently specified wall backfill and weep-hole details limit the groundwater differential at 

abutments.  Bridgewater appears to represent the case of an abutment in relatively free draining 

granular soils behind and below the wall, and with relatively limited seepage into the backfill 

from natural ground behind it.  Williamstown represents the case of a retaining wall bearing on 

bedrock with a currently undetermined amount of seepage from behind, and from surface 

infiltration.   

Specifically, we recommend monitoring on projects where preconstruction groundwater 

data is available for comparison with post construction monitoring data.  We recommend the 

following monitoring cases: 

(1) Abutment bearing on low permeability soil (e.g., glacial till or clay) with natural granular 

soil above, with groundwater levels well documented in natural soils behind the new 

backfill/abutment. 

(2) Abutment bearing on bedrock with groundwater levels well documented in natural soils 

behind the new backfill/abutment (Williamstown case but with shorter, more typical, 

wing walls. 
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APPENDIX A – STATE SURVEY 

The Vermont Agency of Transportation is evaluating the current AASHTO-
recommended design criteria (granular backfill with less than 5% fines) and specifications for 
backfill in association with abutments and retaining walls.  These design assumptions presume a 
free-draining structure that results in no differential groundwater levels on opposite sides of the 
retaining wall.  Consequently, unbalanced loading due to hydrostatic pressure is ignored.  
However, some engineers are concerned that unbalance loading may be occurring. Furthermore, 
in some areas the availability of high-quality structural backfill has been declining.  The purpose 
of this research initiative is to examine these relationships along with other possible cost 
effective backfill alternatives and establish design guidelines for our organization. 

As part of this research projects, we are surveying other state DOTs to determine what 
types of backfill materials and drainage details are currently being used on cast-in-place concrete 
cantilevered retaining wall and bridge abutments. 

The survey is expected to 2 to 5 minutes to complete.  Please make sure to include your 
contact information.  Surveys results will be shared with everyone that completes the survey.  
We thank you for your time.   

 

Page 1 - Question 1 - Choice - Multiple Answers (Bullets)  

How do you account for hydrostatic pressure in your design assumptions? 
 
 Ignore it. 
 Design for it. 
 Install a drainage system in order to not design for it. 
 None of the above. 

 

Page 1 - Question 2 - Yes or No  

Do you utilize backfill material with greater than 5% fines? 
 
 Yes 
 No 

 

Page 1 - Question 3 - Yes or No  

Has your organization done formal studies to investigate if greater fines contents could be used or if 
alternative materials could be used/added? 
 
 Yes 
 No 

 

Page 1 - Question 4 - Choice - Multiple Answers (Bullets)  

Please check all applicable backfill materials your DOT uses or would consider using in the future: 
 
 Shredded tires 
 Geofoam Blocks 
 Recycled concrete 
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 Recycled pavement 
 Granular backfill 
 In-situ soils 
 Other 

 

Page 1 - Question 5 - Yes or No  

Do you have standard details for abutment and wingwall backfill? 
 
 Yes 
 No 

 

Page 1 - Question 6 - Yes or No  

Do you have standard specifications for abutment and wingwall backfill methods and materials? 
 
 Yes 
 No 

 

Page 1 - Question 7 - Yes or No  

Have you changed your details in the past to provide a more cost-effective backfill detail, or do you 
currently vary your details on a project by project basis based on cost? 
 
 Yes 
 No 

 

Page 1 - Question 8 - Yes or No  

Do you vary your design and details for backfill based on other non-geotechnical parameters, such as the 
average daily traffic (ADT)? 
 
 Yes 
 No 

 

Page 1 - Question 9 - Open Ended - Comments Box  

Please provide contact information for follow-up clarification and distribution of survey results: 
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APPENDIX B – TEST RESULTS 
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(I) TYPICAL HYDRAULIC CONDUCTIVITY TEST DATA  
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